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Abstract: A user of a Semantic Web application may not trust its results because he may
not understand how the application produces its results using distributed data and inferential ca-
pabilities. Explanation-aware Semantic Web applications provide explanations of their reasoning
- explaining why an application has performed a given step or which information it has used to
derive a new piece of information. However, providing too much and irrelevant information in
explanations may overwhelm the users, especially the non-expert users. In this paper, we discuss
an approach to explain reasoning over Linked Data. We introduce a vocabulary to describe justi-
fications and we discuss how publishing justifications as Linked Data enables explaining reasoning
over Linked Data. Finally, we discuss how to summarize explanations with relevant information
taking into account user specified explanation filtering criterion.
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Explications résumées du web des données liées

Résumé : Un utilisateur d’une application Web sémantique peut ne pas faire confiance à ses
résultats, car il peut ne pas comprendre comment l’application produit ses résultats à l’aide de
ses capacités inférentielles et de données distribuées. Les applications Web sémantique sensibles
aux explication fournissent des explications de leurs raisonnements - pour expliquer pourquoi une
étape a été effectué ou quelles informations ont été utilisées pour cette étape. Cependant, fournir
trop d’informations parfois non pertinentes dans les explications peut submerger les utilisateurs,
en particulier ceux non-experts. Dans cet article, nous discutons d’une approche pour expliquer
le raisonnement sur le web des données liées. Nous introduisons un vocabulaire pour décrire
les justifications et nous montrons comment publier des justifications en tant que données liées
pour expliquer les raisonnements sur le web des données liées. Enfin, nous discutons de la
façon de résumer les explications par des information pertinente en fonction des critères de filtre
d’explication spécifiés par l’utilisateur.

Mots-clés : Explication, justification, résumé, web des données liées, web des justifications
liées
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1 Introduction

Semantic Web applications use inferential capabilities and distributed data in their reasoning.
Users often find it difficult to understand how these applications produce their results. Hence,
users often do not trust the results these applications produce. Explanation-aware Semantic
Web applications provide explanations of their reasoning - explaining why an application has
preformed a given step or which facts it used to derive a new fact. Explanations enable users
to better understand reasoning of these application. Users have more details about how an
application produce a given result or why it has performed a step in its reasoning. Explanations
help users to decide whether to trust a result or an application.

The emergence of Linked Data enables large-scale reasoning over heterogeneous and dis-
tributed data. Explaining reasoning over Linked Data requires explaining how these distributed
data were produced. Publishing also the explanation related metadata as Linked Data enables
such explanations. Justifications are metadata about how a given piece datum is obtained. We
introduce the concept of Linked Justification in this paper. We present a vocabulary to describe
justifications and guidelines to publish these justifications as Linked Data.

The existing explanation-aware Semantic Web applications inherit explanation features from
explanation-aware expert systems. These explanations are targeted to expert users, such as
knowledge engineers, with detailed information about all the execution steps of reasoners of
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4 Hasan & Gandon

these applications. Unlike the expert systems, users of Semantic Web applications have diverse
background - from expert knowledge engineers who are interested in every details of the rea-
soning, to regular users who do not have any background in reasoning, logic, or ontologies.
These non-expert users might feel overwhelmed with all the execution details of reasoners. To
address this issue, we provide summarized and relevant explanations to users. Users can spec-
ify their explanation filtering criterion - types of information they are interested in. We take
into consideration the explanation filtering criterion when we present explanations and summa-
rize explanations. We use centrality and similarity matrices to summarize and provide relevant
explanations.

This paper is structured as follows: in Section 2, we present two motivating scenarios. We
present the concept of Linked Justifications and how to generate explanations from Linked Jus-
tifications in Section 3. In Section 4, we present our approach to summarize explanations. In
Section 5, we present an evaluation of our explanation summarization approach. Then in Sec-
tion 6, we present the related work. Finally, we conclude and discuss the future work in Section 7.

2 Motivating Scenarios

In this section, we present explanation scenarios from two perspectives: (i) in subsection 2.1,
need for explanations for expert users such as knowledge engineers(ii) in subsection 2.2, need for
explanations for non-expert users such as regular end-users.

2.1 Explaining Large-Scale Reasoning over Linked Data

In the recent years, we have seen an increasing growth of publishing Linked Data. We have seen
datasets published from community driven efforts, governmental bodies, scientific communities,
and corporate bodies [4]. These datasets are interlinked1 and use RDFS/OWL schemata. This
presents opportunities of large-scale data integration and reasoning over cross-domain data. In
this scenario, knowledge engineers might need explanations for debugging or understanding on-
tologies. In addition, performance related explanations can help knowledge engineers to optimize
performance (e.g. identifying most frequent failure point in a query). In such a scenario with
large ontologies, a knowledge engineer may want to focus on a specific part of an explanation
with a lot of details. A knowledge engineer may want a short explanation to have a quick under-
standing. A real world example of this scenario would be FactForge2. FactForge integrates data
from some of the central datasets and materialize - the process of storing inferred knowledge -
the inferred facts with respect to OWL 2 RL3.

2.2 Explaining Smart Applications

Smart applications such as recommendation systems are potentially effective applications of the
Semantic Web for end-users. Such an application can use inference and distributed data to
produce its results. A users - without sufficient knowledge of ontology or knowledge engineering
- of such a smart application may want to know why the application has produced an output or
taken an action. The application should explain to justify its action in this scenario. However,
providing explanations with too much details may overwhelm such a user. Smart applications
should be able to provide easy to understand and concise explanations.

1See http://richard.cyganiak.de/2007/10/lod/ for a graph of these datasets and their interlinkage.
2http://factforge.net/
3http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
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3 Linked Justifications

In this section, we first discuss how we can explain in in a distributed settings. We introduce
the concept of Linked Justification. We present a vocabulary to publish justifications as Linked
Data. Finally, we present an algorithm to generate explanations from Linked Justifications.

McGuinness et al. [14] discuss the importance of distributed and portable justifications, and
subsequently present justifications as user-friendly explanations. With the increasing growth of
sharing Semantic Web data as part of the Linked Data [3] initiatives, it is important that data
publishers can publish their data with explanation related metadata with ease. Explanation
infrastructures should be able to accommodate common data publishing principles. Semantic
Web explanation infrastructures should also address heterogeneous and distributed nature of
the Web. With regard to diversity of different representation, explanation metadata should
be published promoting interoperability. The W3C PROV-DM data model [16] can be used
as an interchange data model across different systems in this regard. Different systems can
define their explanation metadata model as application-specific and domain-specific extensions
of PROV-DM. Applications across the Web can then make sense of explanation metadata in a
unified manner. Consumers of these explanation metadata can use explanation presentation and
visualization tools according to their needs. Our work [9] on applying the Linked Data principles
to publish explanation metadata - Linked Justifications - intent to address these issues.

Justifications are metadata about how a given piece of datum is obtained. In Linked Justifica-
tions approach, an application can obtain such a piece of datum from other data pieces published
as Linked Data. These involved data pieces can be located anywhere in the Web. Publishing
justification metadata as Linked Data enables explaining distributed reasoning by following the
links between justifications for involved data in a reasoning. We present the Ratio4TA4 vocab-
ulary for describing justifications. Data publishers can use Ratio4TA describe metadata about
their data and publish this metadata as Linked Data.

3.1 Ratio4TA

Ratio4TA (inter linked justifications for triple assertions) is an OWL ontology for describing
justifications. Ratio4TA allows data publishers to describe metadata about their data. For
example, applications can describe their reasoning processes and links between their consumed
and produced data using Ratio4TA.

Ratio4TA facilitates explanation of reasoning processes in a Web-scale. Applications can
publish their data along with justification related metadata as Linked Data using Ratio4TA.
Other applications can consume these data with justification metadata and provide explanations
about their consumed data - generated from the justification metadata of the consumed data. In
this way, applications can provide explanations of distributed reasoning processes by following
the links between justifications.

Ratio4TA extends the W3C PROV Ontology5 (specifically, PROV-O Working Draft 03 May
20126). This promotes interoperability by enabling data consumers process justification metadata
according to W3C PROV standards.

Figure 1 shows the core concepts and relations of Ratio4TA. It allows to describe data,
reasoning processes, results, data derivations, rules, and software application. In addition the
JustificationAccount class allows to define named graph containers of justification statements. A
detailed specification of Ratio4TA with examples is available in its website.

4http://ns.inria.fr/ratio4ta/
5http://www.w3.org/TR/prov-o/
6http://www.w3.org/TR/2012/WD-prov-o-20120503/
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6 Hasan & Gandon

Figure 1: The core classes and properties of Ratio4TA.
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Summarized Explanations from Linked Justifications 7

3.2 Explanations from Linked Justifications

We generate explanations from Linked Justifications by recursively following the links between
involved justifications in a reasoning. Listing 1 shows an algorithm that recursively collects
involved justification in for a derived RDF statement dst.

Algorithm 1 Generating explanation for an RDF statement

1: procedure GenerateExplanation(dst, depth)
2: if (depth > maxDepth) then
3: return
4: end if
5: CJST = GetJustificationMetaStatements(dst)
6: CKST = GetRDFKnowledgeStatements(CJST , dst)
7: JST = JST ∪ CJST
8: KST = KST ∪ CKST
9: for each statement in CKST do

10: GenerateExplanation(statement, depth + 1)
11: end for
12: end procedure

This algorithm crawls through the related justifications and constructs the derivation proof
tree for a derived statement. We set a maximum depth limit to traverse by setting the global
variable maxDepth. This is to avoid the algorithm falling into loops because of cyclic proof paths,
or faulty justification metadata; also to allow generating proof tree with a maximum depth. We
initially call procedure GenerateExplanation by setting dst to the derived statement for
which we want to generate the proof tree, and by setting depth to 1 to start crawling from the
depth one of the proof tree. Also, we initialize the set of justification statements JST = ∅ and
the set of knowledge statements KST = ∅. Justification statements for a RDF statements are
the justification metadata statements that justify the RDF statement. Knowledge statements
for a RDF statement are the statements from which the RDF statement is derived. After the
procedure GenerateExplanation finishes executing, the set of justification statements JST
will contain all the justification statements in the proof tree for the initial derived statement
dst. Similarly,the set of knowledge statements KST will contain all the knowledge statements
in the proof tree for the initial derived statement dst. These two variables JST and KST are
also global variables in our algorithm.

Line 2 checks the condition if the current depth exceeds the maximum depth and line 3 stops
executing the current call of the procedure if the condition on line 2 holds. Line 5 collects all
the justification statements for the current derived statement dst by calling GetJustification-
MetaStatements and assigns the collected justification statements in the set CJST . The
GetJustificationMetaStatements procedure collects the justification statements by follow-
ing the r4ta:justifiedBy link for dst. Please note that GetJustificationMetaStatements
should be made aware of where to find the r4ta:justifiedBy link for a derived RDF statement.
This is a design decision for data publishers. As a common practice, data publisher for a dataset
can specify inside a provenance container named graph which r4ta:JustificationAccount instance
justifies which RDF statement and also publish the provenance container as Linked Data. Line 6
collects all the knowledge statements by calling GetRDFKnowledgeStatements and assigns
the collected knowledge statements in the set CKST . The GetRDFKnowledgeStatements
procedure collects all the knowledge statements from which the statement dst was derived by
following the r4ta:derivedFrom links found in the current justification statements CJST . Line

RR n° 8279



8 Hasan & Gandon

Figure 2: Example of a proof tree-based explanation.
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Summarized Explanations from Linked Justifications 9

7 updates JST by a set union with already collected justification statements and CJST . Line
8 updates KST by a set union with already collected knowledge statements and CKST . Line
9 to 11 call the the GenerateExplanation procedure for each knowledge statement found in
CKST (i.e. the current set of knowledge statements) by increasing depth by 1.

We call the derived RDF statement (dst in our algorithm initialization) that we are explaining,
the root statement rs. We call the RDF graph formed by the set of knowledge statements union
the root statement, the RDF knowledge graph KG:

KG = RDFGraph(KST ∪ rs)

We provide explanations in natural language for the RDF statements in KG. Our expla-
nations also include the information of proof tree hierarchy. Figure 2 shows an example of our
explanation for a derived statement that “Bob is a British Scientist”. Each node of our expla-
nation is an RDF knowledge statement. What we present in each node is a natural language
representation of the RDF knowledge statement in that node. A node with children means that
the RDF knowledge statement in that node is derived from the RDF knowledge statements of
its children nodes.

This approach explains derivations of a given RDF statement with all the derivation steps
upto a maximum depth in the derivation proof tree. However, explanations with the details of
all the steps in a computation process may not be as useful for non-expert users as they are
for expert users [2, 6, 10, 14]. Explanations should contain information with different degrees of
detail taking into account the users’ expertise [14]. To address this issue, we propose providing
summarized explanations with different size to different types of users. In next section, we discuss
our approach to summarize explanations.

4 Summarizing Explanations

The users of Semantic Web applications can have different background, skill level, and knowl-
edge level because of the open nature of the Web. Level of user expertise should be taken into
account while providing explanations. The presentations of explanations can change according
to user expertise or user scenario context. According to [2], explanation-aware applications in
the Semantic Web should provide explanations with the features of provision of explanation with
different degrees of detail and filtering explanation paths. In this paper, we propose summariz-
ing explanations for providing explanations with different degrees of details. Our summarizing
approach can also filter information in summarized explanations using filtering criterion. These
filtering criterion can be a description of context related information or descriptions of what
types of information a user is interested in to consume in explanations. Our explanation sum-
marization approach provides a platform for personalized explanations for different contexts, as
discussed in [2].

Given a RDF knowledge graph KG = (R, T ), where R is the set of resources and literals and T
is the set of RDF statements. In addition, given the root statement rs, where KST = T \rs, and
the justification metadata statements JST. We provide summarized explanations by summarizing
RDF statements from KST. We also use the term “oriented graph” to refer to KG throughout
the paper. Consumers of our explanations can specify what kind information they are interested
in. When we summarize an explanation, we take into consideration five aspect: (i) salience of
RDF statements, (ii) similarity of RDF statements with respect to users’ filtering criterion, (iii)
abstract statements. (iv) subtree weight in proof tree - weight with respect to the proof tree, (v)
coherence. We first describe the first four aspects below and then we describe how we re-rank
our explanation statements by coherence.

RR n° 8279



10 Hasan & Gandon

Salient RDF Statements The salience of an RDF statement indicates the importance of the
RDF statement. We use degree centrality to compute salience of RDF statements. Degree
centrality, CD, of a vertex in a graph is the number of links the vertex has. We use the
normalized degree centrality when we compute salience of RDF statements. Normalized
degree centrality, CDN , is the degree centrality divided by the maximum possible degree
centrality. Given a graph G = (V,E), where V is the set of vertices, E is the set of edges,
we compute CD(v) and CDN (v) for a vertex v ∈ V as following:

CD(v) = deg(v)

CDN (v) =
CD(v)

maxCD(V )

Here the graph G = KG with V = R and E = T for computing CD and CDN . For a
vertex v ∈ V , deg(v) is the number of links the vertex has. The value of maxCD(V ) is
the maximum value from the set of all degree centrality values - i.e. from the set {CD(v):
for each v ∈ V }. We compute the salience SSL(i) of an RDF statement i by taking the
weighted average of the normalized degree centrality of the subject of the RDF statement
and the normalized degree centrality of the object of the RDF statement in KG. We use
equal weights for the weighted average. We compute SSL(i) of an RDF statement i ∈ KST
as below:

SSL(i) = 0.5× CDN (subjectOf(i)) + 0.5× CDN (objectOf(i))

Here subjectOf(i) is the subject resource in RDF statement i, and objectOf(i) is the object
resource or literal in RDF statement i. The SSL score gives us a collective importance
score of an RDF statement depending on the degree centrality of the nodes, representing
the subject and the object, in the oriented graph represented by KG. We did not use
the centrality of the predicate of statement while computing SSL because we wanted an
importance score representing the importance of the information in a statement but not
the importance of the relation between the information.

Relevant RDF Statements The consumers of our explanations can specify a set of classes,
Filter, as their filtering criterion. Users can select these classes from the union of classes
in the schemata used to describe KG. We use SC to refer to this union of all the classes
in the used schemata.

Filter ⊆ SC

When we summarize explanations, we rank the more relevant statements to the concepts
given in filtering criterion higher. We use the approximate query solving feature [5] of
Corese Semantic Web Factory7 to compute similarity. Corese implements a similarity
feature, as a SPARQL extension, to compute conceptual similarity between two classes in
a schema based on their semantic distance. For a statement i and a set of classes as user
filtering criterion Filter, we compute similarity SSM (i, F ilter), as following:

SSM (i, F ilter) =
1

3
× similaritynode(subjectOf(i), F ilter)

+
1

3
× similaritynode(predicateOf(i), F ilter)

+
1

3
× similaritynode(objectOf(i), F ilter)

7http://wimmics.inria.fr/corese

Inria
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Summarized Explanations from Linked Justifications 11

For a statement i, subjectOf(i) returns the subject of the statement, predicateOf(i) re-
turns the predicate of the statement, and objectOf(i) returns the object of the statement.
We compute similaritynode(j, F ilter) where j ∈ R ∪ SC as following:

similaritynode(j, F ilter) = maxSimilaritytype(j, F ilter) : if j ∈ SC

similaritynode(j, F ilter) = maxSimilaritytype(typesOf(j), F ilter) :

if j /∈ SC but j ∈ R

maxSimilaritytype(Types, F ilter) = max(
⋃
{similaritytype(m,Filter) :

for each m ∈ Types})

similaritytype(m,Filter) = {similaritycorese(m,n) : for each n ∈ Filter}

In the above formalism, typesOf(j) for a resource j ∈ R gives us the set of classes
Types ∈ SC of which j is an instance. For a class m ∈ Types and a class n ∈ Filter,
similaritycorese(m,n) computes a similarity score between class m and n ranging from 0.0
to 1.0 where 1.0 represent exact match and 0.0 represents completely not similar. The SSM

score for a statement with respect to Filter indicates the similarity of the types of informa-
tion specified in Filter. One can also define other similar measures to match a description
of a context with explanation information for providing context-aware explanations.

Abstract Statements Our abstraction measure resembles approaches using abstract informa-
tion for summarizing texts [7]. We consider a statement that is close to the root, rs, of the
proof tree that JST represents is more abstract than a statement that is far from the root
rs. A node in the proof tree represents an RDF statement in KG. A link in the proof tree
represents a r4ta:derivedFrom link. We define the distance of a node in the proof tree from
the root node as the level in which the node belongs. The root node belongs to level one
in the proof tree. The root node is derived from the nodes in level two. A node in level
two is derived from the linked nodes in level three, and so on. For a statement i ∈ KST ,
we compute the abstraction score, SAB(i), as following:

SAB(i) =
1

level(i)

The function level(i) gives the the level in which the statement i belongs in the proof tree.

Subtree Weight in Proof Tree We also consider salience of the statements in KST with
respect to their proof tree positions. We take all the subtrees of proof tree with root
i ∈ KST . For a subtree with root i, we compute the subtree weight of the statement i by
taking the average score of all the statements in that subtree.

SST (i) =

∑
j∈subtree((i)

score(j)

| subtree((i) |

The subtree(i) function returns the subtree of proof tree with root i. The score(j) for a
statement j here can be combinations of SSL(j), SSM (j, F ilter), and SAB(j). We discuss
more about score(j) in ranking section.

RR n° 8279



12 Hasan & Gandon

4.1 Ranking

We rank the statements in KST by different combinations of their computed scores. Taking n
statements, where n ≤| KST |, will give a summarized list of n statements which can explain
rs. We compute the statement score, score(i) where i ∈ KST , by taking weighted average of
different combinations of SSL(i), SSM (i, F ilter), and SAB(i) with equal weights .

For the most salient statements, we compute score(i) as following:

score(i) = SSL(i) (1)

We compute score(i) for the most salient and abstract statements as following:

score(i) = 0.5× SSL(i) + 0.5× SAB(i) (2)

For the most salient statements taking the user’s filtering criterion, Filter, into account, we
compute score(i) as following:

score(i) = 0.5× SSL(i) + 0.5× SSM (i, F ilter) (3)

We compute score(i) for the most salient and abstract statements taking the user’s filtering
criterion, Filter, into account as following:

score(i) =
1

3
× SSL(i) +

1

3
× SAB(i)

+
1

3
× SSM (i, F ilter)

(4)

For the most salient statements with respect to the proof tree positions of the statements, we
compute score(i) as below:

score(i) = SST (i) (5)

As we showed before, computation of SST (i) requires already computed score(i). This score(i)
values can be again combinations of SSL(i), SSM (i, F ilter), and SAB(i).

4.2 Re-Ranking by Coherence

In text summarization, an ideal summary will include coherent and readable texts [7]. An ideal
ontology summary should also be expressed in a coherent way [19]. In our case, a RDF statement
a is coherent to a RDF statement b if a is directly derived from b. The authors of [19] discuss
that it is not possible to satisfy the coherence requirement during the extraction process of a
summary. They suggest re-ranking an ontology summary by coherence measure after the initial
extraction process. We follow a similar approach to satisfy our coherence requirement.

Let R is a ranked list of RDF statements by their scores; S is a list of already selected RDF
statements in the summary; i is the next RDF statement to be selected. i should satisfy that:

i = arg max
i∈R\S

(0.5× score(i) + 0.5× reward(i, S))

In the above formalism, reward(i, S) is the amount of potential contribution value - ranging
from 0.0 to 1.0 - of i to the total coherence of the summary of i is added to S. We compute
reward(i, S) as following:

reward(i, S) = 1− coherent(S)

coherent(S ∪ i)

Inria



Summarized Explanations from Linked Justifications 13

In a set of statements S, coherent(S) is the number of coherent statements. We define coher-
ence of an RDF statement in KST with respect to the positions of the statements in the proof
tree that the statements in JST represents. The RDF statements a and b are coherent if the
following condition hold:

(name(a) r4ta:derivedFrom name(b)) ∈ JST

where a ∈ KST and b ∈ KST

Here name(k) is the name of the statement k. As we discuss earlier, we used named graphs
to assign unique names to each statements. (name(a) r4ta:derivedFrom name(b)) represents an
RDF statement with name(a) as the subject, r4ta:derivedFrom as the predicate, and name(b)
as the object of the statement.

5 Evaluation

Our evaluation methodology builds on ontology summary evaluation [13] and text summary
evaluation methodologies [7, 18]. Generally, evaluating summarizing technologies include mea-
suring the agreement between human-generated summaries - known as “ground truths” - and
automatically generated summaries.

In this section, we present the evaluation of our explanation summarization methodology.
We preformed a survey to find ground truth summaries of explanations. We then measured
the agreement between the automatically generated summarized explanations by our methodol-
ogy and the ground truth summarized explanations using evaluation measures drawn from the
information retrieval and summary evaluation literatures.

5.1 Evaluation Context

For the purpose of our study, we selected a subset of geographical locations from GeoNames8 and
a subset of artists, events, and places from DBPedia9, then derived new information from these
selected subsets. Our ad-hoc reasoner infers new RDF statements with respect to RDFS type
propagation; and owl:sameAs and transitivity of parentFeature property of GeoNames schema.
For example, given the statements:

geonames :3017382 owl:sameAs dbpedia:France.

geonames :2985244 gno:parentFeature geonames :3017382.

The reasoner infers the following statement:

geonames :2985244 gno:parentFeature dbpedia:France.

Assuming the following statements are also given:

geonames :6447113 gno:parentFeature geonames :2985244.

geonames :6447113 owl:sameAs dbpedia:Carry -le -Rouet.

The reasoner infers:

dbpedia:Carry -le -Rouet gno:parentFeature dbpedia:France.

Now, suppose that DBPedia specifies Nina Simone’s death place as Carry-le-Rouet:

dbpedia:Nina_Simone dbpedia -owl:deathPlace dbpedia:Carry -le-Rouet.

8http://www.geonames.org/
9http://dbpedia.org/
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And our reasoner inferred that Carry-le-Rouet is part of France. Therefore, the reasoner can
infer that Nina Simone died in France, even though it was not originally specified in our initial
data:

dbpedia:Nina_Simone dbpedia -owl:deathPlace dbpedia:France.

In addition to inferring new statements, our reasoner generates justification for each derivation
it performs. We generate explanations in natural language from these justifications by using the
labels involved classes, instances, and properties.

In a test case, we give the participants a query and the answer for the query with its ex-
planation all in natural language. We ask the participants to rate the effectiveness of each of
the statements in the explanation from a range of 1 to 10. As our algorithms can take users’
filtering criterion and provide relevant explanations to the concepts provided in filtering criterion,
we give the the same query, answer, and the explanation for the answer but this time with a
user’s filtering criteria class taken from the schemata used in the reasoning process. We ask the
participants again to rate the effectiveness of each of the statements in the explanation from a
range of 1 to 10.

The rankings of the explanation statements produced by their ratings are the ground truths
for our study. We used one test case for this study. We surveyed 9 people from different
backgrounds: 4 computer scientists, 1 journalist, 1 psychologist, 1 biologist, and 1 business
administrator. 44% of the participants were female and 56% of them were male. 56% had
knowledge of RDF and 44% did not have any knowledge of RDF. The ages of the participants
range from 22 to 31.

5.2 Evaluation Matrices

5.2.1 Cosine Similarity

We use cosine similarity to measure agreements between ratings produced by the survey partic-
ipants. Cosine similarity, CSM , between two vectors x and y is defined as:

CSM(x, y) =
x · y

‖ x ‖‖ y ‖

The cosine similarity value ranges from -1 to 1. The value -1 means exactly opposite, the value
1 means exactly the same, and the value 0 indicates independence. We consider a participant’s
rating scores for all statements in an explanations as a vector. We interpret the cosine similarity
between two such rating vectors as the agreement between the two associated ratings.

5.2.2 Compression Ratio

Given an explanation E and the summary S for this explanation. Compression Ration CR is
the ratio of the size of the summarized explanation S to the size of original explanation E:

CR =
size(S)

size(E)

CR represents a normalized size of the summarized explanation. A good summary of an expla-
nation will have a low CR and a high rate of important information of the original explanation
where importance is defined by the users [7]. Below, we discuss a few more measures which allow
us to understand this notion of importance with respect to the opinions of users.
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5.2.3 Normalized Discounted Cumulative Gain

The discounted cumulative gain (DCG) [11, 15] measures the quality of results of an Information
Retrieval (IR) system in a ranked list. DCG assumes that judges have graded each item in a list
of results. Using these grades, DCG measures the usefulness, or gain, of a ranked list of results.
DCG penalizes high quality results appearing lower in a ranked list of results. Given the grades
of items in a list result - reli representing the grade of the result at position i, DCG at rank p
is defined as:

DCGp = rel1 +

p∑
i=2

reli
log2(i)

Normalized Discounted Cumulative Gain (nDCG) allows to calculate and compare this measure
across multiple lists of results where each of the lists might have different length. nDCG at rank
p is computed by dividing DCGp by the maximum possible DCG at rank p - also known as Ideal
Discounted Cumulative Gain (IDCG) at rank p:

nDCGp =
DCGp

IDCGp

nDCG values are in the interval 0.0 to 1.0. For a ranked list, a nDCGp value of 1.0 means that
the ranking is perfect at rank p with respect to the ideal ranking produced by ranking the results
based on grades. A nDCGp value of 0.0 means that the ranking is completely imperfect p with
respect to the ideal ranking. In our evaluation, we convert the normalized size of the summary
CR for different summaries to p as below:

p = CR ∗ size(E)

This allows us to compare different summaries with different compression ratios - hence with
different p - using nDCG.

Our algorithms produce ranked list of explanation statements. We consider the rating scores
by the participants as grades. The average of ratings by all the participants for a statement s
gives us the ground truth rating for s. For n survey participants, we compute the ground truth
rating reli for a statement at position i of a ranked list of explanation statements as below:

reli =

n∑
j=1

rating(i, j)

n

In the above formalism, rating(i, j) represents the rating for the statement at position i in a
ranked list of explanation statements by survey participant j.

5.2.4 Recall, Precision, and F-score

We measure the performance of our summarization algorithms using Recall and Precision com-
posite scores as in text summarization [7]. Recall and Precision quantify how closely the sum-
marized explanations generated by algorithms correspond to the human produced summarized
explanations. For each summary, we let correct = the number of statements selected by the
algorithm and the human; wrong = the number of statements selected by the algorithm but not
by the human; and missed = the number of statements selected by the human but not by the
algorithm. We calculate Recall and Precision scores as below:

Recall =
correct

correct + missed
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P1 P2 P3 P4 P5 P6 P7 P8 P9 avg.
Without Filter 0.6906 0.7782 0.80 0.7866 0.7829 0.7944 0.8181 0.8462 0.8045 0.789
With Filter 0.7519 0.6876 0.706 0.6696 0.6471 0.5704 0.6772 0.7492 0.718 0.686

Table 1: Agreements between ground truths measured by cosine similarity.

Precision =
correct

correct + wrong

Recall reflects how many good statements the algorithm missed, and Precision reflects how
many of the algorithm’s selected statements are good.

F-score is a composite measure of Recall and Precision. We use the basic F-score discussed
in [18]:

F =
2× Precision×Recall

Precision + Recall

5.3 Analysis of Ground Truths

As we discuss before, our ground truths are the rankings of the explanation statements produced
by their ratings. We compute the agreement between two ground truths by computing cosine
similarity between their ratings. Table 1 shows the agreement among the survey participants
for the two scenarios - without Filter and with Filter - we evaluate for a test case. Each entry
shows the average agreement between a survey participant to the other survey participants. The
rightmost column shows the total average agreement for a scenario. The average agreements for
both the scenarios are high. However, with Filter the participants agree less. In the scenario
with Filter, the participants have to also consider the extra factor of similarity to the concepts
provided as user filtering criterion. This contributes to the lower agreement when user filtering
criterion are given. From these high agreements, we can conclude that the survey participants
highly agree on what is effective as an explanation.

5.4 Evaluation of Explanation Summarization Measures

For the two scenarios - without Filter and with Filter, we take different combinations of our
measures SSL, SST , and SAB . In the case of with Filter, we do the filtering using SSM , and
therefore SSM is combined with the different combinations of our measures. Finally, we re-rank
by coherence the ranked list of explanation statements produced by the different combinations
of measures for both without Filter and with Filter scenarios. In the figures, re-rank is shown
as SCO.

We compute the gold standard ranking of the statements of an explanation by ranking the
statements by their average ratings - i.e. the ground truth ratings. As we have two scenarios
(without and with Filter), we have two gold standard rankings. The gold standard rankings
reflect the collective opinions of survey participants.

For the case of without Filter, we also evaluate sentence graph summarization [19]. As the
authors suggest, we use 0.8 as the navigational preference p value. We denote sentence graph
summarization as SSG. We do not consider sentence graph summarization for with Filter sce-
nario because sentence graph summarization does not provide a feature for filtering information
based on ontology concepts as filtering criterion.

Figure 3 shows the nDCG values of different combinations of our summarization measures,
and the sentence graph summarization for summaries with different sizes for the scenario of
without Filter. In the x-axis, we have compression ratio CR. The y-axis represents nDCG.
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Figure 3: Quality of rankings produced by various combinations summarization measures without
Filter.

The measures salience + abstraction + coherence (SSL + SAB + SCO) and salience + ab-
straction + subtree weigh + coherence (SSL + SAB + SST + SCO) gives the best results for the
scenario of without Filter. This means that the participants consider central (with respect to
the oriented graph and the proof tree), abstract, and coherent information as effective infor-
mation in explanation summaries. The nDCG values in the CR value interval 0.05 to 0.2 are
particularly interesting for these two combinations of measures because we have small summaries
with very similar rankings to the gold standard rankings. For the CR value interval 0.05 to 0.15,
nDCG values are 1.0 for these two combinations, meaning the rankings are perfect rankings
with respect to the gold standard rankings. The nDCG for the rest of the CR values for these
two combinations are also close to 1.0. This means that for the rest of the CR values, these
two combinations produce similar rankings to the gold standard rankings. The sentence graph
summarization algorithm performs poorly for summarizing explanations. For a short summary,
CR interval 0.05 to 0.2, the best nDCG value as low as 0.52. This shows that our explana-
tion summarization algorithms perform significantly better than sentence graph summarization
algorithm when there is no filtering criterion.

Figure 4 shows the nDCG values of different combinations of our summarization measures
with Filter for summaries with different sizes. We use the SSM measure to filter information
similar to concepts in Filter. For this reason, all the combinations in this case have SSM measure.

For the scenario of with Filter, the combination salience + similarity + coherence (SSL +
SSM+SCO) performs best. This means that the survey participants consider central (with respect
to oriented graph), similar (with respect to the concepts in Filter), and coherent information as
effective information in the summarized explanations. The nDCG values in the CR value interval
0.05 to 0.2 are particularly interesting this combination of measures because in this interval we
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Figure 4: Quality of rankings produced by various combinations summarization measures with
Filter.

have small summaries with very similar rankings to the gold standard rankings. For the CR
values after this interval, the nDCG values are also high, ranging from 0.8 to 0.95. However,
the best performance in the scenario of with Filter is not as good as the best performance
in the scenario of without Filter. This is again due to the fact that the survey participants
had to consider the extra factor of similarity. Similarity is a very broad concept and peoples
opinions about similarity vary greatly [8, 12]. It is hard to develop algorithms with a common
understanding of similarity. Therefore, our algorithms perform a little worse in the scenario
when they filter information using similarity than the scenario when there is no filtering using
similarity.

5.5 Evaluation of Summaries of Explanation

We evaluate the quality of summarized explanations by comparing them to gold standard sum-
marized explanations. We generate the gold standard summarized explanation for an explanation
by taking statements with ground truth ratings greater than or equals to a threshold value th
where the ground truth rating for each statement is scaled to 1.0. We set th to 0.6 for our gold
standard summarized explanations. This allows us to get the top statements rated by the survey
participants for a given explanations.

We use F-score to measure the quality of summarized explanations. F-score reflects accu-
racy with respect to the gold standard summary. A desirable situation would a summarized
explanation with high F-score value and low CR value. As in the evaluation of measures in sub-
section 5.4, we have the same scenarios (without and with Filter) and the same combinations
of measures. We have two gold standard summarized explanations generated with th set to 0.6.
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Figure 5 shows compression ratio of summarized explanations against F-score for the scenario
without Filter. Figure 6 shows compression ratio of summarized explanations against F-score
for the scenario with Filter.

Figure 5: Compression ratio (CR) vs F-score without Filter.

As Figure 5 shows for the scenario without Filter, we get the best F-score of 0.83 when CR
value is 0.35 by the measure combination salience + abstraction + subtree weight (SSL +SAB +
SST ). However, the F-Score values of 0.75 and 0.80 respectively for CR values 0.15 and 0.25 by
the measure combinations salience + abstraction + coherence (SSL +SAB +SCO) and salience +
abstraction + subtree weigh + coherence (SSL + SAB + SST + SCO) are more desirable because
the size of the summaries are smaller. This again confirms that the participants consider central
(with respect to the oriented graph and the proof tree), abstract, and coherent information
as effective information in explanation summaries. The sentence graph summarization again
performs worst with a best F-score value of 0.25 in the CR interval 0.1 to 0.3. This shows that
our summarized explanations are significantly more accurate than the summarized explanations
generated by sentence graph summarization algorithm when there is no filtering criterion.

For the scenario with Filter, the best F-score value 0.6 is lower than the best F-score value
0.83 for the scenario without Filter. This is again due to the fact that the survey participants had
to consider the extra factor of similarity to filter information in the explanations. The measure
combination salience + similarity + coherence (SSL + SSM + SCO) achieves the F-score value
0.6 when the CR value is 0.15. This is a desirable situation because the size of the summary is
small. This again confirms that survey participants consider central (with respect to the oriented
graph), similar (with respect to the concepts in Filter), and coherent information as effective
information in the summarized explanations.
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Figure 6: Compression ratio (CR) vs F-score with Filter.

6 Related Work

According to our knowledge, there is no comparable published work on summarizing explanations
in the Semantic Web. But researchers have studied ontology summarization. RDF Sentence
graph based summarization [19] extracts RDF Sentences based on centrality measures. Our
work has a similar approach to sentence graph summarization approach. However, we define new
measures for summarizing explanations. Peroni et al. [17] discuss how to identify key concepts
in an ontology. They draw summarization criterion from cognitive science (natural categories),
network topology (density and coverage), and lexical statistics (term popularity). Alani et al. [1]
discuss shrinking an ontology by analyzing the usage of the ontology. Alani et al. analyze the
query log against an ontology to understand the important parts of the ontology. The work of
Peroni et al. and Alani et al. focus on a concept level summarization of ontologies. In contrast,
our focus is on statement level.

7 Conclusion and Future Work

In this paper, we discuss generating explanations from Linked Justifications. We present an
approach to summarize these explanations. We presented five different measures to summarize
explanations. We compared different combinations of these measures to evaluate our summarized
explanations. The evaluation showed that the combinations of salience, abstraction, and coher-
ence; salience, abstraction, subtree weigh, and coherence; and salience, similarity, and coherence
have good performances.

In the future work, we would like to explore how we can effectively present explanations
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and summarized explanations using different kinds of user interfaces and user interactions. We
would like to explore how we can effectively use the summarization rankings while presenting
information in personalized and context dependent summarized explanations. In addition, we
would are going to evaluate if explanations and summarized explanations are useful for the
end-users.
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