
HAL Id: hal-00808273
https://hal.inria.fr/hal-00808273

Submitted on 5 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Metamodeling to Automatic Generation of
Multimodal Interfaces for Ambient Computing

José Rouillard, Jean-Claude Tarby, Xavier Le Pallec, Raphael Marvie

To cite this version:
José Rouillard, Jean-Claude Tarby, Xavier Le Pallec, Raphael Marvie. From Metamodeling to Au-
tomatic Generation of Multimodal Interfaces for Ambient Computing. International Journal On
Advances in Software, IARIA, 2011, 3 (3&4). �hal-00808273�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49800906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00808273
https://hal.archives-ouvertes.fr

From Meta-modeling to Automatic Generation

of Multimodal Interfaces for Ambient Computing

José Rouillard
LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France
jose.rouillard@univ-lille1.fr

Jean-Claude Tarby
LIFL Laboratory – University of Lille 1
59655 Villeneuve d’Ascq Cedex – France

jean-claude.tarby@univ-lille1.fr

Xavier Le Pallec
LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France
xavier.le-pallec@univ-lille1.fr

Raphaël Marvie
LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France
raphael.marvie@univ-lille1.fr

Abstract — This paper presents our approach to design
multichannel and multimodal applications as part of ambient
intelligence. Computers are increasingly present in our environments,
whether at work (computers, photocopiers), at home (video player,
hi-fi, microwave), in our cars, etc. They are more adaptable and
context-sensitive (e.g., the car radio that lowers the volume when the
mobile phone rings). Unfortunately, while they should provide smart
services by combining their skills, they are not yet designed to
communicate together. Our results, mainly based on the use of a
software bus and a workflow, show that different devices (such as
Wiimote, multi-touch screen, telephone, etc.) can be coordinated in
order to activate real things (such as lamp, fan, robot, webcam, etc.).
A smart digital home case study illustrates how using our
approach to design with ease some parts of the ambient system
and to redesign them during runtime.

Keywords — Pervasive computing, ubiquitous computing, ambient
intelligence, multi-channel interaction, multimodality.

I. INTRODUCTION

Ambient computing is one of the most significant recent
advances in Human-Computer Interaction (HCI). Due to the
arising of pervasive and ubiquitous computing, the design of
HCI has to take into account the context of interactions. The
objective is to allow users to interact with a smart system
with low constraints through the use of multiple modalities,
channels, and devices. In the future, with the availability of
new devices and smart objects, ambient computing will
allow the definition of services seamlessly interacting with
both environment and users.

Our current work takes place in this context of ambient
computing. In order to support dynamic unplanned
interactions with the user, services have to adapt themselves
to their mutating environment – resulting from the user
mobility and the variability of her/his context. This requires
(a) the availability of distributed devices such as PDA
(Personal Digital Assistant), laptops, smartphones, robots,
probes, and (b) easing the discovery of these devices.

Currently, development tools that enable us to easily
generate and integrate ambient services are lacking. Each
piece of software is developed on its own, and then
integrated in the system. This introduces additional costs as
well as misconfiguration risks. This paper focuses on the
design of multi-channel interfaces relying on a workflow
engine in order to ease the realization of ambient systems.

This document is an extended version of our previous
paper [1]. It is structured as follows. Section two presents
related works. Section three explains the background and
motivation of this project. Section four gives an overview of
our conceptual approach in order to tackle the emerging
problems encountered. Section five explains in details our
approach from an implementation point of view. Section
six describes a case study around the smart digital home
thematic and presents the benefits of our approach for the
design and generation of multimodal and multichannel
interactive systems. Then, a conclusion gives our roadmap
for future work.

II. RELATED WORK

Computer frameworks and languages have been
proposed specifically to facilitate the development of
multimodal interfaces. In the World Wide Web
Consortium (W3C) MultiModal Interaction (MMI)
framework [2], the interaction manager invokes specific
application functions and accesses information in a
dynamic processing module. The interaction manager
presents the result to the user via one or more output
components. Obviously, the interaction manager of this
framework is very important because it coordinates data
and manages execution flow among various input and
output components. It also responds to inputs from the
input components, updates the interaction state and the
application context, and initiates output to one or more
output components. Developers use several approaches

to implement interaction managers, including:
Traditional programming languages such as C or C++;
Speech Application Language Tags (SALT), which
extends HTML by adding a handful of HTML tags to
support speech recognition, speech synthesis, audio file
replay, and audio capture; XHTML plus Voice (often
referred as “X+V”), in which the VoiceXML 2.0 [3]
voice dialog control language is partitioned into modules
that are embedded into HTML; Formal specification
techniques such as state transition diagrams and Harel
Statecharts [4].

The OpenInterface project [5] is dedicated to
multimodal interaction. In this project, everyday objects
can take part in the interaction in ubiquitous computing
(including an augmented table for instance) and the user
can freely switch from one modality to another
according to her/his context: running in the street, at
home, in front of a big screen in an airport, etc. This
project aims at the design and development of an open
source framework for multimodal interaction: the
OpenInterface framework.

Those kinds of projects are mainly devoted to the
study of multimodal interactions, allowing the usage of
more than one device or modality at the same time in
order to interact with a main system connected to
Internet. Ambient computing increases complexity
because related applications are not supposed to manage
only devices and modalities, but also channels (cf.
Section III.A) in order to allow intelligent and context-
aware communications. Our research activity takes place
in ambient computing area.

III. BACKGROUND

This background section is divided in three parts:
multimodality, user activity, and connection with the
ambient environment.

A. Multimodality

Our work tackles the ability of ambient computing to
permit context-aware interactions between humans and
machines. To do so, we rely on the use of multimodal and
multi-channel interfaces in various fields of application
such as coaching [6], learning, health care diagnosis, or
in-situ marketing. For Frohlich, a channel is defined as an
interface that makes a transformation of energy [7]. From
a user’s point of view, he distinguished voice and
movement channels, and from the system’s point of view
he mentioned audio, visual, and haptic channels.

In the Human–Computer Interaction (HCI) domain, the
notion of channel is not used very often and there are very

few references to multi-channel research with some
exceptions such as the work of [8]: “Often these
modalities require specialized channels to allow access
modalities such as cameras, microphones, and sensors. A
multi-modal multi-channel system faces the challenge of
accepting information from any input method and
delivering information through the appropriate output
methods”.

Using a multi-channel approach allows users to interact
with several channels choosing the most appropriate one
each time in order to exchange with an entity. Such
channels could be, for instance, plain paper, e-mail,
phone, web site. Using a multimodal approach allows
users to employ several modalities in order to interact
with a single system. It can be sequential, like first being
on the phone then on the web, or synergistic [9], like
being on the phone while on the web. This approach
implies some synchronization requirements both for the
interfaces and knowledge bases used during the
interactions.

There are very few tools that support the design and
implementation of interfaces having such characteristics
[10]. One of our goals is to study and propose
infrastructures easing interactions that are both
multimodal and multi-channel in an ambient context. In
our work, we use the Multi-DMC referential proposed in
[11]. It can identify a system based on three criteria:
Device (D), Modal (M) and Channel (C). It has two
positions (Mono or Multi) for each of the three criteria
targeted (DMC). This represents 23 (=8) possibilities,
which are presented on Figure 1 .

Figure 1. The Multi-DMC referential.

For a given system, one tries to indicate the position of
each decisive factor. For example, the system represented
on the bottom right of the figure is a multi-device,
multimodal, and multi-channel system.

Figure 2. Workflow designed with the Studio Common Knowledge.

B. User activity

In this paper, we are targeting ambient systems, which
aim to be user-friendly. Unfortunately, until now such
systems are more difficult to conceive and to implement
than traditional systems because of the heterogeneity of
devices (hardware, software, different locations, etc.).
Given its complexity, an ambient system must observe the
rules of usability: guidance, low workload, concision, etc.
[12]. Therefore, our work is based on concepts identified
by HCI domain such as user’s activity and logic of use.

The design of interactive systems is based on the notion
of tasks and activities, themselves decomposed into sub-
tasks/sub-activities whose arrangement is managed by
temporal or structural sequences. Among all the
approaches used in the design of interactive systems and
using these concepts, some are more used such as task
models [13][14], Petri nets [15], Statecharts [16], and
workflows.

Given all these solutions we have chosen the workflows
[17] because they are adapted for non-experts in order to
explain their rationale for the use of ambient systems.
First, Workflow concepts are as simple as needed to be
understood by usual end-users. Second, related modeling
languages have been generally designed to be readable by
non-(computer)specialists. Finally, they are widespread in
information systems and especially in document
management systems.

C. Connection with the ambient environment

A major question in pervasive and ubiquitous
computing is how to integrate physical objects (screen,
chair, coffee machine, etc.) into multimodal applications
using technologies such as Radio-frequency identification
(RFID), Near field communication (NFC), Barcodes (1D
or 2D as QR codes). This will help the users to manipulate
freely virtual and real objects with commands like
“identify this,” “make a copy of that object, here”, “move
that webcam on the left,” etc. We are using the notion of
workflow in order to indicate to the user the tasks
available at each point of the whole activity flow.

For our work, we are using Common Knowledge [17],
which is a cross-platform business rules engine and
management system that supports the capture,
representation, documentation, maintenance, testing, and
deployment of an organization's business rules and
application logic. Common Knowledge allows the
business logic to be represented in a variety of inter-
operable visual formats, including Rete rules, workflows,
flowcharts, decision tables, decision trees, decision grids,
state maps, and scripts. The engine allows running,
testing, and simulating the system behaviors. It can be
used through many languages (such as Java, Delphi,
VisualBasic, C#, DotNET, etc.) and platforms (Windows,
Linux, UNIX).

Figure 2 presents an example of workflow designed
graphically using the Studio Common Knowledge tool.
It allows following different paths in order to complete a
command such as “switch on fan”, “move camera
down”, “switch off lamp”, etc.

Figure 3 shows standard and advanced operators used
to represent tasks, task choices, split or merge actions,
timers, loops, etc. The result is stored using an XML
format, in a file with an .aex extension. With our work the
resulting system could be used through different
modalities of interaction like graphically, vocally, with
gesture, RFID, barcodes or a combination of those
modalities. Instead of programming applications in an ad
hoc fashion, our approach allows to query dynamically
the workflow and to propose relevant information to the
user while interacting with the system.

The notion of persistence is very important in this context.
Indeed, we consider that a global interaction could be the
result of many sub-interactions between the system and one
or many users. It could also be the result of a sequence of
sub-interactions conducted via different kind of channels
and modalities.

Figure 3. Standard and advanced operators available in
Common Knowledge.

The Common Knowledge software supports this
persistence feature.

IV. OUR APPROACH

In the context of interaction design based on the DMC
referential, we believe, as we explained previously, that
meaningful global actions on the system may be the result
of a series of sub-actions. These sub-actions can be
performed by multiple users cooperating. Several types of
devices can be utilized (PC, Smartphone, mobile phone,
etc.). Several modalities of interaction, such as direct
manipulation (keyboard/mouse), voice, gesture, brain
waves, can be employed both in input and output. Finally,
multiple communication channels can be exploited such
as the telephone or the Internet.

Currently we limit the use to an alternate
multimodality (not synergistic). The triggering of a sub-
action is based on the FIFO (First In, First Out)
principle.

Figure 4 shows our approach based on a software bus.
We used for instance the IVY bus [18] and the Web Server
Event (WSE) bus (see Section V.B.1) in our experiments,

as we will explain later. The “model driven” part
mentioned on the figure is used for modeling the activities
at a higher level, and mapping resulting models to
workflow models, for example. The “engine” part uses an
application that queries the generated workflow during the
interaction via an Application Programming Interface
(API). The “usage” part explains that different kinds of
interaction are possible (web client, graphical user
interface, vocal user interface, etc.). The “development”
part means that the architecture is open in terms of futures
applications, technologies and languages. In our approach,
the transition from one state to another can be modelized
with different tools, such as Petri nets or the usage of
workflows for instance. The model driven approach
allows working on an abstract level, independently from
the chosen technical solution (Petri nets or workflow in
our example).

A. Model driven approach

Figure 5 shows that a workflow (middle of the picture)
is generated from a high-level model (left of the picture)
thanks to a set of model transformation rules. This
workflow model is used in order to describe objects and
actions that can be applied on those objects using one or
more devices in final interfaces (right of the picture).

Our work mainly concerns description of operating and
use of multimodal interactions (MMI). The Activity
concept is the main notion of our approach. We have
experimented a workflow management system (see
Section VI) as a support to define the operating logic of
MMI and its corresponding execution. However, defining
interaction logic may be done at different steps of an
application design and so, according to different points of
view.

With workflow concepts, we may use complex
operators like fork/join, alternatives, variables, composite
tasks, to describe some interactions sequences. Using
these complex operators corresponds to use software and
technical artifacts in order to address functional
requirement(s). It may be relevant to define only the
interactive requirements without dealing with technical
details. The underlying idea is to define a modeling
language dedicated to MMI, which contains a minimal set
of concepts leaving technical aspects aside in order to
easily focus on the interaction concern. With
corresponding model transformation rules, the resulting
MMI models would be mapped to several technical
platforms (other than workflow management system).
Thus, operating subtleties underlying the high-level
models would be fully described within the generated
technical models.

Figure 4. Our approach from meta-modeling to automatic generation of code.

Figure 5. From meta modeling to final interfaces (via a workflow in this case).

This abstraction operation may be repeated in order to
propose a simpler modeling language dedicated to end users
with some technical skills (like persons who install home
automation systems). Finally, we have currently chosen
home automation as application domain of our work.

Our approach would have to be tested with other domains
like healthcare, e-learning or tourism domains. Indeed, we
cannot state that such previous high-level modeling
language will still be adapted. In this perspective, we think
that domain-oriented modeling languages will be useful in

order to better contextualize MMI and to get finer mapping
to technical platforms.

For all these reasons, we decided to adopt a Model-Driven
Engineering approach, particularly the Object Management
Group - Model Driven Architecture (OMG-MDA)
declination (abstract towards concrete). We currently focus
on an abstract meta-model and a mapping to workflow one.
Figure 6 represents what we plan to do and what we have
already done (gray rectangle).

Figure 6. Our Model Driven Engineering

(MDE) approach.

B. Conceptual architecture

From a conceptual point of view, our approach is based on
the concept of message diffusion between the different actors in
our system (an actor can be a user, an application or a device).
When an actor wants to do something (for example the user
wants to switch on a lamp, or the RFID reader will notify that it
has decoded an RFID chip), it sends a message that is then
received by all actors. Then the actors have the freedom to
perform an action based on this message or not, depending on
their needs.

Among the actors, the interpreter of messages has a special
significance. It is the ‘brain’ of the system. Each time it
receives a message, it processes it and tries to combine it with
previously received messages to produce a higher level of
abstraction message. For example, if the RFID reader has
sent the message ‘FAN chip decoded' and the interpreter has
previously received the ‘switch on’ message, then the
interpreter will combine the two for the final message
‘switch on the fan’. This message will then in turn be sent to
other actors. Among them, the application charged to
operate the fan will send the X10 command to switch on the
fan.

1) Communication bus

For the actors, several solutions are possible to
communicate, such as:

· Pushing information, i.e., send messages to actors, such
as broadcasting (sending messages to everyone),
multicasting (sending messages only to certain actors),
and so on.

· Pulling information. In this case, actors must request
information themselves, for example by consulting a
database or by consulting an actor responsible for
managing the overall ambient system, etc.

· Using a distributed approach such as a multi-agent
system.

· Using a centralized approach, such as a communication
bus.

We chose to use a communication bus, whose function is
to receive the messages and distribute them to all connected
actors. This type of solution leaves considerable freedom in
the implementation as we shall see later.

2) Device access layer

A communication bus is a relevant component in order to
develop applications using interactive devices located in a
room among several terminals. Sending a command to/from
a remote device or listening/reacting to its events refers to
marshalling/unmarshalling mechanisms. Its implementation
is time-consuming and decreases code readability.

Figure 7. An example of configuration.

Figure 7 illustrates the device access layer based on the
following example. A web page is loaded on an Android
mobile phone and can switch on a lamp or a fan through
X10. The X10 manager (CM15 module) is connected to a
PC (Windows) where a software adapter translates
particular messages coming from the communication bus in
X10 switch on/off orders. A RFID reader is connected to
another PC: when a RFID tag is laid down on the reader, the
background of previous web page changes to red, and when
the RFID tag is picked up, the background is becomes
green. These RFID reactions are possible thanks to a
software adapter located to the related PC: for each RFID
action, this adapter sends corresponding message on the
communication bus.

We call terminals, the android mobile, X10-PC and RFID-
PC. Web page and software adapters are called processes.
To locate process, we usually mention user-side (Android
mobile), X10-side or RFID-side.

To implement the previous example, we may program all
processes as following. When user-side sends a “switch fan
on” command to X10-side, the related process (i.e., web
page) constructs a specific message and sends it through the
message bus. The X10-side process receives it, detects it as
a X10 order and acts in consequence. When a tag is laid
down from the RFID reader, the related adapter reacts by
constructing a message and sending it. The user-side process
receives the message, detects it as a RFID event and sets the
background to red if it is a lay-down event or to green if it is
a pick-up one.

Constructing, sending, receiving and detecting messages
is a tedious task (long and repetitive) and corresponding
code blurs the whole implementation. For this reason it is
highly recommended to use an additional software layer that
hides messages bus stuff and therefore ease the
implementation of MMI application.

V. OUR APPROACH: IMPLEMENTATION

This implementation section is divided in two parts. The
first is about model driven engineering, and the second
presents the implementation details of our conceptual
architecture.

A. Model Driven Engineering

1) Towards a high-level MMI meta-model

As we previously mentioned in Section IV.A, we have
adopted a model driven approach (MDA) to get a better
separation of concerns (for example, by defining
multimodal interactions in dedicated models) and to address
the problem of platform heterogeneity.

We use ModX [19] as model framework. ModX is a
MOF-tool [20] that we have implemented in 2004. It allows
defining abstract and concrete syntaxes; it means meta-
models and associated visual representations. ModX-users
can create and edit models according to concrete syntaxes.
ModX proposes a Javascript API for model transformations.

We have defined a meta-model to describe multimodal
interactions requirement. We wanted this meta-model very
simple: there is no notion about activity, merge, condition,
etc. The main notion of this meta-model is the sentence. A
sentence is a sequence of interactions and causes an
action/reaction of the ambient system. A term is an
interaction that refers to what a user wants to transmit
(rather than focusing on the device s/he uses). The meta-
model contains 3 concepts (see Figure 8): Start, Term and
Action. Start and Action are ways to define the beginning
and the end of a sentence. Action is also used to indicate the
reaction of the system.

Figure 8. MMI use requirement meta-model.

A Term may be a word or a long expression, and it can be
transmitted through different devices. For example, the
Term ‘Fan’ may be indicated through speech recognition, a
RFID tag, a QR code, etc. A sentence split into N Terms
refers to a sentence with X different interactions.

Figure 9. A sample model of multimodal interactions about
home automation.

This is illustrated by the model in Figure 9 (Terms and
Actions are respectively represented by rounded rectangles
and cinema clap in circles).

The sentence “Switch On Fan” (from the Term sequence
“Switch On” and “Fan”) launches the “switch fan on”
action. This sentence refers to two successive interactions
and so can use a maximum of two different devices. The
same Action is caused by the sentence ‘it is too hot’, which
contains only one Term, so only one interaction that can be
performed with one RFID tag or one QR code for the whole
expression, for instance. Such a definition also means that
“it is too hot” refers to an ‘only-one interaction’: the
previous sentence cannot be constructed by an interaction
for “it is too” and another interaction for “hot”.

2) Model transformation

To map each MMI use requirement model on Common
Knowledge platform, we have defined a set of model
transformation rules, implemented as following:

1. Create a workflow model

2. Create a starting node

3. Create a taskChoice (STC) connected to the
previous starting node.

4. For each term (T) connected to the start

 If T is bound to an action (A)

 Create a EndNode (EN)

 EN.caption = A.name

 Associate it with STC,

 association.caption = T.name

 Else

 Create a taskChoice (TC)

 TC.id = T.id

 Associate it with STC

 association.caption = T.name

5. For each term (TA)

 For each its connected term (T)

 If T is bound to an action (A)

 Create a EndNode (EN)

 EN.caption = A.name

 Associate it with TA

 association.caption = T.name

 Else

 Create a taskChoice (TC),

 TC.id = T.id

 Associate it with TA

 association.caption = T.name

To summarize these rules, a Term corresponds to a link,
i.e., a choice that is done. When a Term is the last of a
sequence (and cause an action), an EndNode is also
created. If the Term points out to other possible choices, a
taskChoice is created instead.

Object Connections provides a C# API for its workflow
engine. It allows creating and editing workflow models. We
have implemented a software adapter of this API for our
communication bus, called WSE (see below). In this way,
the Javascript code (in ModX) corresponding to the
previous model transformation, sends WSE messages in
order to create elements of workflow model.

B. Implementation of our conceptual architecture

1) Communication bus: WSE

The implementation of a communication bus can be done in
several ways, e.g., with the IVY bus as we demonstrated in a
previous paper [1] or a multi-agent system [21]. Unfortunately

IVY does not work through the web, while using the web is
one of our requirements. Therefore we decided to implement
our own communication bus, called WSE (Web Server Event).

WSE is the core of our architecture and the central point of
traffic. All messages, i.e., user interactions but also actions
requested to devices, are carried by WSE (see Figure 11).

WSE is an HTTP-based message bus, like COMET [22].
Such buses are generally dedicated to web pages. Because we
focus on interactive devices whose drivers are generally not
accessible with JavaScript, we also provide an API in Java and
C#. Only a web server supporting PHP scripts, for instance
EasyPHP or WAMP (Windows, Apache, MySQL, PHP) is
required to install WSE. We choose not to create a standalone
WSE server in order to avoid conflict on port 80 with a
possible existing web server. Finally we choose to use PHP
scripts because of the popularity of this language. Thus, WSE
should be installable on most existing / running web servers.

The immediate benefits of this web server-based solution
are:

- Multi-OS: if an operating system can access the web, it
can use WSE. WSE is therefore compatible with
Mac OS, Windows, Android, and Linux.

- Multi-platform: the previous point implies that WSE
is running on computers, smartphones, tablets, etc.

- Multi-browser: each operating system has dedicated
web browsers. Because we are multi-platform and
multi-OS, we are also multi-browser. Thus WSE
can be used by Internet Explorer, Firefox, Chrome,
Safari, Opera, and so on, as long as they support
JavaScript.

- Multi-network: the web access can be done via wired
connections, Wi-Fi, 3G. WSE can be used by all
these different modes of connection without
restriction. As long as people have access to the web
(port 80 is open), they can use WSE. We are therefore
not blocked by firewalls. We also tested successfully
WSE in our University that offers two different internet
accesses, a network dedicated to the staff (teachers,
researchers, administration) and a network with a proxy
for students.

a) Features of WSE

WSE is multi-languages. Programming a Web application
that uses simultaneously a Wiimote [23], a RFID reader and
X10 adapters requires handling several programming
languages. It can be for instance Java for Wiimote, C# for
mir:ror [24] (RFID reader), Javascript for Web application.

Currently WSE can be managed with C#, Java, JavaScript, and
soon with ActionScript (Flex/Flash) and Python. The only two
constraints for languages are to be able to process JSON
(JavaScript Object Notation) and support HTTP requests,
which can be implemented in any language if necessary.

Installing WSE is very simple. It consists in copying a
directory (“Miny/WSE/PutOnWebServer_Root”) from the ZIP
file available at http://www.lifl.fr/miny, and to place this file in
the root of the web server.

WSE provides basically a mechanism for trace. Traces are
very interesting for an interactive system, e.g., to do debug, to
support the “Undo” command or to analyze user’s activities.

Messages routed by WSE are JSON objects. This implies
that each message must respect a JSON structure, for instance
{"param1":"value1", "param2":"value2", "param3":"value3"}.
The advantage is no message format is required. Thus
messages like {"action":"open"} or {"whatToDo":"open"} are
acceptable. Consequently, each developer can write her/his
own message format dedicated to her/his application. For our
MINY project, we use the following format: {"action":"…",
"actionParams":"…", "object":"…", "objectParams":"…",
"location":"…", "locationParams":"…", "fromWhere":"…",
"fromWhom":"…"}.

b)Using WSE

To use WSE, simply connect to a session or create one, then
send and receive messages. WSE is session-based. All
messages within a session are stored in a file, which is named
as the session (http://server_url/WSE/traces_files/name).
Below is an example in JavaScript and C# for the three steps,
connect, send and receive (equivalent code in Java can be
found on our web site).

i. Connect to a session

To connect to a session, the user only needs to provide the
session name. If the session already exists, WSE connects to it,
otherwise the session is automatically created and the
connection is established.

JavaScript code:

<script LANGUAGE="JavaScript" src="wse.js"/>

…

wse.joinSession("mySession");

C# code:

using Newtonsoft.Json.Linq;

using Wse;

…

private Wse.Bus myWSEBus;

String serverUrl =
"http://xxx.xxx.xxx.xxx/WSE/traceSession.php";

String sessionName = "mySession";

myWSEBus = new Bus(serverUrl, sessionName);

ii. Send a message

To send a message, simply send a JSON object.

JavaScript code:

wse.sendMessage
({"action":"switchOn","object":"lamp"});

C# code:

JObject myMessage = new JObject();

myMessage.Add ({"action":"switchOn", "object":"lamp"});

myWSEBus.SendBusMessage(myMessage);

iii. Receive a message

To receive a message it is necessary to declare a listener for
messages traveling on the bus. Each time a message is
transmitted on the bus, the listener is notified and performs the
associated function (Observer pattern). Then the function can
extract all the needed information for the application.

JavaScript code:

myListener = {};

myListener.newMessageReceive = function
(message)

 { alert("A message has been received: " +

 message);

 };

wse.addListener(myListener);

C# code:

public class MyListener : IListener

{

 public void NewMessageReceive(string source,
JObject jObject)

 {

 MessageBox.Show("A message has been
received: " + jObject.ToString());

 }

}

…

MyListener myListener = new MyListener();

myWSEBus.AddListener(myListener);

2) Device access: Proxy/Stub generator

a) Principles

As explained before, constructing, sending, receiving and
detecting WSE messages is a tedious task. For this reason, we
have developed a code generator that produces a WSE-based
software layer, which handles WSE message operations. With
this layer, a programmer uses a remote device as a local device.
The following Javascript code shows how to switch on a fan
with the devices layer on the example of Section IV.B.2.

manager = new Manager("IJAIS2010");

X10 = manager.getX10("328", "Xavier", "Lamp");

// Param 1 : for the office number 328

// Param 2 : around the desk of xavier

// Param 3 : this X10 adapter is dedicated to
a // lamp

X10.switchOn();

Here is the code related to RFID events (still in Javascript).

rfid = manager.getRFiD("328","all");

// Param 1 : for the office number 328

// Param 2 : for all the office

rfid.layDown = function (stamp) {

document.body.bgColor = "red";

}

// lay down a RFid tag will set the

// background color of page to red

rfid.pickUp = function (stamp) {

document.body.bgColor = "green";

}

// pick up a RFid tag will set the

// background color of page to green

b)Generator

The code generator produces userSide.X10 and
userSide.RFiDReader classes to allow developers to
focus on functional/interactive concerns without worrying
about remote access. Production of such a class is done from a
description of actions (called methods) and events of related
devices. The description is JSON formatted and therefore does
not imply to use another language.

Here are the two description files corresponding to X10 and
et RFID reader devices.

{

 name : "X10",

 package : "x10",

 type : "Device",

 constants : {

 object : '"x10"',

 objectParams : null,

 location : null,

 locationParams : null

 },

 methods : {

 switchOn : {},

 switchOff : {}

 }

}

{

 name : "RFiD",

 package : "rfid",

 type : "Device",

 constants : {

 object : '"RFiDReader"',

 location : null,

 locationParams : null

 },

 events : {

 layDown : {

 stamp : String

 },

 pickUp : {

 stamp : String

 }

 }

}

We have defined a generic format inspired from JSON-RPC
[25] in order to homogenize the structure of WSE messages
that will be exchanged though this devices layer.

This format message protocol is the following:

· action: the expected action (e.g., switchOn) or name of
the event (layDown for a RFID reader).

· actionParams: arguments of action or event.

· object: type of device (e.g., X10, RFIDReader).

· objectParams: optional details about the device (for
instance X10 has two objectParams: lamp, fan).

Rather than automatic identifiers, we choose to use explicit
identifiers, which indicate where the device is.

· location: indicates where the device is (for example:
‘Office 328’).

· locationParam: details the place in the previous location
(e.g., ‘Desk of Xavier’)

Figure 10 shows a communication between user-side and
device-side. Concerning the user-side, the generator produces a
proxy class for each description file. For each described
method, the proxy (step 2 on Figure 10) contains a
corresponding method that consists in creating a WSE message
and sending it. If the description defines events, an interface is
generated. It contains one method for each event. This interface
is associated to the proxy: add/remove listeners methods are
added to the proxy while a listener consists in an object
implementing the interface. In Javascript, there is no listener
interface. The events correspond to methods of the proxy.

Figure 10. Stub and skeleton on example.

A class Manager is also generated and acts as a factory.
This class is instantiated with a WSE bus as parameter, and
gives access to proxy objects according to

location/identification values (step 1 of Figure 10). If a
programmer wants to add a new type of device in the device
access layer, the code generator can also help her/him by
producing code, a stub class, (step 3 of Figure 10) related to
WSE stuff. This stub class will have to be connected to another
class, a device-WSE adapter (step 4). This one has to interpret
a) WSE actions into actions on devices, b) events from device
into WSE events. The generation principle is the same as for
the user-side but with reversed responsibilities: the skeleton
contains a method for each event that device can emit and an
associated interface which defines a method for each possible
action on the device.

C. Our methodology in a few words

To summarize, here are the major steps to follow to
implement our methodology:

1. Identify the devices and the associated actions to
use.

2. Define a MMI model to specify the possible
interactions that you want to apply through the
device actions (cf. Figure 9).

3. Convert this MMI model into a workflow; this step
is done automatically in our case.

4. Implement a distributed communications and
access to devices. Designers can use the stub/proxy
generators (see above), or even can use the already-
implemented package we propose for RFID,
Androphone, BCI, X10 and IP Camera.

5. Implement the parts that associate interactions to
real actions on devices. For instance lay down a
specific RFID tag should produce the “It is too hot”
interaction.

6. Start the WSE drivers for each device with
providing parameters such as IP address, session
name, location, etc.

7. Start the workflow engine and the code produced
in step 5.

VI. CASE STUDY

This case study section is divided in four parts, which
present, respectively, the domain of smart digital home, the
architecture of the project, the implementation of this case
study and finally, the multimodal aspects of this
implementation.

A. Smart digital home

A smart digital home refers to a living space with devices
that are connected through wired or wireless networks. The
connected devices may be sensors, actors, consumer
electronics, appliances, mobile and PC devices that
cooperate transparently for facilitating living and improving

usability in the home. Since a variety of devices are present
in a smart digital home, convergence and standardization
across all the screens of TVs, PCs, appliances and mobile
devices, and management of multi-channel interactions is
manifestly the key for the success of residential
applications.

In our example, several objects are identified in order to
be driven remotely: a lamp, a fan, a Rovio robot [26], and a
webcam. The possible actions on those objects are the
following: move (up, down, left, right, and home) and switch
(on/off). As we can see on Figure 2 , while the interaction takes
place, one of the possible paths of the workflow is followed.
Once the final state is reached, a command is sent to the bus.

B. Architecture

For this smart digital home case study, we are using the
IVY software bus [18] or our WSE bus, indifferently.

With the IVY bus, a publish/subscribe mechanism is
available. Some applications are only subscribers. It
means that they need data to prompt information to the
user (a synthesized speech for example), to activate
appliances (micro-wave oven, washing machine, etc.), or
to generate some piece of VoiceXML [3][27] code that
will be dynamically generated and used at runtime. Some
applications are only sending information to the bus.
Others are using the bus to both receive and send data.
For instance, the Automatic Speech Recognition (ASR)
application usable on a PC needs to receive the different
labels corresponding of the speakable words, and
oppositely, it sends to the bus the result of the speech
recognition engine.

The “Workflow_Engine” application is in charge of the
connection with the persistent workflow that we use for
this project. It exploits a dedicated API to send the
choices of the user to the object connection engine, and to
receive the next elements to be presented to the user.

C. Implementation

Our global project was conceived to manage various kinds of
devices, sensors, effectors and technologies such as keyboard
and mouse, voice over telephone or softphone, QR code, multi-
touch screen, Wiimote, Mirror [24] / Reflet [28] NanoZtag
RFID, motion webcam, X10 protocol, Rovio robot [26], etc.

Our proposition is based on the architecture illustrated in
Figure 11. Three types of elements are present: (1) Interactive

components that are detectors and/or effectors, (2)
Communication bus for message exchange and (3) Workflow
engine. This proposal aims at providing developers the ability
to associate to her/his application a multimodal dimension
concerning its interactive part. Currently, interactions supported
are ruled by only one principle, which is "sentences triggering
actions". A sentence consists in a sequence of words that can be
triggered by any type of modality (voice, QR code,
keyboard/mouse, etc.). To facilitate the writing of such
sentences for an application, we use the Task Choice concept
[17] in order to factorize words. For example, a sentence may
begin by "move" and then be divided into 4 sub-sentences (one
for each concerned device). This avoids writing four complete
sentences.

An example of path may be the following one: the user
activates the button "move" from the Windows application
(first sub-action), presents in front of a webcam a QR code
identifying the robot (second sub-action) and then pronounces
on her/his phone the word "left" (third sub-action). This path is
completed and the action "move the robot on the left" is
triggered.

Once a model is loaded into the workflow engine, it is
executed by the engine that starts with the first task choice.
Each time the engine points to a new task choice, the list of
possible choices is sent to the bus. This is done by a software
agent attached to the workflow engine. Thus, interactive
components can subscribe to this type of message, in order, for
example, to present the list of choices to the user (as graphical
buttons, voice prompt, etc.).

Two other software agents were needed and developed. The
first one notifies the workflow engine that a sub-action was
performed. This type of agent is attached to an interactive
component and translates each relevant interaction into a sub-
action that is sent to the bus. The second agent allows to be
notified that an action is requested (e.g., switch on fan). Such
agent aims to be associated to an interactive component that
will translate actions into actual commands on the component,
using X10 protocol, for instance.

The three software agents previously mentioned have two
roles: to subscribe/transmit on the communication bus and to
establish a protocol for discussion between the workflow
engine and interactive components. This protocol is based on
actions, sub-actions and possible actions. Note that in the
model associated to smart digital home, we defined paths so
user must first specify the command, then identify the device
and finally give a possible parameter for command.

Figure 11. Architecture of our Smart Digital Home project.

The three software agents used the workflow presented in
Figure 2 to describe the objects and actions that can be
applied on those objects using one or more devices.

D. Multimodality

As previously mentioned, our goal is to provide tools in
order to facilitate the design and implementation of
multimodal interfaces for ambient computing. Concerning
vocal interactions, one big challenge is to provide the
designers an easy and robust way to generate code (like
VoiceXML [29] for instance) that can integrate grammars
related to a particular changing context. Dynamic voice
grammars (or entire VoiceXML files) can be generated with
our approach, as we can see in Figure 12.

If the designer decides to add a possible new direction,
s/he can do it graphically, on the workflow, by adding an arc
(called “home” for example), near the up/down/left/right
already available. Then with no addition of code, a new
possible interaction is available through the workflow.
Consequently, one can then pronounce a sentence like “move
camera home”, in order to physically make the webcam
move.

<?xml version="1.0" encoding="UTF-8"?>

<vxml xmlns="http://www.w3.org/2001/vxml"
version="2.0" xml:lang="en-gb">

<form>

<grammar version="1.0" root="GR_VOICE"
mode="voice" tag-format="semantics/1.0">

<rule id="GR_VOICE">

<one-of>

<item>up<tag>out.choice="up";</tag></item>

<item>down<tag>out.choice="down";</tag></item>

<item>left<tag>out.choice="left";</tag></item>

<item>right<tag>out.choice="right";</tag></item>

<item>home<tag>out.choice="home";</tag></item>

</one-of>

</rule>

</grammar>

<field name="choice"><prompt>

Choose among up, down, left, right, home
</prompt>

<filled>

<prompt bargein="false">

The chosen value is: <value expr="choice"/>

</prompt>

</filled>

</field>

</form>

</vxml>

Figure 12. Example of VoiceXML code generated by the
VoiceXML_Maker agent.

For this case study, we have implemented a multi-
device, multimodal, and multi-channel system:

- a Multi-device system because more than one
device can be used during the interaction. In our
experiments we used many PCs, smartphones and
telephones, and a Wii Console.

- a Multi-modal system because more than one
modality can be used during the interaction. In
our examples we used traditional
keyboard/mouse interactions, vocal, gesture and
brain computer interaction (BCI). We also used
QR codes and RFID tags containing data related
to desired actions or objects.

- a Multi-channel system because more than one
channel can be use during the interaction. In our
smart home case study, it was done across
internet and telephone networks.

VII. CONCLUSION AND FUTURE WORK

The goal of this paper was to describe how we can
facilitate the design of multi-channel and multi-modal
interfaces for ambient computing with a model-driven
approach. We used a smart digital home case study to
explain how to design easily an ambient system using a
workflow oriented approach.

Our results show that different devices (such as
Wiimote, multi-touch screen, telephone, etc.) can be
managed in order to activate real or virtual things.
Adding new features (such as appliances, actions,
direction, etc.) to an existent system is also very easy
and only needs a modification of the workflow.

Our work is orientated toward the production of code
generated from model (and meta-model)
transformations, and shows that this model-driven
approach is encouraging and suitable for the ambient
computing domain. With our methodology, a large part
of the scripts and applications programs, traditionally
coded by developers, can be automatically generated by
the ambient system itself.

In the future, this should improve the possibility to
detect new objects, persons or possible behaviors
dynamically and to respond to them as soon as possible
with relevant feature of the ambient system. Thus, it
will be challenging to work on the possibility to manage
simultaneously different natural languages with a
unique model of existing actions.

We will also work on the important point of semantic
aspect of the workflow. This will help users for instance
when they will not use the commands in the right order.
Indeed, a smart system must be able to understand that
“move up robot” is the same command as “move robot
up”. We are also planning to offer the possibility to
dynamically switch from a software bus to another and
to manage virtual representation of tangible things
(fridge, oven, etc.) in order to allow realistic
simulations before real implementation.

VIII. ACKNOWLEDGEMENT

The authors would like to thank ObjectConnections,
Jaxo Sytem and bcWebCam for providing special tools:
Common Knowledge, Cam'A'Bar and bcwebcam.

IX. REFERENCES

[1] Rouillard, J., Tarby, J.C., Le Pallec, X., and Marvie,
R., “Facilitating the Design of Multi-channel Interfaces
for Ambient Computing”, The Third International
Conferences on Advances in Computer-Human
Interactions, ACHI 2010, St. Maarten, Netherlands
Antilles, 2010, pp. 95-100.

[2] W3C Multimodal Interaction Activity (MMI),
Retrieved January 10, 2011, from
http://www.w3.org/2002/mmi/

[3] VoiceXML 2.0., W3C Recommendation (16/03/04),
Retrieved January 10, 2011, from
http://www.w3.org/TR/voicexml20

[4] Harel, D., “Statecharts: a visual formalism for
complex systems”, Science of Computer Programming,
Volume 8, Issue 3, pp. 231-274, 1987.

[5] OpenInterface European project. IST Framework 6
STREP funded by the European, Commission (FP6-
35182). Retrieved January 10, 2011, from

http://www.openinterface.org and http://www.oi-
project.org.

[6] Tarby, J.C. and Rouillard, J., “Assistance, advice and
guidance with digital coaching”, EAM'06 European
Annual Conference on Human Decision-Making and
Manual Control Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2006, Valenciennes.

[7] Frohlich, D., “The design space of interfaces,
multimedia systems, Interaction and Applications”, 1st

Eurographics workshop, Stockholm, Sweden, Springer
Verlag, p. 53-69, 1991.

[8] Healey, J., Hosn, R., and Maes, S.H, “Adaptive
Content for Device Independent Multi-modal Browser
Applications”, Lecture Notes In Computer Science; Vol.
2347, Proceedings of the Second International Conference
on Adaptive Hypermedia and Adaptive Web-Based
Systems, pp. 401-405, ISBN: 3-540-43737-1, 2002.

[9] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May,
J., and Young, R. M., “Four easy pieces for assessing the
usability of multimodal interaction: the CARE
properties”. In INTERACT, pages 115-120. Chapman &
Hall, 1995.

[10] Vanderdonckt, J., Grolaux, D., Van Roy, P.,
Limbourg, Q., Macq, B., and Michel, B., “A Design
Space for Context-Sensitive User Interfaces”, Proc. of
ISCA 14th Int. Conf. on Intelligent and Adaptive Systems
and Software Engineering IASSE’2005 (Toronto, 20-22
July 2005), International Society for Computers and their
Applications, Toronto, 2005, pp. 207-214.

[11] Rouillard, J., “Multimodal and Multichannel issues in
pervasive and ubiquitous computing”, Multimodality in
Mobile Computing and Mobile Devices: Methods for
Adaptable Usability, Idea Group. Inc, Information Science
Reference, ISBN: 978-1-60566-978-6, 409 pages, 2009.

[12] Bastien, Ch. and Scapin, D., “Ergonomic Criteria for
the Evaluation of Human-Computer Interfaces”, J. M.,
INRIA Technical report N° 156, 1993.

[13] Bourguin, G., Lewandowski, A., and Tarby J-C.,
“Defining Task Oriented Components, Task Models and
Diagrams for User Interface Design”, 6th International
Workshop, TAMODIA 2007, Toulouse, France,
November 7-9, 2007, Marco Winckler, Hilary Johnson,
Philippe A. Palanque (Eds.), Lecture Notes in Computer
Science 4849 Springer 2007, ISBN 978-3-540-77221-7,
pp. 170-183

[14] Tarby, J.C., “One Goal, Many Tasks, Many Devices:
From Abstract User Task Specification to User Interfaces”
(Chapter 26). In, Diaper, D. and Stanton, N. The
handbook of Task Analysis for Human- Computer
Interaction. (pp.531-550). Mahwah, New Jersey:
Lawrence Erlbaum Associates, 2004.

[15] Palanque P., Bernhaupt, R., Navarre, D., Ould, M.,
and Winckler, M., “Supporting Usability Evaluation of

Multimodal Man-Machine Interfaces for Space Ground
Segment Applications Using Petri net Based Formal
Specification”. In International Conference on Space
Operations (SpaceOps 2006), Rome, Italy, 18/06/06-
22/06/06, American Institute of Aeronautics and
Astronautics (AIAA), 2006.

[16] Horrocks, I., Constructing the User Interface with
Statecharts, Addison-Wesley Professional, 272 pages,
1999.

[17] ObjectConnections, Common Knowledge Studio and
engine, provided by ObjectConnections. Retrieved
January 10, 2011, from
http://www.objectconnections.com

[18] IVY Bus, Retrieved January 10, 2011, from
http://www2.tls.cena.fr/products/ivy/

[19] ModX MOF modeling tool, Retrieved January 10,
2011, from http://edutechwiki.unige.ch/en/ModX

[20] MOF OMG Meta-Object Facility, Retrieved January
10, 2011, from http://www.omg.org/mof/

[21] Kubera, Y., Mathieu, P. and Picault, S., “Everything
can be Agent!”, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
Toronto, Canada, pp.1547-1548, 2010.

[22] COMET, Retrieved January 10, 2011, from
http://en.wikipedia.org/wiki/Comet_(programming)

[23] Nintendo, Wii game console and Wiimote controller,
Retrieved January 10, 2011, from http://www.nintendo.fr/

[24] Nabaztag, Mir:ror, Nano:ztag, and Ztamp:s, from
Violet, Retrieved January 10, 2011, from
http://www.violet.net/index_en.html

[25] JSON-RPC: lightweight remote procedure call
protocol, Retrieved January 10, 2011, from http://json-
rpc.org/

[26] WowWee Group Limited, Rovio robot, Retrieved
January 10, 2011, from
http://www.omg.org/mof/http://www.wowwee.com/en/su
pport/rovio

[27] VoiceXML 2.1, Recommendation, (19/06/07),
Retrieved January 10, 2011, from
http://www.w3.org/TR/voicexml21/

[28] Ref:let, An open-source alternative to mir:ror from
Violet, under Windows, Retrieved January 10, 2011, from
http://code.google.com/p/reflet-mirror/

[29] VoiceXML 3.0, W3C Working Draft (08/08/2008),
Retrieved January 10, 2011, from
http://www.w3.org/TR/vxml30reqs/

