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ABSTRACT
We present an algorithm for computing a separating linear
form of a system of bivariate polynomials with integer co-
efficients, that is a linear combination of the variables that
takes different values when evaluated at distinct (complex)
solutions of the system. In other words, a separating linear
form defines a shear of the coordinate system that sends the
algebraic system in generic position, in the sense that no two
distinct solutions are vertically aligned. The computation of
such linear forms is at the core of most algorithms that solve
algebraic systems by computing rational parameterizations
of the solutions and, moreover, the computation of a sepa-
rating linear form is the bottleneck of these algorithms, in
terms of worst-case bit complexity.

Given two bivariate polynomials of total degree at most d
with integer coefficients of bitsize at most τ , our algorithm

computes a separating linear form in eOB(d8 + d7τ + d5τ2)
bit operations in the worst case, where the previously known

best bit complexity for this problem was eOB(d10 + d9τ)

(where eO refers to the complexity where polylogarithmic
factors are omitted and OB refers to the bit complexity).

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Keywords
Bivariate system; Separating Linear Form

1. INTRODUCTION
One approach, that can be traced back to Kronecker, to

solve a system of polynomials with a finite number of solu-
tions is to compute a rational parameterization of its solu-
tions. Such a representation of the (complex) solutions of a
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system is given by a set of univariate polynomials and asso-
ciated rational one-to-one mappings that send the roots of
the univariate polynomials to the solutions of the system.
Such parameterizations enable to reduce computations on
the system to computations with univariate polynomials and
thus ease, for instance, the isolation of the solutions or the
evaluation of other polynomials at the solutions.

The computation of such parameterizations has been a
focus of interest for a long time; see for example [1, 9, 13,
8, 3, 6] and references therein. Most algorithms first shear
the coordinate system, with a linear change of variables, so
that the input algebraic system is in generic position, that is
such that no two solutions are vertically aligned. These al-
gorithms thus need a linear separating form, that is a linear
combination of the coordinates that takes different values
when evaluated at different solutions of the system. Since
a random linear form is separating with probability one,
probabilist Monte-Carlo algorithms can overlook this issue.
However, for deterministic algorithms, computing a linear
separating form is critical, especially because this is, sur-
prisingly, the current bottleneck for bivariate systems, as
discussed below.

We restrict our attention to systems of two bivariate poly-
nomials of total degree bounded by d with integer coeffi-
cients of bitsize bounded by τ . For such systems, the ap-
proach with best known worst-case bit complexity for com-
puting a rational parameterization was first introduced by
Gonzalez-Vega and El Kahoui [9]: their initial analysis ofeOB(d16+d14τ2) was improved by Diochnos et al. [6, Lemma

16 & Thm. 19]1 to (i) eOB(d10 + d9τ) for computing a sepa-

rating linear form and then (ii) eOB(d7 +d6τ) for computing
a parameterization. Computing a separating linear form is
thus the bottleneck of the computation of the rational pa-
rameterization. This is still true even when considering the
additional phase of computing isolating boxes of the solu-
tions (from the rational parameterization), which state-of-

the-art complexity is in eOB(d8 + d7τ) [4].

Main results. Our main contribution is a new determin-
istic algorithm of worst-case bit complexity eOB(d8 + d7τ +
d5τ2) for computing a separating linear form of a system
of two bivariate polynomials of total degree at most d and
integer coefficients of bitsize at most τ (Thm. 18). The sys-
tem should be zero dimensional but this is tested in our

1The overall bit complexity stated in [6, Thm. 19] is eOB(d12 +
d10τ2) because it includes the isolation of the solutions of the
system.



algorithm. When τ ∈ eO(d2), this gives a complexity ineOB(d8 +d7τ) which decreases by a factor d2 the best known
complexity for this problem (see the discussion above). Note
furthermore that, while τ is asymptotically negligible com-
pared to d4 (modulo polylogarithmic factors), i.e. τ ∈ eo(d4),
the complexity of our algorithm is asymptotically better

than the best known complexity for this problem, i.e. eO(d8+
d7τ + d5τ2) is in eo(d10 + d9τ).

As a direct consequence, using our algorithm for comput-
ing a separating linear form directly yields a rational pa-
rameterization within the same overall complexity as our
algorithm, both in the approach of Gonzalez-Vega et al. [9,
6] and in that of Bouzidi et al. [4] for computing the alterna-
tive rational parameterization as defined in [13]. Moreover,
this contribution is likely to impact the complexity of algo-
rithms studying plane algebraic curves that require finding
a shear that ensures the curves to be in “generic” position
(such as [9, 10]). In particular, it is hopeful that this result
will improve the complexity of computing the topology of
an algebraic plane curve.

As a byproduct, we obtain an algorithm for computing
the number of distinct solutions of such systems within the

same complexity, i.e. eOB(d8 + d7τ + d5τ2).

2. OVERVIEW AND ORGANIZATION
Let P and Q be two bivariate polynomials of total degree

bounded by d and integer coefficients of maximum bitsize
τ . Let I = 〈P,Q〉 be the ideal they define and suppose
that I is zero-dimensional. The goal is to find a linear form
T = X + aY , with a ∈ Z, that separates the solutions of I.

We first outline a classical algorithm which is essentially
the same as those proposed, for instance, in [6, Lemma 16]

and [10, Thm. 24]2 and whose complexity, in eOB(d10 +d9τ),
is the best known so far for this problem. This algorithm
serves two purposes: it gives some insight on the more in-

volved eOB(d8 +d7τ +d5τ2)-time algorithm that follows and
it will be used in that algorithm but over Z/µZ instead of Z.

Known eOB(d10 + d9τ)-time algorithm for computing
a separating linear form. The idea is to work with a
“generic” linear form T = X + SY , where S is an indeter-
minate, and find conditions such that the specialization of
S by an integer a gives a separating form. We thus consider
P (T −SY, Y ) and Q(T −SY, Y ), the “generic” sheared poly-
nomials associated to P and Q, and R(T, S) their resultant
with respect to Y . This polynomial has been extensively
used and defined in several context; see for instance the re-
lated u-resultant [14].

It is known that, in a set S of d4 integers, there exists at
least one integer a such that X + aY is a separating form
for I since I has at most d2 solutions which define at most`
d2

2

´
directions in which two solutions are aligned. Hence,

a separating form can be found by computing, for every a
in S, the degree of the squarefree part of R(T, a) and by
choosing one a for which this degree is maximum. Indeed,
for any (possibly non-separating) linear form X + aY , the
number of distinct roots of R(T, a), which is the degree of
its squarefree part, is always smaller than or equal to the
number of distinct solutions of I, and equality is attained

2The stated complexity of [10, Thm. 24] is eOB(d9τ), but it seems

the fact that the sheared polynomials have bitsize in eO(d+τ) (see

Lemma 5) instead of eO(τ) has been overlooked in their proof.

when the linear form X+aY is separating (Lemma 8). The

complexity of this algorithm is in eOB(d10 +d9τ) because, for
d4 values of a, the polynomial R(T, a) can be shown to be

of degree O(d2) and bitsize eO(d2 + dτ), and its squarefree

part can be computed in eOB(d6 + d5τ) time.eOB(d8 + d7τ + d5τ2)-time algorithm for computing a
separating linear form. To reduce the complexity of
the search for a separating form, one can first consider to
perform naively the above algorithm on the system Iµ =
〈P mod µ,Q mod µ〉 in Zµ = Z/µZ, where µ is a prime
number upper bounded by some polynomial in d and τ
(so that the bit complexity of arithmetic operations in Zµ
is polylogarithmic in d and τ). The resultant Rµ(T, S) of
P (X−SY, Y ) mod µ and Q(X−SY, Y ) mod µ with respect

to Y can be computed in eOB(d6 + d5τ) bit operations and,
since its degree is at most 2d2 in each variable, evaluating it

at S = a in Zµ can be easily done in eOB(d4) bit operations.
Then, the computation of its squarefree part does not suffer
anymore from the coefficient growth, and it becomes softly

linear in its degree, that is eOB(d2). Considering d4 choices
of a, we get an algorithm that computes a separating form

for Iµ in eOB(d8) time in Zµ. However, a serious problem
remains, that is to ensure that a separating form for Iµ is
also a separating form for I. This issue requires to develop
a more subtle algorithm.

We first show, in Section 4.1, a critical property (Prop.
7) which states that a separating linear form over Zµ is also
separating over Z when µ is a lucky prime number, which
is, essentially, a prime such that the number of solutions
of 〈P,Q〉 is the same over Z and over Zµ. We then show
in Sections 4.2 to 4.4 how to compute such a lucky prime
number. We do that by first proving in Section 4.2 that,
under mild conditions on µ, the number of solutions of Iµ
is always less than or equal to the number of solutions of
I (Prop. 11) and then by computing a bound on the num-
ber of unlucky primes (Prop. 12). Computing a lucky prime
can then be done by choosing a µ that maximizes the num-
ber of solutions of Iµ among a set of primes of cardinalityeO(d4 + d3τ). For that purpose, we present in Section 4.3
a new algorithm, of independent interest, for computing ineO(d4) arithmetic operations in Zµ the number of distinct
solutions of the system Iµ; this algorithm is based on a clas-
sical triangular decomposition. This yields, in Section 4.4, aeOB(d8 + d7τ + d5τ2)-time algorithm for computing a lucky

prime µ in eO(d4 + d3τ) (the d5τ2 term results from the fact
that we need to check that some coefficients do not vanish
modulo µ). Now, µ is fixed, and we can apply the algorithm
outlined above for computing a separating form for Iµ in Zµ
in eOB(d8) time (Section 4.5). This form, which is also sepa-
rating for I, is thus obtained with a total bit complexity ofeOB(d8 + d7τ + d5τ2) (Thm. 18).

3. NOTATION AND PRELIMINARIES
We introduce notation and recall some classical material.
The bitsize of an integer p is the number of bits needed to

represent it, that is blog pc + 1 (log refers to the logarithm
in base 2). For rational numbers, we refer to the bitsize
as to the maximum bitsize of its numerator and denomi-
nator. The bitsize of a polynomial with integer or rational
coefficients is the maximum bitsize of its coefficients. As
mentioned earlier, OB refers to the bit complexity and eO



and eOB refer to complexities where polylogarithmic factors
are omitted, see [15, Definition 25.8] for details.

In the following, µ is a prime number and we denote by Zµ
the quotient Z/µZ. We denote by φµ: Z→ Zµ the reduction
modulo µ, and extend this definition to the reduction of
polynomials with integer coefficients. We denote by D a
unique factorization domain, typically Z[X,Y ], Z[X], Zµ[X],
Z or Zµ. We also denote by F a field, typically Q, C, or Zµ.

For any polynomial P ∈ D[X], let LcX(P ) denote its lead-
ing coefficient with respect to the variable X, dX(P ) its de-
gree with respect to X, and P its squarefree part. The ideal
generated by two polynomials P and Q is denoted 〈P,Q〉,
and the affine variety of an ideal I is denoted by V (I); in
other words, V (I) is the set of distinct solutions of the sys-
tem {P,Q}. The solutions are always considered in the al-
gebraic closure of D and the number of distinct solutions is
denoted by #V (I). For a point σ ∈ V (I), µI(σ) denotes the
multiplicity of σ in I. For simplicity, we refer indifferently
to the ideal 〈P,Q〉 and to the system {P,Q}.

We finally introduce the following notation which are ex-
tensively used throughout the paper. Given the two input
polynomials P and Q, we consider the “generic” change of
variables X = T − SY , and define the “sheared” polynomi-
als P (T − SY, Y ), Q(T − SY, Y ), and their resultant with
respect to Y ,

R(T, S) = ResY (P (T − SY, Y ), Q(T − SY, Y )). (1)

The complexity bounds on the degree, bitsize and compu-
tation of these polynomials are analyzed at the end of this
section in Lemma 5. We introduce

LP (S) = LcY (P (T − SY, Y ))
LQ(S) = LcY (Q(T − SY, Y )), LR(S) = LcT (R(T, S))

(2)

and remark that these polynomials do not depend on T .

Subresultant sequences. We first recall the concept of
polynomial determinant of a matrix which is used in the defi-
nition of subresultants. Let M be an m×n matrix with m 6
n andMi be the square submatrix ofM consisting of the first
m− 1 columns and the i-th column of M , for i = m, . . . , n.
The polynomial determinant of M is the polynomial defined
as det(Mm)Y n−m + det(Mm+1)Y n−(m+1) + . . .+ det(Mn).

Let P =
Pp
i=0 aiY

i and Q =
Pq
i=0 biY

i be two polynomi-
als in D[Y ] and assume without loss of generality that p > q.
The Sylvester matrix of P and Q, Sylv(P,Q) is the (p+ q)-
square matrix whose rows are Y q−1P, . . . , P, Y p−1Q, . . . , Q
considered as vectors in the basis Y p+q−1, . . . , Y, 1.

Definition 1. ([7, §3]). For i = 0, . . . ,min(q, p− 1), let
Sylvi(P,Q) be the (p+ q − 2i)× (p+ q − i) matrix obtained
from Sylv(P,Q) by deleting the i last rows of the coefficients
of P , the i last rows of the coefficients of Q, and the i last
columns.

For i = 0, . . . ,min(q, p− 1), the i-th polynomial subresul-
tant of P and Q, denoted by SresY,i(P,Q) is the polynomial
determinant of Sylvi(P,Q). When q = p, the q-th polyno-
mial subresultant of P and Q is b−1

q Q.

SresY,i(P,Q) has degree at most i in Y , and the coefficient
of its monomial of degree i in Y , denoted by sresY,i(P,Q),
is called the i-th principal subresultant coefficient. Note that
SresY,0(P,Q) = sresY,0(P,Q) is the resultant of P and Q
with respect to Y , which we also denote by ResY (P,Q).

We state below a fundamental property of subresultants
which is instrumental in the triangular decomposition algo-

rithm used in Section 4.3. For clarity, we state this prop-
erty for bivariate polynomials P =

Pp
i=0 aiY

i and Q =Pq
i=0 biY

i in D[X,Y ], with p > q. Note that this prop-
erty is often stated with a stronger assumption that is that
none of the leading terms ap(α) and bq(α) vanishes. This
property is a direct consequence of the specialization prop-
erty of subresultants and of the gap structure theorem; see
for instance [7, Lemmas 2.3, 3.1 and Cor. 5.1].

Lemma 2. For any α such that ap(α) and bq(α) do not
both vanish, the first SresY,k(P,Q)(α, Y ) (for k increasing)
that does not identically vanish is of degree k and it is the
gcd of P (α, Y ) and Q(α, Y ) (up to a nonzero constant in the
fraction field of D(α)).

Complexity. We recall complexity results, using fast al-
gorithms, on subresultants and gcd computations. We also
state complexities related to the computation of the“sheared”
polynomials and their resultant.

Lemma 3 ([2, Prop. 8.46] [12, §8]). Let P and Q be
in Z[X1, . . . , Xn][Y ] (n fixed) with coefficients of bitsize at
most τ such that their degrees in Y are bounded by dY and
their degrees in the other variables are bounded by d.

• The coefficients of SresY,i(P,Q) have bitsize in eO(dY τ).
• The degree in Xj of SresY,i(P,Q) is at most 2d(dY −i).
• Any subresultant SresY,i(P,Q) can be computed ineO(dndn+1

Y ) arithmetic operations, and eOB(dndn+2
Y τ)

bit operations.

In the sequel, we often consider the gcd of two univariate
polynomials P and Q and the gcd-free part of P with respect
to Q, that is, the divisor D of P such that P = gcd(P,Q)D.
Note that when Q = P ′, the latter is the squarefree part P .

Lemma 4 ([2, Rem. 10.19]). Let P and Q in F[X] of
degree at most d. gcd(P,Q) or the gcd-free part of P with

respect to Q can be computed with eO(d) operations in F.

Lemma 5. Let P and Q in Z[X,Y ] of total degree d and
maximum bitsize τ . The sheared polynomials P (T − SY, Y )

and Q(T−SY, Y ) can be expanded in eOB(d4+d3τ) and their

bitsizes are in eO(d+ τ). The resultant R(T, S) can be com-

puted in eOB(d7 + d6τ) bit operations and eO(d5) arithmetic
operations in Z; its degree is at most 2d2 in each variable

and its bitsize is in eO(d2 + dτ).

Proof. Writing P (T − SY, Y ) as
Pd
i=0 pi(Y )(T − SY )i

and considering the bitsize of the binomial coefficients, we
easily get the first statement of the lemma. The second
statement is a direct application of Lemma 3 on trivariate
polynomials of partial degree at most d in each variable.

4. SEPARATING LINEAR FORM
Throughout this section, we assume that the two input

polynomials P and Q are coprime in Z[X,Y ], that they de-
fine the ideal I, that their maximum total degree d is at least
2 and that their coefficients have maximum bitsize τ . Note
that the coprimality of P and Q is implicitly tested during
Algorithm 4 because they are coprime if and only if R(T, S)
does not identically vanish. By abuse of notation, some com-

plexity eOB(dk) may refer to a complexity in which polyloga-
rithmic factors in d and in τ are omitted. Iµ = 〈Pµ, Qµ〉 de-
notes the ideal generated by Pµ = φµ(P ) and Qµ = φµ(Q).



Similarly as in Equation (1), we define Rµ(T, S) as the re-
sultant of Pµ(T − SY, Y ) and Qµ(T − SY, Y ) with respect
to Y , and we define LPµ(S), LQµ(S), and LRµ(S), simi-
larly as in (2). We refer to the overview in Section 2 for the
organization of this section.

4.1 Separating linear form over Zµ versus Z
We first introduce the notion of lucky prime numbers µ

which are, roughly speaking, primes µ for which the number
of distinct solutions of 〈P,Q〉 does not change when consid-
ering the polynomials modulo µ. We then show the critical
property that, if a linear form is separating modulo such a
µ, then it is also separating over Z.

Definition 6. A prime number µ is said to be lucky for
an ideal I = 〈P,Q〉 if it is larger than 2d4 and satisfies

φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0 and #V (I) = #V (Iµ).

Proposition 7. Let µ be a lucky prime for the ideal I =
〈P,Q〉 and let a < µ be an integer such that

φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0.

If X + aY separates V (Iµ), it also separates V (I).

The key idea of the proof of Prop. 7, as well as Prop.
11 and 12, is to prove the following inequalities (under the
hypothesis that various leading terms do not vanish)

#V (Iµ) > dT (Rµ(T, a)) 6 dT (R(T, a)) 6 #V (I) (3)

and argue that the first (resp. last) one is an equality if
X + aY separates V (Iµ) (resp. V (I)), and that the middle
one is an equality except for finitely many µ. We establish
these claims in Lemmas 8 and 10. As mentioned in Section 2,
Lemma 8 is the key property in the classical algorithm for
computing a separating form for I, which algorithm we will
use over Zµ to compute a separating form for Iµ in Sec-
tion 4.5. We refer to [6, Lemma 16] or [2, Prop. 11.23] for a
proof. Recall that P and Q are assumed to be coprime but
not Pµ and Qµ; we address this issue in Lemma 9.

Lemma 8. If a ∈ Z is such that LP (a)LQ(a) 6= 0 then

dT (R(T, a)) 6 #V (I) and they are equal if and only if X +
aY separates V (I). The same holds over Zµ, that is for Pµ,
Qµ, Rµ and Iµ, provided that Pµ and Qµ are coprime.

Lemma 9. If φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0 and
µ > 4d2 then Pµ and Qµ are coprime in Zµ[X,Y ].

Proof. Since φµ(LP (S)) φµ(LQ(S)) 6≡ 0, the property
of specialization of resultants [2, Prop. 4.20] yields that
φµ(R(T, S)) = Rµ(T, S) and φµ(LR(S)) 6≡ 0 implies that
Rµ(T, S) 6≡ 0. We can thus choose a value S = a ∈ Zµ so
that Rµ(T, a) 6≡ 0 and LPµ(a)LQµ(a) 6= 0; indeed, µ > 4d2

and φµ(LR(S)), LPµ(S) and LQµ(S) have degree at most

2d2, d and d respectively (Lemma 3). For such a value, the
resultant of Pµ(T − aY, Y ) and Qµ(T − aY, Y ) is Rµ(T, a).
This resultant is not identically zero, the leading coefficients
(in Y ) LPµ(a) and LQµ(a) do not depend on T (see Eq. (2))
and are not zero, thus Pµ(T −aY, Y ) and Qµ(T −aY, Y ) are
coprime. The result follows.

The following lemma is a direct consequence of the prop-
erty of specialization of resultants [2, Prop. 4.20] and of the
fact that the degree of the gcd cannot decrease when the
polynomials are reduced modulo µ [16, Lemma 4.8].

Lemma 10. Let µ be a prime and a be an integer such that
φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0, then dT (Rµ(T, a)) 6
dT (R(T, a)).

Proof of Prop. 7. By Lemmas 8, 9 and 10, if µ is a
prime and a is an integer such that X+aY separates V (Iµ)
and φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0, then

#V (Iµ) = dT (Rµ(T, a)) 6 dT (R(T, a)) 6 #V (I).

Since µ is lucky, #V (Iµ) = #V (I) thus dT (R(T, a)) =
#V (I) and by Lemma 8, X + aY separates V (I).

4.2 Number of solutions of Iµ versus I
As shown in Prop. 7, the knowledge of a lucky prime

permits to search for separating linear forms over Zµ rather
than over Z. We prove here two propositions that are critical
for computing a lucky prime, which state that the number
of solutions of Iµ = 〈Pµ, Qµ〉 is always at most that of I =
〈P,Q〉 and give a bound on the number of unlucky primes.

Proposition 11. Let I = 〈P,Q〉 be a zero-dimensional
ideal in Z[X,Y ]. If a prime µ is larger than 2d4 and

φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0

then #V (Iµ) 6 #V (I).

Proof. Let µ be a prime that satisfies the hypotheses of
the proposition. We also consider an integer a < µ such
that φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0 and such that
the linear form X+aY is separating for Iµ. Such an integer
exists because (i) φµ(LP (S)), φµ(LQ(S)), and φµ(LR(S))
are not identically zero by hypothesis and they have degree
at most d or 2d2 (Lemma 3) and, as mentioned earlier, (ii)
Iµ is zero dimensional (Lemma 9) and it has at most d2

solutions which define at most
`
d2

2

´
directions in which two

solutions are aligned. Since 2d+2d2+
`
d2

2

´
< 2d4 (for d > 2),

there exists such an integer a 6 2d4 < µ. With such an a,
we can apply Lemmas 8 and 10 which imply that #V (Iµ) =

dT (Rµ(T, a)) 6 dT (R(T, a)) 6 #V (I).

Proposition 12. An upper bound on the number of un-
lucky primes for the ideal 〈P,Q〉 can be explicitly computed

in terms of d and τ , and this bound is in eO(d4 + d3τ).

Proof. According to Def. 6, a prime µ is unlucky if it
is smaller than 2d4, if φµ(LP (S)LQ(S)LR(S)) = 0, or if
#V (I) 6= #V (Iµ). In the following, we consider µ > 2d4.
We first determine some conditions on µ that ensure that
#V (I) = #V (Iµ), and we then bound the number of µ that
do not satisfy these conditions. As we will see, under these
conditions, LP (S), LQ(S), and LR(S) do not vanish modulo
µ and thus this constraint is redundant.

The first part of the proof is similar in spirit to that of
Prop. 11 in which we first fixed a prime µ and then special-
ized the polynomials at S = a such that the form X+aY was
separating for Iµ. Here, we first choose a such that X + aY
is separating for I. With some conditions on µ, Lemmas 8
and 10 imply Equation (4) and we determine some more
conditions on µ such that the middle inequality of (4) is an
equality. We thus get #V (Iµ) > #V (I) which is the con-
verse of that of Prop. 11 and thus #V (Iµ) = #V (I). In the
second part of the proof, we bound the number of µ that
violate the conditions we considered.



Prime numbers such that #V (I) 6= #V (Iµ). Let a be such
that the form X + aY separates V (I) and LP (a)LQ(a)
LR(a) 6= 0. Similarly as in the proof of Prop. 11, we can
choose a 6 2d4.

We consider any prime µ such that φµ(LP (a)) φµ(LQ(a))
φµ(LR(a)) 6= 0, so that we can apply Lemmas 8 and 10.
Since X + aY separates V (I), these lemmas yield that

#V (Iµ) > dT (Rµ(T, a)) 6 dT (R(T, a)) = #V (I). (4)

Now, dT (R(T, a)) = dT (R(T, a))−dT (gcd(R(T, a), R′(T, a))),
and similarly for Rµ(T, a). The leading coefficient of R(T, S)
with respect to T is LR(S), and since it does not vanish at
S = a, LR(a) is the leading coefficient of R(T, a). In addi-
tion, we have Rµ(T, a) = φµ(R(T, a)), hence the hypothesis
φµ(LR(a)) 6= 0 implies that Rµ(T, a) and R(T, a) have the
same degree. It follows that, if µ is such that the degree
of gcd(R(T, a), R′(T, a)) does not change when R(T, a) and
R′(T, a) are reduced modulo µ, we have

#V (Iµ) > dT (Rµ(T, a)) = dT (R(T, a)) = #V (I).

Since φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0, we can ap-
ply Prop. 11 which yields that #V (Iµ) 6 #V (I) and thus
#V (Iµ) = #V (I).

Therefore, the primes µ such that #V (Iµ) 6= #V (I) are
among those such that LP (a), LQ(a) or LR(a) vanishes
modulo µ or such that the degree of gcd(R(T, a), R′(T, a))
changes when R(T, a) and R′(T, a) are reduced modulo µ.
Note that if LP (a), LQ(a), and LR(a) do not vanish modulo
µ, then LP (S), LQ(S), and LR(S) do not identically vanish
modulo µ. It is straightforward to prove that we can com-

pute an explicit bound, in eO(d2 + dτ), on the number of
prime divisors of LP (a), LQ(a), or LR(a).

Bounding the number of prime µ such that the degree of
gcd(R(T, a), R′(T, a)) changes when R(T, a) and R′(T, a) are
reduced modulo µ. By [16, Lemma 4.12], given two uni-
variate polynomials in Z[X] of degree at most d′ and bitsize
at most τ ′, the product of all µ, such that the degree of the
gcd of the two polynomials changes when the polynomials

are considered modulo µ, is bounded by (2τ
′√
d′ + 1)2d

′+2.
The number of such primes µ is bounded by the bitsize of
this bound, and thus is bounded by (d′ + 1) (2τ ′ + log(d′ +

1)) + 1. Here d′ 6 2d2 and τ ′ is in eO(d2 + dτ) since
our explicit bound on the bitsize of LR(a) holds as well
for the bitsize of R(T, a), and, since R(T, a) is of degree
at most 2d2, the bitsize of R′(T, a) is bounded by that of
R(T, a) plus 1 + log 2d2. We thus obtain an explicit bound

in eO(d4 + d3τ) on the number of primes µ such that the
degree of gcd(R(T, a), R′(T, a)) changes when R(T, a) and
R′(T, a) are reduced modulo µ.

The result follows by summing this bound with the bounds
we obtained on the number of prime divisors of LP (a), LQ(a),
or LR(a), and a bound (e.g. 2d4) on the number of primes
smaller than 2d4.

4.3 Counting the number of solutions of Iµ
For counting the number of (distinct) solutions of Iµ =
〈Pµ, Qµ〉, we use a classical algorithm for computing a tri-
angular decomposition of an ideal defined by two bivariate
polynomials. We first recall this algorithm, slightly adapted
to our needs, and analyze its arithmetic complexity.

Triangular decomposition. Let P and Q be two poly-
nomials in F[X,Y ]. A decomposition of the solutions of the

Algorithm 1 Triangular decomposition

Input: P,Q in F[X,Y ] coprime such that LcY (P ) and
LcY (Q) are coprime, dY (Q) 6 dY (P ), and

A ∈ F[X] squarefree.
Output: Triangular decomp. {(Ai(X), Bi(X,Y ))}i∈I such

that V (〈P,Q,A〉) is the disjoint union of the sets
V (〈Ai(X), Bi(X,Y )〉)i∈I

1: Compute the subresultant sequence of P and Q with
respect to Y : Bi = SresY,i(P,Q)

2: G0 = gcd(ResY (P,Q), A) and T = ∅
3: for i = 1 to dY (Q) do
4: Gi = gcd(Gi−1, sresY,i(P,Q))
5: Ai = Gi−1/Gi
6: if dX(Ai) > 0, add (Ai, Bi) to T
7: return T = {(Ai(X), Bi(X,Y ))}i∈I

system {P,Q} using the subresultant sequence appears in
the theory of triangular sets [11] and for the computation of
topology of curves [9].

The idea is to use Lemma 2 which states that, after spe-
cialization at X = α, the first (with respect to increasing
i) nonzero subresultant SresY,i(P,Q)(α, Y ) is of degree i
and is equal to the gcd of P (α, Y ) and Q(α, Y ). This in-
duces a decomposition into triangular subsystems ({Ai(X),
SresY,i(P,Q)(X,Y )}) where a solution α of Ai(X) = 0 is
such that the system {P (α, Y ), Q(α, Y )} admits exactly i
roots (counted with multiplicity), which are exactly those
of SresY,i(P,Q)(α, Y ). Furthermore, these triangular sub-
systems are regular chains, i.e., the leading coefficient of the
bivariate polynomial (seen in Y ) is coprime with the uni-
variate polynomial. For clarity and self-containedness, we
recall this decomposition in Algorithm 1, where, in addi-
tion, we restrict the solutions of the system {P,Q} to those
where some univariate polynomials A(X) vanishes (A could
be identically zero).

The following lemma states the correctness of Algorithm 1
which follows from Lemma 2 and from the fact that the
solutions of P and Q project on the roots of their resultant.

Lemma 13 ([9, 11]). Algorithm 1 computes a triangu-
lar decomposition {(Ai(X), Bi(X,Y ))}i∈I such that

(i) the set V (〈P,Q,A〉) is the disjoint union of the sets
V (〈Ai(X), Bi(X,Y )〉)i∈I ,

(ii)
Q
i∈I Ai is squarefree,

(iii) ∀α ∈ V (Ai), Bi(α, Y ) is of degree i and is equal to
gcd(P (α, Y ), Q(α, Y )), and

(iv) Ai(X) and LcY (Bi(X,Y )) are coprime.

In the following lemma, we analyze the complexity of Al-
gorithm 1 for P and Q of degree at most dX in X and dY in
Y and A of degree at most d2, where d denotes a bound on
the total degree of P and Q. We will use Algorithm 1 with
polynomials with coefficients in F = Zµ and we thus only
consider its arithmetic complexity in F. The bit complexity
of this algorithm over Z is analyzed in [6, Thm. 19] and
its arithmetic complexity is thus implicitly analyzed as well;
see also [5].

Lemma 14. Algorithm 1 performs eO(dXd
3
Y ) = eO(d4) arith-

metic operations in F.

Counting the number of solutions of Iµ. Algorithm 2
computes the number of distinct solutions of an ideal Iµ =



Algorithm 2 Number of distinct solutions of 〈Pµ, Qµ〉
Input: Pµ, Qµ in Zµ[X,Y ] coprime, µ larger than their to-

tal degree
Output: Number of distinct solutions of 〈Pµ, Qµ〉
1: Shear Pµ and Qµ by replacing X by X−bY with b ∈ Zµ

so that LcY (Pµ(X − bY, Y )) ∈ Zµ
2: Triangular decomposition: {(Ai(X), Bi(X,Y ))}i∈I =

Algorithm 1 (Pµ, Qµ, 0)
3: for all i ∈ I do
4: Ci(X) = LcY (Bi(X,Y ))−1 mod Ai(X)

5: B̃i(X,Y ) = Ci(X)Bi(X,Y ) mod Ai(X)
6: Triangular decomp.: {(Aij(X), Bij(X,Y ))}j∈J i =

Algorithm 1
“
B̃i(X,Y ), ∂B̃i(X,Y )

∂Y
, Ai(X)

”
7: return

P
i∈I

“
i dX(Ai)−

P
j∈Ji j dX(Aij)

”

〈Pµ, Qµ〉 of Zµ[X,Y ]. Roughly speaking, this algorithm first
performs one triangular decomposition with the input poly-
nomials Pµ and Qµ, and then performs a sequence of trian-
gular decompositions with polynomials resulting from this
decomposition. The result is close to a radical triangular de-
composition and the number of solutions of Iµ can be read,
with a simple formula, from the degrees of the polynomials
in the decomposition.

Lemma 15. Algorithm 2 computes the number of distinct
solutions of 〈Pµ, Qµ〉.

Proof. The shear of Line 1 allows to fulfill the require-
ment of the triangular decomposition algorithm, called in
Line 2, that the input polynomials have coprime leading co-
efficients. Once the generically sheared polynomial Pµ(X −
SY, Y ) is computed (in Zµ[S,X, Y ]), a specific shear value
b ∈ Zµ can be selected by evaluating the univariate polyno-
mial LPµ(S) = LcY (Pµ(X − SY, Y )) at d + 1 elements of
Zµ. The polynomial does not vanish at one of these values
since it is of degree at most d and d < µ. Note that such a
shear clearly does not change the number of solutions.

According to Lemma 13, the triangular decomposition
{(Ai(X), Bi(X,Y ))}i∈I computed in Line 2 is such that the
solutions of 〈Pµ, Qµ〉 is the disjoint union of the solutions of
the 〈Ai(X), Bi(X,Y )〉, for i ∈ I. It follows that the number
of (distinct) solutions of Iµ = 〈Pµ, Qµ〉 is

#V (Iµ) =
X
i∈I

X
α∈V (Ai)

dY (Bi(α, Y )).

Since Bi(α, Y ) is a univariate polynomial in Y , dY (Bi(α, Y ))
is equal to dY (Bi(α, Y ))−dY (gcd(Bi(α, Y ), B′i(α, Y ))), where
B′i(α, Y ) is the derivative of Bi(α, Y ), which is also equal to
∂Bi
∂Y

(α, Y ). By Lemma 13, dY (Bi(α, Y )) = i, and since the
degree of the gcd is zero when Bi(α, Y ) is squarefree, we
have

#V (Iµ) =
X
i∈I

X
α∈V (Ai)

i (5)

−
X
i∈I

X
α∈V (Ai)

Bi(α,Y ) not sqfr.

dY (gcd(Bi(α, Y ), ∂Bi
∂Y

(α, Y ))).

The polynomials Ai(X) are squarefree by Lemma 13, soP
α∈V (Ai)

i is equal to i dX(Ai).
We now consider the sum of the degrees of the gcds.

The rough idea is to apply Algorithm 1 to Bi(X,Y ) and

∂Bi
∂Y

(X,Y ), for every i ∈ I, which computes a triangular de-
composition {(Aij(X), Bij(X,Y ))}j∈Ji such that, for α ∈
V (Aij), dY (gcd(Bi(α, Y ), ∂Bi

∂Y
(α, Y ))) = j (by Lemma 13),

which simplifies Equation (5) into #V (Iµ) =
P
i∈I (i dX(Ai)

−
P
j∈Ji

P
α∈V (Aij)

j
”

. However, we cannot directly apply

Algorithm 1 to Bi(X,Y ) and ∂Bi
∂Y

(X,Y ) because their lead-
ing coefficients in Y have no reason to be coprime.

By Lemma 13, Ai(X) and LcY (Bi(X,Y )) are coprime,
thus LcY (Bi(X,Y )) is invertible modulo Ai(X) (by Bézout’s

identity); let Ci(X) be this inverse and define B̃i(X,Y ) =
Ci(X)Bi(X,Y ) mod Ai(X) (such that every coefficient of
Ci(X)Bi(X,Y ) with respect to Y is reduced moduloAi(X)).

The leading coefficient in Y of B̃i(X,Y ) is equal to 1, so we

can apply Algorithm 1 to B̃i(X,Y ) and ∂B̃i
∂Y

(X,Y ). Further-

more, if Ai(α) = 0, then B̃i(α, Y ) = Ci(α)Bi(α, Y ) where
Ci(α) 6= 0 since Ci(α)LcY (Bi(α, Y )) = 1. Equation (5) can

thus be rewritten by replacing Bi by B̃i.
By Lemma 13, for every i ∈ I, Algorithm 1 computes a tri-

angular decomposition {(Aij(X), Bij(X,Y ))}j∈Ji such that

V (〈B̃i, ∂B̃i∂Y
, Ai〉) is the disjoint union of the sets V (〈Aij(X),

Bij(X,Y )〉), j ∈ Ji, and for all α ∈ V (Aij), dY (gcd(B̃i(α, Y ),
∂B̃i
∂Y

(α, Y ))) = j. Since the set of α ∈ V (Ai) such that

B̃i(α, Y ) is not squarefree is the projection of the set of so-

lutions (α, β) ∈ V (〈B̃i, ∂B̃i∂Y
, Ai〉) we get

#V (Iµ) =
X
i∈I

0@i dX(Ai)−
X
j∈Ji

X
α∈V (Aij)

j

1A .

Aij(X) is squarefree (Lemma 13) so
P
α∈V (Aij)

j = j dX(Aij),

which concludes the proof.

The next lemma gives the arithmetic complexity of the
above algorithm.

Lemma 16. Given Pµ, Qµ in Zµ[X,Y ] of total degree at

most d, Algorithm 2 performs eO(d4) operations in Zµ.

Proof. According to Lemma 5, the sheared polynomi-
als P (T − SY, Y ) and Q(T − SY, Y ) can be expanded ineOB(d4 +d3τ) bit operations in Z. Thus the sheared polyno-
mials Pµ(X − SY, Y ) and Qµ(X − SY, Y ) can obviously be

computed in eO(d4) arithmetic operations in Zµ. The lead-
ing term LcY (Pµ(X − SY, Y )) ∈ Zµ[S] is a polynomial of
degree at most d and a value b ∈ Zµ that does not vanish it
can be found by at most d+ 1 evaluations. Each evaluation
can be done with O(d) arithmetic operations, thus the shear

value b can be computed in eO(d2) operations. It remains to
evaluate the generically sheared polynomials at this value
S = b. These polynomials have O(d2) monomials in X and
Y , each with a coefficient in Zµ[S] of degree at most d; since
the evaluation of each coefficient is softly linear in d, this

gives a total complexity in eO(d4) for Line 1.
According to Lemma 14, the triangular decomposition in

Line 2 can be done in eO(d4) arithmetic operations. In Lines

4 and 5, Ci(X) and B̃i(X,Y ) can be computed by first re-
ducing modulo Ai(X) every coefficient of Bi(X,Y ) (with
respect to Y ). There are at most i coefficients (by definition
of subresultants) and the arithmetic complexity of every re-
duction is softly linear in the degree of the operands [15,

Cor. 11.6], which is eO(d2) by Lemma 3. The reduction of



Algorithm 3 Number of distinct solutions and lucky prime
for 〈P,Q〉
Input: P,Q in Z[X,Y ] coprime of total degree at most d

and bitsize at most τ
Output: Number of solutions and lucky prime µ for 〈P,Q〉

1: Compute P (T − SY, Y ), Q(T − SY, Y ), R(T, S) =
ResY (P (T − SY, Y ), Q(T − SY, Y ))

2: Compute a set B of primes larger than 2d4 and of cardi-

nality eO(d4 +d3τ) that contains a lucky prime for 〈P,Q〉
(see Prop. 12)

3: for all µ in B do
4: if φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0 then
5: Compute Nµ = Algorithm 2(φµ(P ), φµ(Q))
6: return (µ,Nµ) such that Nµ is maximum

Bi(X,Y ) modulo Ai(X) can thus be done with eO(d3) arith-
metic operations in Zµ. Now, in Line 4, the arithmetic com-
plexity of computing the inverse of one of these coefficients
modulo Ai(X) is softly linear in its degree [15, Cor. 11.8],

that is eO(di) where di denotes the degree of Ai(X). Further-
more, computing the product modulo Ai(X) of two polyno-
mials which are already reduced modulo Ai(X) can be done

in eO(di) arithmetic operations [15, Cor. 11.8]. Thus, in

Line 5, the computation of B̃i(X,Y ) can be done with i

such multiplications, and thus with eO(idi) arithmetic oper-
ations. Finally, in Line 6, the triangular decomposition can

be done with eO(i3di) arithmetic operations by Lemma 14.

The complexity of Lines 4-6 is thus in eO(d3 + i3di) which is

in eO(d3 + d2idi). The total complexity of the loop in Line 3

is thus eO(d4 +d2P
i idi) which is in eO(d4) because the num-

ber of solutions of the triangular system (Ai(X), Bi(X,Y ))
is at most the degree of Ai times the degree of Bi in Y , that
is idi, and the total number of these solutions for i ∈ I is
that of (P,Q), by Lemma 13, which is at most d2 by Bé-
zout’s bound. This concludes the proof because the sum
in Line 7 can obviously be done in linear time in the size of
the triangular decompositions that are computed during the
algorithm.

4.4 Lucky prime and number of solutions of I
We now show how to compute the number of solutions of

I = 〈P,Q〉 and a lucky prime for that ideal.

Lemma 17. Algorithm 3 computes the number of distinct

solutions and a lucky prime for 〈P,Q〉 in eOB(d8+d7τ+d5τ2)
bit operations. Moreover, this lucky prime is upper bounded

by eO(d4 + d3τ).

Proof. We first prove the correctness of the algorithm.
Note first that for all µ ∈ B satisfying the constraint of Line
4, Lemma 9 implies that φµ(P ) and φµ(Q) are coprime. It
follows that Algorithm 2 computes the number of distinct
solutions Nµ = #V (Iµ) of Iµ. By Prop. 11 and Def. 6,
Nµ 6 #V (I) and the equality holds if µ is lucky for I.
Since the set B of considered primes contains a lucky one
by construction, the maximum of the computed value of Nµ
is equal to #V (I). Finally, the µ associated to any such
maximum value of Nµ is necessarily lucky by the constraint
of Line 4 and since µ is larger than 2d4.

We now prove the complexity of the algorithm. The poly-
nomials P (T − SY, Y ), Q(T − SY, Y ) and their resultant

Algorithm 4 Separating form for 〈P,Q〉
Input: P,Q in Z[X,Y ] of total degree at most d and defin-

ing a zero-dimensional ideal I
Output: A linear form X + aY that separates V (I), with

a < 2d4 and LP (a)LQ(a) 6= 0
1: Apply Algorithm 3 to compute the number of solutions

#V (I) and a lucky prime µ for I
2: Compute P (T − SY, Y ), Q(T − SY, Y ) and R(T, S) =
ResY (P (T − SY, Y ), Q(T − SY, Y ))

3: Compute Rµ(T, S) = φµ(R(T, S))
4: Compute Υµ(S) = φµ(LP (S)) φµ(LQ(S)) φµ(LR(S))
5: a := 0
6: repeat
7: Compute the degree Na of the squarefree part of

Rµ(T, a)
8: a := a+ 1
9: until Υµ(a) 6= 03and Na = #V (I)

10: return The linear form X + aY

R(T, S) can be computed in eOB(d7 + d6τ) bit operations,
by Lemma 5.

Prop. 12 states that we can compute an explicit bound

Ξ(d, τ) in eO(d4 + d3τ) on the number of unlucky primes
for 〈P,Q〉. We want to compute in Line 2 a set B of at
least Ξ(d, τ) primes (plus one) that are larger than 2d4. For
computing B, we can thus compute the first Ξ(d, τ)+2d4+1
prime numbers and reject those that are smaller than 2d4.
The bit complexity of computing the r first prime numbers

is in eO(r) and their maximum is in eO(r) [15, Thm. 18.10].

We can thus compute the set of primes B with eOB(d4 +d3τ)

bit operations and these primes are in eO(d4 + d3τ).
In Line 4, we test to zero the reduction modulo µ of three

polynomials in Z[S] which have been computed in Line 1 and
which are of degree O(d2) and bitsize O(d2+dτ) in the worst
case (by Lemma 5). For each of these polynomials, the test
to zero can be done by first computing (once for all) the gcd
of its O(d2) integer coefficients of bitsize O(d2 + dτ). Each
gcd can be computed with a bit complexity that is softly lin-
ear in the bitsize of the integers [16, §2.A.6] (and the bitsize
clearly does not increase), hence all the gcds can be done

with a bit complexity of eOB(d2(d2 + dτ)). Then the reduc-
tion of each of the three gcds modulo µ is performed, for each

of the eO(d4 + d3τ) choices of µ, in a bit complexity that is

softly linear in the maximum bitsize, that is in eOB(d2 + dτ)
[15, Thm. 9.8] since µ has bitsize in O(log(d4+d3τ)). Hence,
the tests in Line 4 can be done with a total bit complexity

in eOB((d4 + d3τ)(d2 + dτ)) = eOB(d6 + d4τ2).

In Line 5, we compute, for eO(d4 + d3τ) prime numbers µ,
φµ(P ) and φµ(Q) and call Algorithm 2 to compute the num-
ber of their common solutions. For every µ, the computation

of φµ(P ) and φµ(Q) can be done with eOB(d2τ) bit opera-
tions, since the reduction modulo µ of each of the O(d2)
coefficients is softly linear in its bitsize. By Lemma 16, the

bit complexity of Algorithm 2 is in eOB(d4). Hence, the total

bit complexity of Line 5 is in eOB(d8 + d7τ + d5τ2), and so
is the overall bit complexity of Algorithm 3.

4.5 Computing a separating linear form
Using Algorithm 3, we now present our algorithm for com-

puting a linear form that separates the solutions of 〈P,Q〉.



Theorem 18. Algorithm 4 computes a separating linear
form X +aY for 〈P,Q〉 with a < 2d4. The bit complexity of

the algorithm is in eOB(d8 + d7τ + d5τ2).

Proof. We first prove the correctness of the algorithm.
We start by proving that the value a returned by the algo-
rithm is the smallest nonnegative integer such that X + aY
separates V (Iµ) with Υµ(a) 6= 0. Note first that, in Line 3,
φµ(R(T, S)) is indeed equal to Rµ(T, S) which is defined as
ResY (Pµ(T −SY, Y ), Qµ(T −SY, Y )) since the leading coef-
ficients LP (S) and LQ(S) of P (T−SY, Y ) and Q(T−SY, Y )
do not identically vanish modulo µ (since µ is lucky), and
thus LPµ(S) = φµ(LP (S)), similarly for Q, and the resul-
tant can be specialized modulo µ [2, Prop. 4.20]. Now,
Line 9 ensures that the value a returned by the algorithm
satisfies Υµ(a) 6= 0, and we restrict our attention to non-
negative such values of a. Note that Υµ(a) 6= 0 implies that
φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0 because the special-
ization at S = a and the reduction modulo µ commute (in
Zµ). For the same reason, LPµ(S) = φµ(LP (S)) implies
LPµ(a) = φµ(LP (a)) and thus LPµ(a) 6= 0 and, similarly,
LQµ(a) 6= 0. On the other hand, Line 9 implies that the

value a is the smallest that satisfies dT (Rµ(T, a)) = #V (I),
which is also equal to #V (Iµ) since µ is lucky. Lemma 8 thus
yields that the returned value a is the smallest nonnegative
integer such that X + aY separates V (Iµ) and Υµ(a) 6= 0,
which is our claim.

This property first implies that a < 2d4 because the degree
of Υµ is bounded by 2(d2 +d), the number of non-separating

linear forms is bounded by
`
d2

2

´
(the maximum number of

directions defined by any two of d2 solutions), and their sum
is less than 2d4 for d > 2. Note that, since µ is lucky, 2d4 < µ
and thus a < µ. The above property thus also implies,
by Prop. 7, that X + aY separates V (I). This concludes
the proof of correctness of the algorithm since a < 2d4 and
LP (a)LQ(a) 6= 0 (since Υµ(a) 6= 0).

We now focus on the complexity of the algorithm. By

Lemma 17, the bit complexity of Line 1 is in eOB(d8 + d7τ +

d5τ2). The bit complexity of Lines 2 to 5 is in eOB(d7 +
d6τ). Indeed, by Lemma 5, R(T, S) has degree O(d2) in

T and in S, bitsize eO(d2 + dτ), and it can be computed ineOB(d7 +d6τ) time. Computing Rµ(T, S) = φµ(R(T, S)) can

thus be done in reducing O(d4) integers of bitsize eO(d2 +dτ)
modulo µ. Each reduction is softly linear in the maximum of
the bitsizes [15, Thm. 9.8] thus the reduction of R(T, S) can

be computed in eOB(d4(d2 + dτ)) time. The computation of
Υµ can clearly be done with the same complexity since each
reduction is easier than the one in Line 3, and the product
of the polynomials can be done with a bit complexity that
is softly linear in the product of the maximum degrees and
maximum bitsizes [15, Cor. 8.27].

We proved that the value a returned by the algorithm is
less than 2d4, thus the loop in Line 6 is performed at most
2d4 times. Each iteration consists of computing the square-

free part of Rµ(T, a) which requires eOB(d4) bit operations.
Indeed, computing Rµ(T, S) at S = a amounts to evaluat-
ing, in Zµ, O(d2) polynomials in S, each of degree O(d2) (by
Lemma 5). Note that a does not need to be reduced modulo
µ because a < 2d4 and 2d4 < µ since µ is lucky. Thus, the
bit complexity of evaluating in Zµ each of the O(d2) poly-
nomials in S is the number of arithmetic operations in Zµ,

3Υµ(S) ∈ Zµ[S] and we consider Υµ(a) in Zµ.

which is linear the degree that is O(d2), times the (maxi-
mum) bit complexity of the operations in Zµ, which is in

OB(log dτ) since µ is in eO(d4 + d3τ) by Lemma 17. Hence,

computing Rµ(T, a) can be done in eOB(d4) bit operations.
Once Rµ(T, a) is computed, the arithmetic complexity of
computing its squarefree part in Zµ is softly linear in its de-

gree (Lemma 4), that is eO(d2), which yields a bit complexity

in eOB(d2) since, again, µ is in eO(d4 + d3τ). This leads to

a total bit complexity of eOB(d8) for the loop in Lines 6 to
9, and thus to a total bit complexity for the algorithm ineOB(d8 + d7τ + d5τ2).
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