
HAL Id: hal-00809847
https://hal.inria.fr/hal-00809847

Submitted on 10 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AI-Ckpt: Leveraging Memory Access Patterns for
Adaptive Asynchronous Incremental Checkpointing

Bogdan Nicolae, Franck Cappello

To cite this version:
Bogdan Nicolae, Franck Cappello. AI-Ckpt: Leveraging Memory Access Patterns for Adaptive Asyn-
chronous Incremental Checkpointing. HPDC ’13: 22th International ACM Symposium on High-
Performance Parallel and Distributed Computing, Jun 2013, New York, United States. pp.155-166,
�10.1145/2462902.2462918�. �hal-00809847�

https://hal.inria.fr/hal-00809847
https://hal.archives-ouvertes.fr

AI-Ckpt: Leveraging Memory Access Patterns for Adaptive
Asynchronous Incremental Checkpointing

Bogdan Nicolae
IBM Research
Dublin, Ireland

bogdan.nicolae@ie.ibm.com

Franck Cappello
Joint Laboratory for Petascale Computing

INRIA, France
University of Illinois at Urbana-Champaign, USA

fci@lri.fr

ABSTRACT

With increasing scale and complexity of supercomputing
and cloud computing architectures, faults are becoming a
frequent occurrence, which makes reliability a difficult chal-
lenge. Although for some applications it is enough to restart
failed tasks, there is a large class of applications where tasks
run for a long time or are tightly coupled, thus making a
restart from scratch unfeasible. Checkpoint-Restart (CR),
the main method to survive failures for such applications
faces additional challenges in this context: not only does
it need to minimize the performance overhead on the ap-
plication due to checkpointing, but it also needs to operate
with scarce resources. Given the iterative nature of the tar-
geted applications, we launch the assumption that first-time
writes to memory during asynchronous checkpointing gen-
erate the same kind of interference as they did in past iter-
ations. Based on this assumption, we propose novel asyn-
chronous checkpointing approach that leverages both cur-
rent and past access pattern trends in order to optimize the
order in which memory pages are flushed to stable storage.
Large scale experiments show up to 60% improvement when
compared to state-of-art checkpointing approaches, all this
achievable with an extra memory requirement of less than
5% of the total application memory.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability

General Terms

Design, Performance, Experimentation

Keywords

scientific computing, high performance computing, cloud com-
puting, fault tolerance, checkpoint restart, asynchronous check-
pointing, adaptation to access pattern

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$10.00.

Scientific and data-intensive computing have matured over
the last years in all fields of science and industry. They pro-
vide an indispensable tool for new insight and solutions to
complex problems through modeling, simulation and data
analysis. From private-owned data-centers to leadership-
class supercomputing facilities, the drive for more computa-
tional capabilities has made petascale architectures a real-
ity [2], with predictions of reaching exascale by the end of
this decade [22].

Such an explosion of scale introduces many challenges,
among which a crucial challenge is fault tolerance. With
failure rates predicted in the order of tens of minutes [22]
and applications running for extended periods of time over
a large number of nodes, an assumption about complete re-
liability is highly unrealistic. Thus, one must consider fail-
ures as rather the norm than the exception. Furthermore,
since application processes are tightly coupled and depend
on each other to make progress with the computation, the
failure of one process eventually leads to the failure of all
processes. Thus, for the class of problems that we consider,
fault tolerance becomes particularly difficult.

Checkpoint-Restart (CR) [14] is a popular approach to
provide fault-tolerance for scientific applications. Fault tol-
erance is achieved by saving recovery information periodi-
cally during failure-free execution and restarting from that
information in case of failures, in order to minimize the
wasted computational time and resources. Although alter-
natives to CR based on redundancy [7, 30]) have been con-
sidered before, such approaches have rarely been adopted in
practice for scientific applications due to high performance
and resource overhead.

Faced with increasing scale, achieving efficient CR be-
comes a challenging task. Simple approaches such as syn-
chronous checkpointing become unfeasible: due to high check-
pointing frequency, the application would spend the major-
ity of time taking checkpoints rather that running useful
computations, with dump times predicted by Jones et al. [21]
in the order of several hours. Thus, it becomes increasingly
important to devote attention to asynchronous mechanisms
that parallelize the checkpointing and computations in order
to hide the checkpointing latency. This however is a non-
trivial task: it implies capturing and storing the the state of
a computation while allowing the computation to progress
at the same time. Since this state is mostly composed of
allocated memory (used henceforth to refer to the state it-
self), the checkpointing process and the computation will

compete for this memory, which implies the need to mini-
mize potential conflicts.

An important factor that augments this issue is the need to
operate with scarce resources. Although large-scale datacen-
ters have a lot of memory, this is a precious resource that is
expensive to leverage for potential memory copies that help
diminish the conflicts between the computation and check-
pointing. This happens for several reasons. First, problem
sizes attacked by modern applications have been growing
fast, causing a declining memory bytes-to-FLOP ratio: from
0.85 for the No. 1 machine on Top500 in 1997 to 0.01 for
projected exa-flop machines [3]. Thus, more and more mem-
ory is needed for the computation itself, leaving little extra
memory for other operations. Second, extra memory gener-
ates operational costs either in terms of energy consumption
or direct extra charges to users. The latter aspect is of par-
ticular interest in the context of HPC cloud platforms, which
are increasingly considered as a cost-effective alternative for
running HPC applications. Under such circumstances, vir-
tual machine (VM) instances are more expensive the more
memory they provide, prompting the need to provide a con-
figuration where the application uses as little extra memory
as possible besides what is absolutely need.

In this paper we propose Adaptive Incremental Check-
pointing (AI-Ckpt), an asynchronous checkpointing runtime
specifically designed to operate with scarce extra memo-
ry/local storage. Unlike conventional approaches, we in-
troduce a novel checkpointing strategy that is highly ver-
satile: it dynamically adapts to the access pattern of the
application and predicts future memory accesses in order to
minimize the interference of the background checkpointing
process on the application.

We summarize our contributions below:

• We present a series of design principles that facilitate
efficient asynchronous checkpointing. In particular, we
leverage the assumption that for the iterative appli-
cation class we consider, first-time writes to memory
regions that need to be checkpointed asynchronously
generate the same kind of interference as for the pre-
vious iterations and thus it is possible to commit the
checkpointing data to stable storage in an optimized
order that avoids memory access contention between
the application execution and the checkpointing pro-
cess.

• We show how to materialize these design principles in
practice through a series of algorithmic descriptions,
that are then applied to implement a checkpointing
runtime library capable of tracking both user-defined
memory contents explicitly or dynamic memory allo-
cations implicitly (Sections 3.3 and 3.4).

• We evaluate our approach in a series of experiments,
using both synthetic benchmarks and two real-life sci-
entific applications. These experiments demonstrate
significant improvement in overall checkpointing time,
while reducing at the same time the negative impact
of checkpointing overhead on the performance of the
application (Section 4).

2. RELATED WORK
The simplest way to deal with CR is to leave the this issue

to the application developer, which is known as application-

level checkpointing. In this case, checkpointing can be hand-
optimized by leveraging application-specific properties, how-
ever at the cost of added complexity that can become pro-
hibitively expensive [24]. At the other extreme is system-
level checkpointing. In this case, checkpointing is completely
transparent with respect to the application, however it is
inherently difficult to make feasible because of much larger
state size [28] that needs to be saved and the need to em-
ploy a checkpointing protocol [14] to guarantee consistency.
To fill the gap between the two, an alternative is to provide
checkpointing through a run-time library: the checkpoint
contents and the places where checkpoints should be taken
are application defined, but the how to save the checkpoint-
ing data is the responsibility of the system. This is called
user-defined checkpointing and is employed in several ap-
proaches [6, 25].

Regardless of the employed approach, the checkpointing
data needs to be saved in a persistent fashion to stable stor-
age that can survive failures. Given the huge amount of
checkpointing data that needs to be saved and the widening
gap between computational capabilities and I/O bandwidth,
this can quickly lead to unacceptable overheads and poor
scalability.

One direction that can be explored in order to alleviate
this issue is how to reduce the checkpoint sizes. In this con-
text, incremental checkpointing was proposed: it is based
on the idea that checkpointing data does not fully change
from one checkpoint to another, thus storing only incremen-
tal differences is enough to restart. Incremental approaches
can be broadly classified into two categories: page-based and
deduplication-based. Page-based approaches [31, 17] trap
writes to memory in order track all changes and build a
set of dirty pages that need to be saved. De-duplication
based approaches [4] on the other hand identify differences
by means of computation (most often hashing). It is also
possible to combine these approaches into hybrid schemes,
e.g. hybrid page-based/deduplication-based schemes [16] or
hybrid incremental/full checkpointing schemes [32]. Fur-
thermore, de-duplication can be extended beyond the scope
of a single process by identifying memory pages with iden-
tical content across groups of processes [27]. In either case,
incremental checkpointing can complemented with compres-
sion techniques [26] to further reduce the checkpoint sizes.

Another direction that helps alleviate the overhead of check-
pointing is to depart from synchronous checkpointing. One
idea in this context is to design quasi-synchronous check-
pointing algorithms that prevent contention to stable stor-
age [23]. Another idea is to use multi-level checkpointing [6,
25, 12], i.e. dump the checkpointing data on fast local stor-
age and then asynchronously flush this data to global stor-
age. Dorier et al. [13] have shown significant benefits of this
idea for multi-core architectures, however at the expense of
using a large shared memory buffer where the checkpointing
data from all cores is aggregated. To limit the memory us-
age and overhead of copies, a third possible idea is to avoid
blocking the application during checkpointing altogether, by
using asynchronous techniques such as copy-on-write.

Extensive related work has also been undertaken in the
area of live migration, in particular pre-copy [10] and its
derivatives. Like asynchronous checkpointing, precopy aims
to transfer the memory contents from a source to a desti-
nation while the source continues execution and potentially
changes the contents. However, the goal here is to converge

to a state where both source and destination have identi-
cal memory contents in order to be able to transfer control
to the destination and continue execution from there. The
convergence does not imply any ordering constraints and in
fact it is beneficial to delay transferring frequently changed
contents [10, 20, 29]. On the other hand, in the case of
asynchronous checkpointing, the memory contents cannot
be overwritten before it was transferred to the checkpoint,
which introduces additional ordering constraints and thus
makes the problem more difficult.

Our own work focuses on efficient asynchronous check-
pointing in spite of limited extra available memory. We be-
lieve the key to do so is to adapt to the access pattern of the
application in order to leverage the little spare extra mem-
ory as efficiently as possible for copy-on-write. Although
there are several established ways to reason about memory
access patterns, notably the working set model [11] and by
extension to our context the writable working set [10], the
synchronization issues raised by asynchronous checkpoint-
ing shift the focus to ordering rather than frequency of use
(in particular, only first time writes between checkpoint re-
quests need to be considered - see Section 3.1). To our best
knowledge, we are the first to formulate the assumptions
and explore the benefits of adapting to such specific access
pattern requirements and ordering constraints.

3. OUR APPROACH
This section presents the general design principles with an

algorithmic description and shows how to implement and in-
tegrate them in a typical large scale distributed architecture.

3.1 Design principles

Define and manage protected memory regions. AI-
Ckpt enables both user-defined checkpointing and transpar-
ent checkpointing. In case of the former, it is the responsibil-
ity of the user to define what memory regions are important
and needed on restart, which is achieved by using specific
memory allocation primitives. In case of the latter, AI-Ckpt
automatically captures all memory allocations and consid-
ers the requested regions important for restart. Regardless
of how such memory regions were defined, they are directly
managed by AI-Ckpt, as detailed below. Henceforth we call
such memory regions “protected”.

Leverage dirty-page tracking to capture write access
pattern and checkpoint increments asynchronously.
We leverage dirty page tracking in order to simultaneously
enable both incremental and asynchronous checkpointing.
This works as follows: whenever a checkpointing request
is received, all memory regions managed by AI-Ckpt are
marked as read-only. At the same time, in background, all
pages that were modified so far (i.e. marked as “dirty”) are
flushed to stable storage. Initially, any new protected mem-
ory region is marked as read-only. The application does not
block during the checkpoint request. Instead, any write to
protected memory regions is trapped and handled in a spe-
cial fashion. First of all, the corresponding page is marked
as “dirty” for the next checkpoint request. When this next
checkpoint request eventually arrives, it is trivial to establish
what pages were modified since the last checkpoint by sim-
ply checking their dirty status. Second, it can happen that

the background checkpointing has not managed to flush the
page yet. In this case, it is not possible to simply continue
with the write, as doing so will corrupt the content that is
expected to be flushed. To deal with this issue, there are two
options: either wait until the page was successfully flushed
or employ copy-on-write. Finally, once the page has been
properly handled, the write protection is lifted and the write
to the page (and any other subsequent writes) can continue
normally.

Note that asynchronous checkpointing is susceptible to
jitter, which for HPC applications is particularly problem-
atic [19] due to the tightly-coupled nature that leads to ac-
cumulation of delays. In our context, it is not enough to
hide the latency of transfers between memory and persis-
tent storage using traditional approaches such as dedicated
I/O cores, because an important source of jitter is the de-
lays caused by waiting. Thus, for the rest of this section we
concentrate on this aspect.

Use bounded copy-on-write to avoid wait delays. A
popular technique to avoid waiting is to simply create a
private copy of the page and apply the write there, which
is known as copy-on-write. In our case, is not possible to
employ copy-on-write in the traditional sense, because this
would disrupt the address space expected by the applica-
tion. Thus, the only possibility left is to create a private
copy for the background checkpointing process and perform
the actual write on the original page. This works only if the
original page is not already in the process of being flushed,
otherwise a wait is necessary. Furthermore, this approach
cannot be abused indefinitely to avoid waiting: besides the
obvious limitation of spare memory available other than for
application needs, too much copy-on-write could potentially
have a high negative impact on performance that offsets the
benefits of avoiding a wait. Thus, we limit the amount of
memory available for copy-on-writes to a fixed value that can
be configured by the user before launching the application.

Adapt dirty page flushing to access pattern. In its
simplest form, the strategy used to flush dirty pages follows
a predefined order that is independent of the access pattern.
Although quite popular and easy to implement, such an ap-
proach is not feasible if operating under a limited amount
of memory reserved for copy-on-write. This results from the
fact that once the copy-on-write memory buffer is full, the
application has to wait until either the page it is trying to
write has been flushed or enough free space was released back
to the copy-on-write buffer (which enables it to perform a
new copy-on-write and thus avoid waiting).

Obviously, a strategy that does not care about the access
pattern can hit on the worst case scenario where it flushes
all other pages except the page that is waited for or any
of the pages that triggered a copy-on-write. To eliminate
this effect, we propose a strategy that adapts to the access
pattern. More specifically, if the application is waiting for
a page, we reschedule that page such that it is flushed as
soon as possible. Even if the application is not waiting for
any page, we still prefer pages that triggered copy-on-write,
as this keeps the buffer free for “dark times” when frequent
copy-on-writes might quickly fill it up.

Leverage access pattern history to optimize flushing.
Scientific high performance computing applications are typ-

Unmodified computation

Page manager

Modified computation

Application processes

Local commit

Shared repository

malloc

ckpt

signal

malloc_protected
free_protectedfree

CHECKPOINT

Local disk

Compute node

Unmodified computation

Page manager

Modified computation

Application processes

malloc

ckpt

signal

malloc_protected
free_protectedfree

CHECKPOINT

Local disk

Compute node

Remote commit Remote commit Local commit

Figure 1: Distributed architecture that integrates our approach via the page manager (dark background).

ically iterative: each process first synchronizes with other
processes (typically by message passing), then performs a
complex computation on some in-memory data (which in-
volves an alteration of a significant part of it). Most com-
monly, after a predefined amount of iterations was com-
pleted, all processes are checkpointed.

Given this repetitive nature, processes tends to generate
highly similar access patterns between checkpoints. Thus,
we propose to leverage this fact to further enhance the abil-
ity to adapt to the access pattern. Since only first-time
writes to memory pages can introduce delays between con-
secutive checkpoint requests, we propose to record for all
such first time writes when they happened and under what
circumstances.

Although we could record the exact timestamp, for simpli-
fication reasons we consider that the access order is enough
to estimate the “when”. With respect to the circumstances,
we are interested in the type of interference that this ac-
cess caused to the asynchronous checkpointing process. This
translates to several possible scenarios: (1) a copy-on-write
was performed for the page; (2) the application had to wait
for the page to be flushed first (because no more copy-on-
write slots were available or because the page was in the pro-
cess of being written to storage); (3) the page was accessed
while the checkpointing was still in progress but it didn’t
trigger any copy-on-write or wait because it was flushed be-
fore; and finally (4) the page was accessed after the check-
pointing has completed.

We maintain this information for the whole duration be-
tween two consecutive checkpoint requests, which we will
herein refer to as epoch. Armed with this knowledge, we
aim to minimize the interference that the application and
the background checkpointing process experience. Based on
the assumption that page accesses exhibit a similar behavior
to that recorded in the previous epoch, we first commit to
storage preferentially those pages that have history of “bad
behavior” (i.e. caused waits or copy-on-writes) and only
then proceed to commit those pages that had a “good be-
havior”. Furthermore, when multiple pages exhibit a similar
behavior, we prefer the page that was accessed the earliest.

A detailed algorithmic description of how this works is
presented in Section 3.3. Note that for simplification rea-
sons, we describe here only the case when the epoch matches
the iterative behavior of the application (i.e. checkpoints
requested every N iterations). In order to deal with “un-
aligned”epochs, one potential solution is to maintain enough
past first-time writes to cover a full iteration, then use this

information to “align” the epoch to the iterative behavior
(e.g. based on its first few writes). However, providing such
a solution is outside the scope of this work.

3.2 Architecture
A simplified distributed architecture that integrates our

approach is depicted in Figure 1.
Each compute node runs the application processes, which

include either a modified or unmodified computation. In the
first case, the application directly controls what memory re-
gions are protected (using malloc protected and free protected).
In the second case, memory management is handled trans-
parently by capturing all malloc/calloc/realloc as well as free

calls.
All memory pages that correspond to the protected mem-

ory regions are monitored by the page manager, which is
the central actor of our approach and is responsible to im-
plement our adaptive asynchronous checkpointing approach.
The moment when to initiate the checkpointing is deter-
mined either explicitly by the application (which can directly
call the CHECKPOINT primitive) or by any other external
process (by sending a signal to the page manager, which
will then internally call the CHECKPOINT primitive).

The page manager is designed in a modular fashion such
that it is easy to plug in different storage backends where
the dirty pages can be committed. These can range from
POSIX-enabled filesystems (local file systems or parallel file
systems deployed remotely, e.g. PVFS [9]) to specialized
high-availability cloud repositories (such as Amazon S3 [5]).
Furthermore, it can easily complement dedicated checkpoint-
ing repositories designed for specific roles (such as virtual
disk snapshotting [28]).

Also note that although local storage is particularly at-
tractive as a place to store checkpoints (because it is much
faster and more scalable compared to parallel file systems
or other conventional remote storage options), it is prone
to failures and thus unreliable. However, there are sev-
eral options to overcome this issue, with data replication
on different nodes being the most straight-forward. More
cost-effective solutions based on erasure codes are also possi-
ble in order to reduce both performance overhead and stor-
age space requirements, as demonstrated by our previous
work [18].

3.3 Zoom on the page manager
The page manager consists of two independent modules

that run concurrently and compete for access to the mon-

itored memory pages: (1) a module that asynchronously
commits all dirty pages accumulated at the moment when a
checkpoint is requested (ASYNC COMMIT); and (2) a module
that traps all first writes during application runtime after the
checkpoint was requested (PROTECTED PAGE HANDLER).

The application can initiate a new checkpoint by calling
the CHECKPOINT primitive (Algorithm 1). Upon receipt
of this request, the page manager first checks if the previ-
ous checkpoint is still in progress (CheckpointInProgress=
true), waiting for it to complete if this is the case. Once the
previous checkpoint was successfully committed to storage,
it initializes three data structures used by the two modules
to synchronize: Dirty, which represents the set of all dirty
pages, accessed after the CHECKPOINT call, AT [p] which rep-
resents the type of access that was triggered by a page p in
Dirty and finally Index[p] which represents the order of p
in Dirty.

Algorithm 1 Initiate a new checkpoint

1: procedure CHECKPOINT

2: if CheckpointInProgress then
3: wait until CheckpointInProgress = false
4: end if
5: LastDirty ← Dirty

6: LastAT ← AT

7: LastIndex← Index

8: Dirty ← ∅
9: AccessOrder← 0
10: for all p ∈ Pages do
11: write protect p
12: AT [p]← UNTOUCHED
13: Index[p]← 0
14: end for
15: for all p ∈ LastDirty do
16: State[p]← PAGE SCHEDULED
17: end for
18: CheckpointInProgress← true
19: notify ASYNC COMMIT

20: end procedure

The type of access triggered by a page p can take one
of the following values: UNTOUCHED, which is the ini-
tial value and means the page was not yet accessed; COW,
which means p has triggered a copy-on-write; WAIT, which
means PROTECTED PAGE HANDLER had to wait until p was
committed; AVOIDED, which means p was accessed after
it was committed, but before the checkpointing process has
finished; and finally AFTER, which means p was accessed
after the checkpointing process has successfully completed.

Each of Dirty, AT and Index has a corresponding data
structure prefixed by Last, which has the same semantics as
the original except for the fact that it represents the statis-
tics of previous epoch rather than the current one. Finally, a
fourth data structure State[p] describes the state of p, which
can be one of the following values: PAGE PROCESSED,
which is the initial value and means p was already processed
by the checkpointing process (either already committed or
untouched); PAGE SCHEDULED, which means p is dirty
and needs to be committed (but this was not already done);
and finally PAGE INPROGRESS, which means p was locked
and is in the process of being committed.

Obviously, CHECKPOINT needs to reset the access type
of all pages to UNTOUHCED and then write protect them

in order to trap all future modifications. After resetting
Dirty, all pages that were modified since the last checkpoint
(now in LastDirty) will be marked as PAGE SCHEDULED.
Once this step is complete, ASYNC COMMIT can proceed to
commit the dirty pages.

Algorithm 2 Handle a write to a protected page

1: procedure PROTECTED PAGE HANDLER(p)
2: if State[p] = PAGE SCHEDULED ∧ |CowPage| <

Threshold then
3: CowPage[p]← copy of p
4: AT [p]← COW
5: else if State[p] = PAGE PROCESSED then
6: if CheckpointInProgress then
7: AT [p]← AVOIDED
8: else
9: AT [p]← AFTER
10: end if
11: else
12: WaitedPage← p

13: while State[p] 6= PAGE PROCESSED do
14: wait for notification from ASYNC COMMIT

15: end while
16: WaitedPage← nil
17: AT [p]← WAIT
18: end if
19: Dirty ← Dirty ∪ {p}
20: AccessOrder← AccessOrder + 1
21: Index[p]← AccessOrder

22: remove write protection from p

23: end procedure

In the mean time, any modification to a write protected
page pwill be trapped by PROTECTED PAGE HANDLER. This
process is detailed in Algorithm 2. More specifically, if p was
scheduled but not yet committed and there are enough copy-
on-write slots available (|CowPage| < Threshold), then a
new copy-on-write slot can be used. Otherwise, if p was al-
ready committed, nothing needs to be done except setting
its access type to AVOIDED or AFTER. Finally, the only
possibility left is that p is in progress or there are not enough
copy-on-write slots left. In this case, we need to wait until
p was committed. In order to avoid waiting as much as pos-
sible, a hint is created for ASYNC COMMIT, by assigning a
special marker WaitedPage to p. This marker will be used
by ASYNC COMMIT to maximize the priority of p (i.e. com-
mit it as soon as possible). Once p has been successfully
handled, it is added to the Dirty set, after which its access
order index is set and finally its write protection is removed.

The dirty pages are committed in an iterative fashion, as
detailed in Algorithm 3. As long as there are still dirty pages
left in LastDirty, ASYNC COMMIT selects one such page
p (using SELECT NEXT PAGE). If p resulted in a copy-on-
write, its copy is committed and the corresponding slot re-
leased. Otherwise, p is locked (i.e. PAGE INPROGRESS),
directly written to storage and then unlocked (i.e. marked
as PAGE PROCESSED). In either case, p is removed from
LastDirty and the next iteration is started.

The central aspect of this iterative process is how to select
the next page to be committed, which is detailed in Algo-
rithm 4. Obviously, ifWaitedPage 6= nil, thenWaitedPage

must be committed as soon as possible, in order to be able
to unblock PROTECTED PAGE HANDLER and thus enable the

Algorithm 3 Commit modified pages asynchronously to
storage

1: procedure ASYNC COMMIT

2: while true do
3: wait for notification from CHECKPOINT

4: while LastDirty 6= ∅ do
5: p← SELECT NEXT PAGE

6: if AT [p] = COW then
7: commit CowPage[p] to storage
8: release slot of p in CowPage

9: else
10: State[p]← PAGE INPROGRESS
11: commit p to storage
12: State[p]← PAGE PROCESSED
13: notify PROTECTED PAGE HANDLER

14: end if
15: LastDirty ← LastDirty \ {p}
16: end while
17: CheckpointInProgress← false
18: end while
19: end procedure

application to continue. Furthermore, if there are pages that
triggered copy-on-write, they will be preferentially commit-
ted in order to release copy-on-write slots as soon as possible.
If neither of these two cases applies, then a page is selected
based on the access pattern exhibited by the application be-
fore the checkpoint request, under the assumption that it
will reflect the future access pattern. More specifically, pref-
erence is given to the pages that were marked WAIT, then
those pages that were marked COW and finally those pages
that were marked AVOIDED. This way, the pages that could
have the potentially worst interference are committed first,
thus minimizing the chance of future interference. Pages
that are marked AFTER are given the least priority, as they
are likely to keep this status until the next checkpoint re-
quest and thus are not likely to generate interference. In
either case, if more than one page has the same access type,
preference is given to the page that was accessed the earliest
before the checkpoint request (i.e. smallest LastIndex).

Algorithm 4 Select next page to commit to storage

1: function SELECT NEXT PAGE

2: if WaitedPage ∈ LastDirty then
3: return WaitedPage

4: end if
5: if ∃p ∈ LastDirty | AT [p] = COW then
6: return p

7: end if
8: if ∃p ∈ LastDirty | LastAT [p] = WAIT then
9: return p | LastIndex[p] is minimal
10: end if
11: if ∃p ∈ LastDirty | LastAT [p] = COW then
12: return p | LastIndex[p] is minimal
13: end if
14: if ∃p ∈ LastDirty | LastAT [p] = AVOIDED then
15: return p | LastIndex[p] is minimal
16: end if
17: return any remaining p ∈ LastDirty

18: end function

3.4 Implementation
We implemented AI-Ckpt in form of two libraries. The

first library implements the page manager, while exposing
the CHECKPOINT primitive to the application. It also ex-
poses two specific memory allocation/deallocation routines:
malloc protected and free protected. These routines can be used
to control directly at application-level what memory con-
tents needs to be checkpointed.

For the case when transparency is desired, we implemented
a second library that traps all dynamic memory allocations
performed by the application and automatically reports all
involved pages to the page manager. To this end, we built
our own custom memory allocator on top of jemalloc [15], a
scalable high performance malloc implementation designed
to efficiently support concurrent allocations. The applica-
tion itself needs not necessarily be linked against this sec-
ond library, as it is enough to preload the library in order to
replace the standard system malloc implementation. This is
particularly useful when the application

The page manager was implemented from scratch using
the Boost C++ collection of libraries, which introduces sev-
eral optimized implementations of hash tables and balanced
trees that we used to adopt the algorithms presented in Sec-
tion 3.3 with minimal overhead.

In order to trap writes to memory, we rely on the mprotect

system call to mark specific pages as read only. If the ap-
plication attempts to write to such pages, the kernel will
trigger a SIGSEGV signal, which we trap using a custom sig-
nal handler that implements PROTECTED PAGE HANDLER

(Algorithm 2). This mechanism involves certain non-trivial
aspects that require closer consideration. In particular, if
the application passes read-only memory regions to certain
system calls that are supposed to write to the memory (for
example read), these system calls will not trigger a SIGSEGV

but rather fail. To circumvent this issue, we trap such sys-
tem calls and artificially trigger the necessary SIGSEGVs be-
fore launching the system call itself.

4. EVALUATION
After briefly describing the experimental setup and method-

ology, we evaluate in this section our approach both in syn-
thetic and real life settings.

4.1 Experimental setup
The experiments were performed on Grid’5000, an ex-

perimental testbed for distributed computing that federates
nine sites in France, as well as Shamrock, an experimental
platform of the Exascale Systems group of IBM Research in
Dublin, Ireland.

For the Grid’5000 experiments, we used 42 nodes of the
Rennes site, each of which is equipped with a quadcore In-
tel Xeon X5570 x86 64 CPU, local disk storage of 500 GB
(access speed ≃55 MB/s using SATA II ahci driver) and
24 GB of RAM. The nodes are interconnected with Giga-
bit Ethernet (measured 117.5 MB/s for TCP sockets with
MTU = 1500 B with a latency of ≃0.1 ms). Each node is
powered by recently updated Debian Sid distribution where
OpenMPI 1.4.3 was installed and set up. In this setting, we
store the checkpoints in a “conventional” fashion by using
a parallel file system. To this end, we reserve 10 nodes to
act at storage elements and deploy the PVFSv2 [9] parallel
file system on them. The rest of 32 nodes are used to run

our MPI applications and have access to the PVFS deploy-
ment through the POSIX interface made available through
the PVFS FUSE module.

The Shamrock testbed consists of 160 nodes intercon-
nected with Gigabit Ethernet, each of which features an Intel
Xeon X5670 CPU (6 cores, 12 hardware threads), HDD local
storage of 1 TB and 128 GB of RAM. For the purpose of this
work, we used a reservation of 28 nodes. Each node runs the
Red Hat 6.2 Enterprise Linux distribution, while the MPI
library installed is MPICH2 1.4.1. In this case, all nodes are
reserved for running the applications, while the checkpoints
are written to local storage. This setting has a potential
for higher I/O scalability (as discussed in Section 3.2) and
thus pushes our approach to the limits, as there are fewer
opportunities to take of long I/O delays.

For the rest of this paper, we will refer to the two experi-
mental setups simply as Grid’5000 and, respectively, Sham-
rock. In both setups, the memory page size used throughout
our experiments is fixed at 4 KB, the default of the operating
system.

4.2 Methodology
We compare three approaches throughout our evaluation:

Asynchronous incremental checkpointing using our ap-
proach.

In this setting we use AI-Ckpt to capture all dynamic
memory allocations performed by the application and treat
all CHECKPOINT requests according to the strategy presented
in Section 3.3. We denote this setting our−approach for the
rest of the paper.

Asynchronous incremental checkpointing without adap-
tation to access pattern.

We compare our approach with the case when the access
pattern generated before the CHECKPOINT request is not
taken into consideration while dumping the checkpointing
data to storage. More specifically, this setting is similar to
the previous one (i.e. all memory write accesses are trapped
for the purpose of building the set of dirty pages that needs
to be dumped to storage), except for the fact that the dirty
pages are simply dumped in ascending order of their ad-
dress. For the rest of this paper, we refer to this setting as
async−no−pattern.

Synchronous incremental checkpointing.
The third setting we compare our approach with is a

synchronous checkpointing approach that blocks inside the
CHECKPOINT primitive until all checkpointing data has been
successfully dumped to storage. In this setting, dirty page
tracking is still used for the purpose of identifying the in-
cremental changes since the last checkpoint, however this
mechanism is greatly simplified due to the fact that the ap-
plication and the checkpointing process do not compete for
the dirty pages. For the rest of this paper, we refer to this
setting as sync.

These approaches are compared based on the following
metrics:

• Impact on application performance: is the performance
degradation perceived by the application during check-
pointing, compared to the case when no checkpointing
is performed. For the purpose of this work, we are in-

terested in the impact on the total runtime of various
memory-intensive benchmarking scenarios and a real
HPC scientific application.

• Checkpointing time: is the time elapsed between the
moment when the CHECKPOINT primitive has been
called and all dirty pages have been successfully com-
mitted to storage. For sync, this corresponds to the du-
ration of time during which the application blocked in
the CHECKPOINT call. For the other two approaches,
the duration is directly reported by AI-Ckpt.

• Access type statistics: we are interested in statistics
about the types of accesses that were triggered by the
page faults, as these can explain the various observ-
able differences in checkpointing time and performance
overhead. In particular, it is desirable to have as few as
possible WAITs, as they are the main source of delays
for the other two metrics.

4.3 Checkpointing performance of memory-
intensive benchmarks

Our first series of experiments aims to gather insight into
how the memory access pattern can influence asynchronous
checkpointing. To this end, we have developed a memory-
intensive benchmark that allocates a large memory region
and then runs a number of iterations, each of which touches
the full memory content byte-by-byte in a specified order.
Each time a fixed number of iterations has been completed,
the CHECKPOINT primitive is called. For the purpose of
this work, we fixed the number of iterations to 39, with a
checkpoint request issued every 10 iterations (for a total of
3 checkpoints, each of which is overlapping with the bench-
mark and competes for memory accesses).

In order to understand how the order of memory writes
impacts the checkpointing performance, we implemented three
access patterns: Ascending (i.e. the memory region is ac-
cessed page-by-page from the beginning towards the end),
Random (i.e. a random permutation of the indexes of all
pages is generated and used as a fixed access order for all
iterations) and finally Descending (i.e. the memory region
is accessed page-by-page from the end towards the begin-
ning). For each page, a simple transformation is performed:
all bytes are incremented by one.

Each experiment consists in running our benchmark on
one of the Grid’5000 nodes, while recording the completion
time and statistics about the access types triggered by the
pages. The size of the memory region is fixed at 256 MB,
while the size of the copy-on-write buffer is fixed at 16 MB.

The increase in execution time for the benchmark, com-
pared to the baseline (i.e when no checkpointing is per-
formed), is illustrated in Figure 2(a). As expected, sync has
the highest overhead of all three approaches, which is main-
tained at constant level regardless of access pattern. Com-
paring our approach to async−no−pattern reveals only small
differences for the Ascending access pattern, which is un-
derstandable considering the fact that the actual order in
which the pages are accessed matches the static order in
which the pages are selected by async−no−pattern. However,
when this is not the case any longer (i.e. for Random and
Descending), significant differences start to appear, reaching
as high as 33% and respectively 50% lower overhead in favor
of our approach. Compared to sync, our approach exhibits up
to 72% lower overhead.

 0

 2

 4

 6

 8

 10

 12

 14

Ascending Random Descending

In
c
re

a
s
e

 i
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Access pattern

our-approach
async-no-pattern

sync

(a) Increase in execution time compared
to baseline (lower is better)

 0

 5000

 10000

 15000

 20000

 25000

 30000

Ascending Random Descending

#
 o

f
p

a
g

e
s
 t

h
a

t
tr

ig
g

e
re

d
 W

A
IT

Access pattern

our-approach async-no-pattern

(b) # of pages (out of a total of 65536)
that triggered WAIT (lower is better)

 0

 1000

 2000

 3000

 4000

 5000

Ascending Random Descending

#
 o

f
p

a
g

e
s
 t

h
a

t
tr

ig
g

e
re

d
 A

V
O

ID
E

D

Access pattern

our-approach async-no-pattern

(c) # of pages (out of a total of 65536)
that triggered AVOIDED (higher is bet-
ter)

Figure 2: Performance results and statistics about access types triggered by pages for a memory-intensive
benchmark

In order to understand these findings better, we illus-
trate statistics about the types of accesses triggered by the
pages during the runtime of the benchmark. All statis-
tics are measured between two consecutive checkpoints and
the average for the three checkpoints is reported. Since
the whole memory region is changed between two consec-
utive checkpoints, the total number of pages that is flushed
to storage remains constant at 65536 for all three check-
points. As can be noticed, the strategy used by our approach

to adapt to the access pattern brings clear advantages over
async−no−pattern, especially for Random and Descending.
For these last two access patterns, our approach waits on al-
most 50% less pages (Figure 2(b)), while managing to avoid
both waits and copy-on-writes in a proportion of more than
4x the level of async−no−pattern (Figure 2(c)).

4.4 Case study: Checkpointing performance
of CM1

Our next series of experiments illustrates the behavior of
our proposal in real life. For this purpose we have cho-
sen CM1, a three-dimensional, non-hydrostatic, non-linear,
time-dependent numerical model suitable for idealized stud-
ies of atmospheric phenomena. This application is used to
study small-scale processes that occur in the atmosphere of
the Earth, such as hurricanes.

CM1 is representative of a large class of HPC stencil ap-
plications that model a phenomenon in time which can be
described by a spatial domain that holds a fixed set of pa-
rameters in each point. The problem is solved iteratively
in a distributed fashion by splitting the spatial domain into
subdomains, each of which is managed by a dedicated MPI
process. At each iteration, the MPI processes calculate the
values for all points of their subdomain, then exchange the
values at the border of their subdomains with each other.
After a certain number of iterations have been successfully
completed, each MPI process triggers a checkpoint, then
followed by a barrier to synchronize with all other MPI pro-
cesses and finally it resumes execution.

Since CM1 is written in Fortran, it was not possible to di-
rectly use malloc protected and free protected. However, thanks
to our custom memory allocator we were able to intercept all
dynamic memory allocations triggered by the allocatable data
structures, which cover all checkpointing data that needs to

be saved. In order to expose the CHECKPOINT call, we im-
plemented a minimalist wrapper library for Fortran. Using
this library, we replaced the hand-optimized synchronous
checkpointing implemented in CM1 with a simple call to
CHECKPOINT.

For the purpose of this work, we have chosen as input data
a 3D hurricane that is a version of the Bryan and Rotunno
simulations [8]. We run the simulation of this 3D hurricane
on Grid’5000, with each MPI process deployed on a ded-
icated compute node. The checkpointing frequency is set
at 50 seconds of simulated time, which for this configura-
tion results in approx. 400 MB worth of memory content
that is changed, out of a total of 728 MB. We fix the total
simulation time to 180s, which is enough to trigger three
checkpoints.

We aim to study two aspects: (1) how well our approach
scales compared to the other two approaches and (2) how the
size of the copy-on-write buffer impacts the performance of
our approach compared to the other two approaches. These
aspects are detailed below.

4.4.1 Weak scalability

Our first experiment studies the weak scalability of our
approach by solving the same problem using a different pre-
cision, in such way that the size of the subdomain solved
by each process remains constant at 200x200. The exper-
iment consists in deploying an increasing number of pro-
cesses, starting from one and going up to 32. We let the
application run until completion and record the increase in
execution time (compared to the baseline, i.e. an execu-
tion with checkpointing deactivated) as well as the average
checkpointing time for the second and third checkpoint (we
omit the first checkpoint as it is a full checkpoint). The
copy-on-write buffer size is fixed at 16 MB.

Results are shown in Figure 3. With respect to check-
pointing time (Figure 3(a)), a sharp increase can be observed
in the case of sync. This effect is caused by two factors: (1)
an increasing I/O pressure is generated on the storage nodes
that host PVFS as the number MPI processes increases; and
(2) the small system page size causes multiple concurrent
small writes to PVFS, which increases the number of mul-
tiple connections that the storage servers have to handle
in parallel, thus the high overhead. On the other hand,
our approach and async−no−pattern are much more scalable

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35

A
v
g
.
c
h
e
c
k
p
o
in

ti
n
g
 t
im

e
 (

s
)

Number of processes

our approach
async-no-pattern

sync

(a) Avg. checkpointing time (lower is better)

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 5 10 15 20 25 30 35

In
c
re

a
s
e
 i
n
 a

p
p
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of processes

our approach
async-no-pattern

sync

(b) Increase in execution time compared to baseline (lower
is better)

Figure 3: Weak scalability of CM1: 400 MB/728 MB worth of incremental memory changes/process, 1
process/node

with respect to checkpointing time. Although in absolute
terms the checkpointing time is higher, this is not surprising
considering that the checkpointing runs in parallel with the
application, and thus has to compete with it for network
bandwidth. Furthermore, this also explains the much better
scalability: instead of concentrated bursts of I/O as gener-
ated by sync, both asynchronous approaches distribute the
I/O more evenly between checkpoints, thus reducing the I/O
pressure on the storage nodes. Finally we observe that our
approach marginally reduces the checkpointing time com-
pared to async−no−pattern, which is a consequence of the
interference between the network traffic generated by the
application and the network traffic generated by the check-
pointing.

The benefit of access pattern adaptation becomes clearly
visible in the increase of execution time compared to the
baseline (Figure 3(a)). In this case, our approach avoids wait-
ing for around 6000 less pages/checkpoint when compared to
async−no−pattern. This directly reflects on the increase in ex-
ecution time: compared to our approach, async−no−pattern is
almost 33% slower when considering the extreme of 32 pro-
cesses. Since sync has to wait for all pages to be committed,
it is not surprising that it exhibits the worst performance:
compared to our approach, it is almost 67% slower.

4.4.2 Impact of copy-on-write buffer size on check-
pointing performance

Our next experiment studies the impact of copy-on-write
buffer size on the performance of checkpointing. Like in the
previous setting, the size of the subdomain solved by each
process remains constant at 200x200, however, this time we
fix the size of the problem at the maximum of 32 processes
and range the buffer size from 0 MB to 256 MB. For each
buffer size, we let the application run until completion and
record the execution time and statistics about the number
of pages that were waited for.

Results are shown in Figure 4(a). We illustrate the per-
centile increase in checkpointing overhead for both our approach

and async−no−pattern when compared to sync (that is, the

difference in completion time between the asynchronous ap-
proach and baseline is divided by the difference in comple-
tion time between sync and baseline, after which it is sub-
tracted from one and multiplied by one hundred).

As can be observed, when the copy-on-write buffer size
is 0 (i.e. copy-on-write is deactivated), both asynchronous
approaches perform very closely and exhibit a rather small
benefit over synchronous checkpointing, barely reaching 5%.
We traced back this result to the fact that of all pages
that were committed, most of them had to be waited for.
Thus, it seems the lack of a copy-on-write buffer limits the
ability of our approach to keep up in sync with the rate
of memory changes and/or survive deviations from the ac-
cess pattern of the previous epoch. However, when grad-
ually increasing the copy-on-write buffer size, a higher re-
duction in checkpointing overhead is noticeable for both
asynchronous approaches. This reduction is especially dra-
matic for our approach, more than doubling at each step and
keeping way ahead over async−no−pattern, which starts to
see a significant reduction only beginning with 16 MB. As
the copy-on-write buffer gets larger, the difference between
our−approach and async−no−pattern gradually gets smaller,
eventually evening out at 256 MB when the number of copy-
on-write slots is high enough to avoid all page waits. Ac-
cording to these observations, we conclude that adaptation
to access pattern has an advantage over no adaptation in
all cases, with the most dramatic differences occurring for
small copy-on-write buffer sizes, which gives our approach
the upper edge.

4.5 Case study: Checkpointing performance
of MILC

Our second case study focuses on another high perfor-
mance computing application: MIMD Lattice Computation
(MILC). This application is particularly useful in the field of
quantum chromodynamics (QCD), which describes the in-
teractions of the quarks and gluons that form particles such
as protons, neutrons and mesons.

MILC treats continuum space-time as a four-dimensional

 0

 20

 40

 60

 80

 100

0MB 1MB 4MB 16MB 64MB 256MB

R
e
d
u
c
ti
o
n
 i
n
 c

h
e
c
k
p
o
in

ti
n
g
 o

v
e
rh

e
a
d
 (

%
)

Copy-on-write buffer size

async-no-pattern
our-approach

(a) CM1: 32 processes (higher is better)

 0

 20

 40

 60

 80

 100

0MB 1MB 4MB 16MB 64MB 256MB

R
e
d
u
c
ti
o
n
 i
n
 c

h
e
c
k
p
o
in

ti
n
g
 o

v
e
rh

e
a
d
 (

%
)

Copy-on-write buffer size

async-no-pattern
our-approach

(b) MILC: 280 processes (higher is better)

Figure 4: Impact of copy-on-write buffer size on the performance of checkpointing: reduction in overhead
compared to sync

hypercube lattice that is called lattice QCD. In this dis-
cretization, lattice sites carry fields representing quarks and
the links between lattice sites carry gluon fields. Each link
between nearest neighbors in this lattice is associated with
a 3-dimensional SU(3) complex matrix for a given field.
The fields evolve using an iterative procedure (configuration
generation phase), and after a sufficient number of steps
the system has changed enough that the new configura-
tion is archived for further analysis. Many different physics
projects can use this configuration. To speed-up this pro-
cess, the lattice is split into subdomains and distributed
among MPI processes.

For the purpose of this work, we adapted the NERSC-6
procurement version of the MILC benchmark [1] in order to
use AI-Ckpt. To minimize modifications to the benchmark,
we use our custom memory allocator to transparently in-
tercept all memory allocations. Our only modification was
to add a call to the CHECKPOINT primitive at the end of
the computation of each trajectory. We run the bench-
mark on Shamrock, with each node running 10 MPI pro-
cesses (leaving two spare I/O cores). We fix the number of
trajectories to 3, which corresponds to three evenly spaced
checkpoints throughout the runtime. In this scenario, each
process touches approx. 830 MB out of a total allocated
memory of 868 MB.

As with CM1, we are interested in both the scalability of
our approach compared to the other two approaches and the
impact of the copy-on-write buffer size.

4.5.1 Weak scalability

This studies the weak scalability of our approach by solv-
ing an increasingly larger size of the problem in such way
that each process solves a fixed subdomain of the lattice
that is 20x32x32x18 large. We deploy an increasing number
of processes starting from 10 (1 node) up to 280 (28 nodes).
We record the average checkpointing time and the increase
in execution time (compared to the baseline, i.e. an exe-
cution with checkpointing deactivated). The copy-on-write
buffer is deactivated for this scenario.

Unlike the case of CM1, we used local storage in order

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

In
c
re

a
s
e

 i
n

 a
p

p
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of processes

our approach
async-no-pattern

sync

Figure 5: Weak scalability of MILC with
830 MB/866 MB worth of incremental memory
changes/process, 10 processes/node: increase in ex-
ecution time compared to baseline (lower is better)

to persist the modified memory pages of the checkpoints.
This enables better overall I/O scalability considering the
much larger scale of the problem (i.e. 20 times more check-
pointing data compared to CM1) and better reflects more
recent trends. On the other hand, it pushes our approach
to the limits due to less I/O contention and more homoge-
neous I/O delays that give sync better scalability and thus
better overall chances to compare more favourably to the
two asynchronous approaches.

Under these circumstances, for all three approaches the
average checkpointing time remains almost constant and
fluctuates around 210s ± 10s, with a slight advantage for
sync due to the fact that no overlapping occurs with the
application runtime. This shows that the impact of I/O dis-
tribution and contention is of less importance as in the case
of CM1.

To understand how the access pattern adaptation man-

ages to reduce the checkpointing overhead and improve the
time-to-completion for the application, we depict the in-
crease of execution time compared to the baseline in Fig-
ure 5. As can be observed, our approach outperforms sync

by more than 25%, which is more than double the improve-
ment experienced by async−no−pattern (11%). This result
is highly significant considering the use of local storage: it
shows that even when I/O delays are short and do not in-
crease with larger scale, access pattern adaptation main-
tains its benefits compared to sync and is more scalable than
async−no−pattern, whose advantage over sync experiences an
overall decreasing trend.

4.5.2 Impact of copy-on-write buffer size on check-
pointing performance

Similar to the case of CM1, we study the impact of copy-
on-write buffer size on the performance of checkpointing for
MILC: we fix the problem size to its maximal extent (280
processes) but vary the copy-on-write buffer size.

Results are shown in Figure 4(b). Again, we illustrate
the percentile increase in checkpointing overhead for both
our−approach and async−no−pattern when compared to sync.
Unlike the case of CM1, when the copy-on-write buffer size
is 0 (i.e. copy-on-write is deactivated), a large benefit of
our−approach over async−no−pattern is already visible. Thus,
in this case the rate at which memory is changed and/or
deviations from the access pattern of the previous epoch are
much smaller. When gradually increasing the copy-on-write
buffer size, both approaches experience a higher reduction in
checkpointing overhead. As can be observed, our−approach

constantly outperforms async−no−pattern by more than 100%
up to 64 MB, when the difference between the two ap-
proaches gradually gets smaller and evens out at 256 MB.
As in the case of CM1, adaptation to access pattern always
outperforms no adaptation, with the largest differences ob-
servable for for small copy-on-write buffer sizes.

5. CONCLUSIONS AND FUTURE WORK
Checkpoint-Restart (CR) is a key method to provide fault

tolerance for large-scale scientific applications. With in-
creasing scale, CR faces an additional challenge: besides the
implicit goal of minimizing the performance overhead dur-
ing fault-free execution, it has to operate with limited extra
available memory besides the one allocated by the applica-
tion for computational needs.

In this paper, we have proposed AI-Ckpt, a runtime envi-
ronment that enables asynchronous incremental checkpoint-
ing. Unlike other state-of-art CR approaches, our proposal is
specifically optimized to both adapt to the current memory
access pattern and learn from the previous access pattern in
order to flush dirty pages during background checkpointing
with minimal impact on the running application.

We demonstrated the benefits of our approach through ex-
periments that involve dozens of nodes and hundreds of pro-
cesses, using both benchmarks and real applications. Com-
pared to naive asynchronous incremental checkpointing, we
show up to 30% less checkpointing performance overhead in
the real world, which grows up to 60% when compared to
synchronous checkpointing. All these benefits are achievable
for small copy-on-write buffers that represent less than 5%
of the total application memory.

Overall, we conclude that leveraging the current and past
memory access patterns during asynchronous checkpointing

can significantly lower the overhead on application perfor-
mance, especially for those that exhibit an iterative nature
and generate repetitive memory access patterns. This idea
can be further enhanced with small copy-on-write buffers to
better handle unexpected deviations from the access pattern
between consecutive checkpoints and thus further reduce the
overhead of asynchronous checkpointing. Although this ef-
fect is naturally present even when there is no awareness of
access pattern, much larger overhead reductions are possible
at much smaller copy-on-write buffer sizes when leveraging
the access pattern. This is a double-win scenario: the appli-
cation both finishes faster and consumes less memory.

Based on these results, we plan to further explore how to
leverage adaptation to the access pattern in the context of
CR. In particular, for simplification reasons we scheduled the
flushing of dirty pages based on access order, without taking
into account the temporal aspect. Thus, one interesting di-
rection to explore is whether introducing timestamps makes
room for further optimizations.

Acknowledgments

This work was supported in part by the Joint Laboratory
for Petascale Computing, an initiative of INRIA, UIUC,
NCSA and Argonne National Laboratory. The experiments
presented in this paper were carried out using the Sham-
rock cluster of IBM Research, Ireland and the Grid’5000/
ALADDIN-G5K experimental testbed, an initiative of the
French Ministry of Research through the ACI GRID incen-
tive action, INRIA, CNRS and RENATER and other con-
tributing partners (see http://www.grid5000.fr/).

6. REFERENCES

[1] Nersc 6 procurement benchmark.
http://www.nersc.org.

[2] Top 500 supercomputing sites. http://top500.org.

[3] DOE Exascale Initiative Technical Roadmap.
Technical report, US Department of Energy, 2009.

[4] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira.
Adaptive incremental checkpointing for massively
parallel systems. In ICS ’04: Proceedings of the 18th
Annual International Conference on Supercomputing,
pages 277–286, St. Malo, France, 2004. ACM.

[5] Amazon Simple Storage Service (S3).
http://aws.amazon.com/s3/.

[6] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch,
F. Cappello, N. Maruyama, and S. Matsuoka. FTI:
High Performance Fault Tolerance Interface for
Hybrid Systems. In SC ’11: Proceedings of 24th
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
32:1–32:32, Seattle, USA, 2011. ACM.

[7] R. Brightwell, K. Ferreira, and R. Riesen. Transparent
redundant computing with mpi. In EuroMPI’10:
Proceedings of the 17th European MPI user’s group
meeting conference on recent advances in the message
passing interface, pages 208–218, Stuttgart, Germany,
2010.

[8] G. H. Bryan and R. Rotunno. The maximum intensity
of tropical cyclones in axisymmetric numerical model
simulations. Journal of the American Meteorological
Society, 137:1770–1789, 2009.

[9] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.
PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, USA, 2000.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI’05: Proceedings of the
2nd Symposium on Networked Systems Design &
Implementation, pages 273–286, Boston, USA, 2005.

[11] P. J. Denning. Working sets past and present. IEEE
Trans. Softw. Eng., 6(1):64–84, Jan. 1980.

[12] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi.
Hybrid checkpointing using emerging nonvolatile
memories for future exascale systems. ACM Trans.
Archit. Code Optim., 8(2):6:1–6:29, June 2011.

[13] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and
L. Orf. Damaris: How to Efficiently Leverage
Multicore Parallelism to Achieve Scalable, Jitter-free
I/O. In CLUSTER ’12 - Proceedings of the 2012 IEEE
International Conference on Cluster Computing,
Beijing, China, 2012.

[14] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34:375–408, September 2002.

[15] J. Evans. A scalable concurrent malloc(3)
implementation for FreeBSD. In Proceedings of
BSDCan 2006, Ottawa, Canada, 2006.

[16] K. B. Ferreira, R. Riesen, R. Brighwell, P. Bridges,
and D. Arnold. libhashckpt: hash-based incremental
checkpointing using gpu’s. In EuroMPI’11:
Proceedings of the 18th European MPI Users’ Group
Conference on Recent Advances in the Message
Passing Interface, pages 272–281, Santorini, Greece,
2011. Springer-Verlag.

[17] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and
K. Davis. Transparent, incremental checkpointing at
kernel level: a foundation for fault tolerance for
parallel computers. In SC ’05: Proc of 18th
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
9:1–9:14, Seattle, USA, 2005.

[18] L. B. Gomez, B. Nicolae, N. Maruyama, F. Cappello,
and S. Matsuoka. Scalable Reed-Solomon-based
Reliable Local Storage for HPC Applications on IaaS
Clouds. In Euro-Par ’12: 18th International Euro-Par
Conference on Parallel Processing, pages 313–324,
Rhodes, Greece, 2012.

[19] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the influence of system noise on
large-scale applications by simulation. In SC ’10:
Proceedings of the 23rd ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, New
Orleans, USA, 2010.

[20] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman.
Optimized pre-copy live migration for memory
intensive applications. In SC ’11: 24th International
Conference for High Performance Computing,
Networking, Storage and Analysis, pages 40:1–40:11,
Seattle, USA, 2011.

[21] W. M. Jones, J. T. Daly, and N. DeBardeleben.

Application Monitoring and Checkpointing in HPC :
Looking Towards Exascale Systems. In ACM-SE ’12:
Proceedings of the 50th Annual Southeast Regional
Conference, pages 262–267, Tuscaloosa, USA, 2012.

[22] P. Kogge, K. Bergman, S. Borkar, D. Campbell,
W. Carlson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli,
S. Scott, A. Snavely, T. Sterling, W. Stanley, and
K. Yelick. ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems. Technical
report, DARPA, 2008.

[23] D. Manivannan, Q. Jiang, J. Yang, and M. Singhal. A
quasi-synchronous checkpointing algorithm that
prevents contention for stable storage. Inf. Sci.,
178(15):3109–3116, Aug. 2008.

[24] P. McGrath and B. Tangney. Scrabble: A distributed
application with an emphasis on continuity. Softw.
Eng. J., 5(3):160–164, July 1990.

[25] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d.
Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In SC ’10:
Proceedings of the 23rd International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–11, New Orleans, USA, 2010.

[26] B. Nicolae. On the Benefits of Transparent
Compression for Cost-Effective Cloud Data Storage.
Transactions on Large-Scale Data- and
Knowledge-Centered Systems, 3:167–184, 2011.

[27] B. Nicolae. Towards Scalable Checkpoint Restart: A
Collective Inline Memory Contents Deduplication
Proposal. In IPDPS ’13: The 27th IEEE International
Parallel and Distributed Processing Symposium, pages
1–10, Boston, USA, 2013.

[28] B. Nicolae and F. Cappello. BlobCR: Efficient
Checkpoint-Restart for HPC Applications on IaaS
Clouds using Virtual Disk Image Snapshots. In SC
’11: 24th International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 34:1–34:12, Seattle, USA, 2011.

[29] B. Nicolae and F. Cappello. A Hybrid Local Storage
Transfer Scheme for Live Migration of I/O Intensive
Workloads. In HPDC ’12: 21th International ACM
Symposium on High-Performance Parallel and
Distributed Computing, pages 85–96, Delft, The
Netherlands, 2012.

[30] S. Rajagopalan, B. Cully, R. O’Connor, and
A. Warfield. SecondSite: Disaster Tolerance as a
Service. In VEE ’12: Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution
Environments, pages 97–108, London, UK, 2012.
ACM.

[31] M. Vasavada, F. Mueller, P. H. Hargrove, and
E. Roman. Comparing different approaches for
incremental checkpointing: The showdown. In
Linux’11: The 13th Annual Linux Symposium, pages
69–79, 2011.

[32] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott.
Hybrid Checkpointing for MPI Jobs in HPC
Environments. In ICPADS ’10: Proc. of the 16th
International Conference on Parallel and Distributed
Systems, pages 524–533, Shanghai, China, 2010.

