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Abstract

We consider the problem of online linear regression on arbitrary deterministic sequences when the

ambient dimension d can be much larger than the number of time rounds T . We introduce the notion

of sparsity regret bound, which is a deterministic online counterpart of recent risk bounds derived in

the stochastic setting under a sparsity scenario. We prove such regret bounds for an online-learning

algorithm called SeqSEW and based on exponential weighting and data-driven truncation. In a

second part we apply a parameter-free version of this algorithm to the stochastic setting (regression

model with random design). This yields risk bounds of the same flavor as in Dalalyan and Tsybakov

(2012a) but which solve two questions left open therein. In particular our risk bounds are adaptive

(up to a logarithmic factor) to the unknown variance of the noise if the latter is Gaussian. We also

address the regression model with fixed design.

Keywords: sparsity, online linear regression, individual sequences, adaptive regret bounds

1. Introduction

Sparsity has been extensively studied in the stochastic setting over the past decade. This notion is

key to address statistical problems that are high-dimensional, that is, where the number of unknown

parameters is of the same order or even much larger than the number of observations. This is

the case in many contemporary applications such as computational biology (e.g., analysis of DNA

sequences), collaborative filtering (e.g., Netflix, Amazon), satellite and hyperspectral imaging, and

high-dimensional econometrics (e.g., cross-country growth regression problems).

A key message about sparsity is that, although high-dimensional statistical inference is impossi-

ble in general (i.e., without further assumptions), it becomes statistically feasible if among the many

unknown parameters, only few of them are non-zero. Such a situation is called a sparsity scenario

and has been the focus of many theoretical, computational, and practical works over the past decade

in the stochastic setting. On the theoretical side, most sparsity-related risk bounds take the form of

the so-called sparsity oracle inequalities, that is, risk bounds expressed in terms of the number of

non-zero coordinates of the oracle vector. As of now, such theoretical guarantees have only been

proved under stochastic assumptions.1

∗. A shorter version appeared in the proceedings of COLT 2011 (see Gerchinovitz 2011).

†. This research was carried out within the INRIA project CLASSIC hosted by École Normale Supérieure and CNRS.

1. One could object that most high-probability risk bounds derived for ℓ1-regularization methods are in fact deterministic

inequalities that hold true whenever the noise vector ε belong to some set S (see, e.g., Bickel et al. 2009). However,

c©2013 Sébastien Gerchinovitz.



GERCHINOVITZ

In this paper we address the prediction possibilities under a sparsity scenario in both determin-

istic and stochastic settings. We first prove that theoretical guarantees similar to sparsity oracle

inequalities can be obtained in a deterministic online setting, namely, online linear regression on

individual sequences. The newly obtained deterministic prediction guarantees are called sparsity

regret bounds. We prove such bounds for an online-learning algorithm which, in its most sophisti-

cated version, is fully automatic in the sense that no preliminary knowledge is needed for the choice

of its tuning parameters. In the second part of this paper, we apply our sparsity regret bounds—of

deterministic nature—to the stochastic setting (regression model with random design). One of our

key results is that, thanks to our online tuning techniques, these deterministic bounds imply sparsity

oracle inequalities that are adaptive to the unknown variance of the noise (up to logarithmic fac-

tors) when the latter is Gaussian. In particular, this solves an open question raised by Dalalyan and

Tsybakov (2012a).

In the next paragraphs, we introduce our main setting and motivate the notion of sparsity regret

bound from an online-learning viewpoint. We then detail our main contributions with respect to the

statistical literature and the machine-learning literature.

1.1 Introduction of a Deterministic Counterpart of Sparsity Oracle Inequalities

We consider the problem of online linear regression on arbitrary deterministic sequences. A fore-

caster has to predict in a sequential fashion the values yt ∈ R of an unknown sequence of observa-

tions given some input data xt ∈ X and some base forecasters ϕ j : X →R, 1 6 j 6 d, on the basis of

which he outputs a prediction ŷt ∈ R. The quality of the predictions is assessed by the square loss.

The goal of the forecaster is to predict almost as well as the best linear forecaster u ·ϕ , ∑d
j=1 u jϕ j,

where u∈R
d, that is, to satisfy, uniformly over all individual sequences (xt ,yt)16t6T , a regret bound

of the form
T

∑
t=1

(
yt − ŷt

)2
6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+∆T,d(u)

}

for some regret term ∆T,d(u) that should be as small as possible and, in particular, sublinear in T .

(For the sake of introduction, we omit the dependencies of ∆T,d(u) on the amplitudes max16t6T |yt |
and max16t6T max16 j6d |ϕ j(xt)|.)

In this setting the version of the sequential ridge regression forecaster studied by Azoury and

Warmuth (2001) and Vovk (2001) can be tuned to have a regret ∆T,d(u) of order at most d ln
(
T ‖u‖2

2

)
.

When the ambient dimension d is much larger than the number of time rounds T , the latter regret

bound may unfortunately be larger than T and is thus somehow trivial. Since the regret bound

d lnT is optimal in a certain sense (see, e.g., the lower bound of Vovk 2001, Theorem 2), additional

assumptions are needed to get interesting theoretical guarantees.

A natural assumption, which has already been extensively studied in the stochastic setting, is

that there is a sparse vector u∗ (i.e., with s ≪ T/(ln T ) non-zero coefficients) such that the linear

combination u∗ ·ϕ has a small cumulative square loss. If the forecaster knew in advance the support

J(u∗), { j : u∗j 6= 0} of u∗, he could apply the same forecaster as above but only to the s-dimensional

linear subspace
{

u ∈ R
d : ∀ j /∈ J(u∗),u j = 0

}
. The regret bound of this “oracle” would be roughly

of order s lnT and thus sublinear in T . Under this sparsity scenario, a sublinear regret thus seems

the fact that ε ∈ S with high-probability is only guaranteed via concentration arguments, so it is a consequence of the

underlying statistical assumptions.
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SPARSITY REGRET BOUNDS FOR INDIVIDUAL SEQUENCES

possible, though, of course, the aforementioned regret bound s ln T can only be used as an ideal

benchmark (since the support of u∗ is unknown).

In this paper, we prove that a regret bound proportional to s is achievable (up to logarithmic

factors). In Corollary 2 and its refinements (Corollary 7 and Theorem 10), we indeed derive regret

bounds of the form

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+
(
‖u‖0 +1

)
gT,d

(
‖u‖1 ,‖ϕ‖∞

)
}

, (1)

where ‖u‖0 denotes the number of non-zero coordinates of u and where g grows at most logarith-

mically in T , d, ‖u‖1 , ∑d
j=1 |u j|, and ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)|. We call regret bounds of

the above form sparsity regret bounds.

This work is in connection with several papers that belong either to the statistical or to the

machine-learning literature. Next we discuss these papers and some related references.

1.2 Related Works in the Stochastic Setting

The above regret bound (1) can be seen as a deterministic online counterpart of the so-called sparsity

oracle inequalities introduced in the stochastic setting in the past decade. The latter are risk bounds

expressed in terms of the number of non-zero coordinates of the oracle vector—see (2) below.

More formally, consider the regression model with random of fixed design. The forecaster observes

independent random pairs (X1,Y1), . . . ,(XT ,YT ) ∈ X ×R given by

Yt = f (Xt)+ εt , 1 6 t 6 T ,

where the Xt ∈ X are either i.i.d random variables (random design) or fixed elements (fixed design),

denoted in both cases by capital letters in this paragraph, and where the εt are i.i.d. square-integrable

real random variables with zero mean (conditionally on the Xt if the design is random). The goal of

the forecaster is to construct an estimator f̂T : X →R of the unknown regression function f : X →R

based on the sample (Xt ,Yt)16t6T . Depending on the nature of the design, the performance of f̂T is

measured through its risk R
(

f̂T

)
:

R
(

f̂T

)
,





∫
X

(
f (x)− f̂T (x)

)2

PX(dx) (random design)

1

T

T

∑
t=1

(
f (Xt)− f̂T (Xt)

)2
(fixed design),

where PX denotes the common distribution of the Xt if the design is random. With the above

notations, and given a dictionary ϕ = (ϕ1, · · · ,ϕd) of base forecasters ϕ j : X → R as previously,

typical examples of sparsity oracle inequalities take approximately the form

R
(

f̂T

)
6C inf

u∈Rd

{
R
(
u ·ϕ

)
+

‖u‖0 lnd +1

T

}
(2)

in expectation or with high probability, for some constant C > 1. Thus, sparsity oracle inequalities

are risk bounds involving a trade-off between the risk R(u ·ϕ) and the number of non-zero coordi-

nates ‖u‖0 of any comparison vector u ∈ R
d . In particular, they indicate that f̂T has a small risk
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under a sparsity scenario, that is, if f is well approximated by a sparse linear combination u∗ ·ϕ of

the base forecasters ϕ j, 1 6 j 6 d.

Sparsity oracle inequalities were first derived by Birgé and Massart (2001) via ℓ0-regularization

methods (through model-selection arguments). Later works in this direction include, among many

other papers, those of Birgé and Massart (2007), Abramovich et al. (2006), and Bunea et al. (2007a)

in the regression model with fixed design and that of Bunea et al. (2004) in the random design case.

More recently, a large body of research has been dedicated to the analysis of ℓ1-regularization

methods, which are convex and thus computationally tractable variants of ℓ0-regularization meth-

ods. A celebrated example is the Lasso estimator introduced by Tibshirani (1996) and Donoho and

Johnstone (1994). Under some assumptions on the design matrix,2 such methods have been proved

to satisfy sparsity oracle inequalities of the form (2) (with C = 1 in the recent paper by Koltchinskii

et al. 2011). A list of few references—but far from being comprehensive—includes the works of

Bunea et al. (2007b), Candes and Tao (2007), van de Geer (2008), Bickel et al. (2009), Koltchin-

skii (2009a), Koltchinskii (2009b),Hebiri and van de Geer (2011), Koltchinskii et al. (2011) and

Lounici et al. (2011). We refer the reader to the monograph by Bühlmann and van de Geer (2011)

for a detailed account on ℓ1-regularization.

A third line of research recently focused on procedures based on exponential weighting. Such

methods were proved to satisfy sharp sparsity oracle inequalities (i.e., with leading constant C = 1),

either in the regression model with fixed design (Dalalyan and Tsybakov, 2007, 2008; Rigollet

and Tsybakov, 2011; Alquier and Lounici, 2011) or in the regression model with random design

(Dalalyan and Tsybakov, 2012a; Alquier and Lounici, 2011). These papers show that a trade-off

can be reached between strong theoretical guarantees (as with ℓ0-regularization) and computational

efficiency (as with ℓ1-regularization). They indeed propose aggregation algorithms which satisfy

sparsity oracle inequalities under almost no assumption on the base forecasters (ϕ j) j, and which

can be approximated numerically at a reasonable computational cost for large values of the ambient

dimension d.

Our online-learning algorithm SeqSEW is inspired from a statistical method of Dalalyan and

Tsybakov (2008, 2012a). Following the same lines as in Dalalyan and Tsybakov (2012b), it is

possible to slightly adapt the statement of our algorithm to make it computationally tractable by

means of Langevin Monte-Carlo approximation—without affecting its statistical properties. The

technical details are however omitted in this paper, which only focuses on the theoretical guarantees

of the algorithm SeqSEW.

1.3 Previous Works on Sparsity in the Framework of Individual Sequences

To the best of our knowledge, Corollary 2 and its refinements (Corollary 7 and Theorem 10) provide

the first examples of sparsity regret bounds in the sense of (1). To comment on the optimality of

such regret bounds and compare them to related results in the framework of individual sequences,

note that (1) can be rewritten in the equivalent form:

2. Despite their computational efficiency, the aforementioned ℓ1-regularized methods still suffer from a drawback: their

ℓ0-oracle properties hold under rather restrictive assumptions on the design; namely, that the ϕ j should be nearly

orthogonal (see the detailed discussion in van de Geer and Bühlmann 2009).
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For all s ∈ N and all U > 0,

T

∑
t=1

(yt − ŷt)
2 − inf

‖u‖06s

‖u‖16U

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
6
(
s+1

)
gT,d

(
U,‖ϕ‖∞

)
,

where g grows at most logarithmically in T , d, U , and ‖ϕ‖∞. When s ≪ T , this upper bound

matches (up to logarithmic factors) the lower bound of order s ln T that follows in a straightforward

manner from Theorem 2 of Vovk (2001). Indeed, if s ≪ T , X = R
d , and ϕ j(x) = x j, then for any

forecaster, there is an individual sequence (xt ,yt)16t6T such that the regret of this forecaster on{
u ∈ R

d : ‖u‖0 6 s and ‖u‖1 6 d
}

is bounded from below by a quantity of order s lnT . Therefore,

up to logarithmic factors, any algorithm satisfying a sparsity regret bound of the form (1) is minimax

optimal on intersections of ℓ0-balls (of radii s ≪ T ) and ℓ1-balls. This is in particular the case for

our algorithm SeqSEW, but this contrasts with related works discussed below.

Recent works in the field of online convex optimization addressed the sparsity issue in the

online deterministic setting, but from a quite different angle. They focus on algorithms which

output sparse linear combinations, while we are interested in algorithms whose regret is small under

a sparsity scenario, that is, on ℓ0-balls of small radii. See, for example, the papers by Langford et al.

(2009), Shalev-Shwartz and Tewari (2011), Xiao (2010), Duchi et al. (2010) and the references

therein. All these articles focus on convex regularization. In the particular case of ℓ1-regularization

under the square loss, the aforementioned works propose algorithms which predict as a sparse linear

combination ŷt = ût ·ϕ(xt) of the base forecasts (i.e., ‖ût‖0 is small), while no such guarantee can

be proved for our algorithm SeqSEW. However they prove bounds on the ℓ1-regularized regret of

the form

T

∑
t=1

(
(yt − ût · xt)

2 +λ‖ût‖1

)
6 inf

u∈Rd

{
T

∑
t=1

(
(yt −u · xt)

2 +λ‖u‖1

)
+ ∆̃T,d(u)

}
, (3)

for some regret term ∆̃T,d(u) which is suboptimal on intersections of ℓ0- and ℓ1-balls as explained

below. The truncated gradient algorithm of Langford et al. (2009, Corollary 4.1) satisfies such a

regret bound3 with ∆̃T,d(u) at least of order ‖ϕ‖∞

√
dT when the base forecasts ϕ j(xt) are dense

in the sense that max16t6T ∑d
j=1 ϕ2

j(xt) ≈ d ‖ϕ‖2
∞. This regret bound grows as a power of and not

logarithmically in d as is expected for sparsity regret bounds (recall that we are interested in the

case when d ≫ T ).

The three other papers mentioned above do prove (some) regret bounds with a logarithmic de-

pendence in d, but these bounds do not have the dependence in ‖u‖1 and T we are looking for. For

p− 1 ≈ 1/(ln d), the p-norm RDA method of Xiao (2010) and the algorithm SMIDAS of Shalev-

Shwartz and Tewari (2011)—the latter being a particular case of the algorithm COMID of Duchi

et al. (2010) specialized to the p-norm divergence—satisfy regret bounds of the above form (3) with

3. The bound stated in Langford et al. (2009, Corollary 4.1) differs from (3) in that the constant before the infimum is

equal to C = 1/(1−2c2
d η), where c2

d ≈ max16t6T ∑d
j=1 ϕ2

j(xt) 6 d ‖ϕ‖2
∞, and where a reasonable choice for η can

easily be seen to be η ≈ 1/
√

2c2
d
T . If the base forecasts ϕ j(xt) are dense in the sense that c2

d ≈ d ‖ϕ‖2
∞, then we have

C ≈ 1+
√

2c2
d/T , which yields a regret bound with leading constant 1 as in (3) and with ∆̃T,d(u) at least of order

√
c2

d
T ≈ ‖ϕ‖∞

√
dT .
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∆̃T,d(u)≈ µ‖u‖1

√
T lnd, for some gradient-based constant µ. Therefore, in all three cases, the func-

tion ∆̃ grows at least linearly in ‖u‖1 and as
√

T . This is in contrast with the logarithmic dependence

in ‖u‖1 and the fast rate O(lnT ) we are looking for and prove, for example, in Corollary 2.

Note that the suboptimality of the aforementioned algorithms is specific to the goal we are pur-

suing, that is, prediction on ℓ0-balls (intersected with ℓ1-balls). On the contrary the rate ‖u‖1

√
T lnd

is more suited and actually nearly optimal for learning on ℓ1-balls (see Gerchinovitz and Yu 2011).

Moreover, the predictions output by our algorithm SeqSEW are not necessarily sparse linear com-

binations of the base forecasts. A question left open is thus whether it is possible to design an al-

gorithm which both ouputs sparse linear combinations (which is statistically useful and sometimes

essential for computational issues) and satisfies a sparsity regret bound of the form (1).

1.4 PAC-Bayesian Analysis in the Framework of Individual Sequences

To derive our sparsity regret bounds, we follow a PAC-Bayesian approach combined with the choice

of a sparsity-favoring prior. We do not have the space to review the PAC-Bayesian literature in the

stochastic setting and only refer the reader to Catoni (2004) for a thorough introduction to the

subject. As for the online deterministic setting, PAC-Bayesian-type inequalities were proved in

the framework of prediction with expert advice, for example, by Freund et al. (1997) and Kivinen

and Warmuth (1999), or in the same setting as ours with a Gaussian prior by Vovk (2001). More

recently, Audibert (2009) proved a PAC-Bayesian result on individual sequences for general losses

and prediction sets. The latter result relies on a unifying assumption called the online variance

inequality, which holds true, for example, when the loss function is exp-concave. In the present

paper, we only focus on the particular case of the square loss. We first use Theorem 4.6 of Audibert

(2009) to derive a non-adaptive sparsity regret bound. We then provide an adaptive online PAC-

Bayesian inequality to automatically adapt to the unknown range of the observations max16t6T |yt |.

1.5 Application to the Stochastic Setting When the Noise Level Is Unknown

In Section 4.1 we apply an automatically-tuned version of our algorithm SeqSEW on i.i.d. data.

Thanks to the standard online-to-batch conversion, our sparsity regret bounds—of deterministic

nature—imply a sparsity oracle inequality of the same flavor as a result of Dalalyan and Tsybakov

(2012a). However, our risk bound holds on the whole R
d space instead of ℓ1-balls of finite radii,

which solves one question left open by Dalalyan and Tsybakov (2012a, Section 4.2). Besides, and

more importantly, our algorithm does not need the a priori knowledge of the variance of the noise

when the latter is Gaussian. Since the noise level is unknown in practice, adapting to it is important.

This solves a second question raised by Dalalyan and Tsybakov (2012a, Section 5.1, Remark 6).

1.6 Outline of the Paper

This paper is organized as follows. In Section 2 we describe our main (deterministic) setting as

well as our main notations. In Section 3 we prove the aforementioned sparsity regret bounds for our

algorithm SeqSEW, first when the forecaster has access to some a priori knowledge on the observa-

tions (Sections 3.1 and 3.2), and then when no a priori information is available (Section 3.3), which

yields a fully automatic algorithm. In Section 4 we apply the algorithm SeqSEW to two stochastic

settings: the regression model with random design (Section 4.1) and the regression model with fixed

design (Section 4.2). Finally the appendix contains some proofs and several useful inequalities.
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2. Setting and Notations

The main setting considered in this paper is an instance of the game of prediction with expert

advice called prediction with side information (under the square loss) or, more simply, online linear

regression (see Cesa-Bianchi and Lugosi 2006, Chapter 11 for an introduction to this setting). The

data sequence (xt ,yt)t>1 at hand is deterministic and arbitrary and we look for theoretical guarantees

that hold for every individual sequence. We give in Figure 1 a detailed description of our online

protocol.

Parameters: input data set X , base forecasters ϕ = (ϕ1, . . . ,ϕd) with ϕ j : X → R, 1 6 j 6 d.

Initial step: the environment chooses a sequence of observations (yt)t>1 in R and a sequence

of input data (xt)t>1 in X but the forecaster has not access to them.

At each time round t ∈N
∗ , {1,2, . . .},

1. The environment reveals the input data xt ∈ X .

2. The forecaster chooses a prediction ŷt ∈R

(possibly as a linear combination of the ϕ j(xt), but this is not necessary).

3. The environment reveals the observation yt ∈ R.

4. Each linear forecaster u ·ϕ , ∑d
j=1 u jϕ j, u ∈ R

d, incurs the loss
(
yt − u ·ϕ(xt)

)2
and the

forecaster incurs the loss (yt − ŷt)
2.

Figure 1: The online linear regression setting.

Note that our online protocol is described as if the environment were oblivious to the forecaster’s

predictions. Actually, since we only consider deterministic forecasters, all regret bounds of this

paper also hold when (xt)t>1 and (yt)t>1 are chosen by an adversarial environment.

Two stochastic batch settings are also considered later in this paper. See Section 4.1 for the

regression model with random design, and Section 4.2 for the regression model with fixed design.

2.1 Some Notations

We now define some notations. We write N , {0,1, . . .} and e , exp(1). Vectors in R
d will be

denoted by bold letters. For all u,v ∈R
d, the standard inner product in R

d between u = (u1, . . . ,ud)
and v= (v1, . . . ,vd) will be denoted by u ·v=∑d

i= j u j v j; the ℓ0-, ℓ1-, and ℓ2-norms of u= (u1, . . . ,ud)
are respectively defined by

‖u‖0 ,
d

∑
j=1

I{u j 6=0} =
∣∣{ j : u j 6= 0}

∣∣ , ‖u‖1 ,
d

∑
j=1

|u j| , and ‖u‖2 ,

(
d

∑
j=1

u2
j

)1/2

.
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The set of all probability distributions on a set Θ (endowed with some σ-algebra, for example,

the Borel σ-algebra when Θ=R
d) will be denoted by M +

1 (Θ). For all ρ,π∈M +
1 (Θ), the Kullback-

Leibler divergence between ρ and π is defined by

K (ρ,π),





∫
Rd

ln

(
dρ

dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise,

where
dρ
dπ denotes the Radon-Nikodym derivative of ρ with respect to π.

For all x ∈ R and B > 0, we denote by ⌈x⌉ the smallest integer larger than or equal to x, and by

[x]B its thresholded (or clipped) value:

[x]B ,





−B if x <−B;

x if −B 6 x 6 B;

B if x > B.

Finally, we will use the (natural) conventions 1/0 =+∞, (+∞)×0 = 0, and 0ln(1+U/0) = 0

for all U > 0. Any sum ∑0
s=1 as indexed from 1 up to 0 is by convention equal to 0.

3. Sparsity Regret Bounds for Individual Sequences

In this section we prove sparsity regret bounds for different variants of our algorithm SeqSEW. We

first assume in Section 3.1 that the forecaster has access in advance to a bound By on the observations

|yt | and a bound BΦ on the trace of the empirical Gram matrix. We then remove these requirements

one by one in Sections 3.2 and 3.3.

3.1 Known Bounds By on the Observations and BΦ on the Trace of the Empirical Gram

Matrix

To simplify the analysis, we first assume that, at the beginning of the game, the number of rounds

T is known to the forecaster and that he has access to a bound By on all the observations y1, . . . ,yT

and to a bound BΦ on the trace of the empirical Gram matrix, that is,

y1, . . . ,yT ∈ [−By,By] and
d

∑
j=1

T

∑
t=1

ϕ2
j(xt)6 BΦ .

The first version of the algorithm studied in this paper is defined in Figure 2 (adaptive variants

will be introduced later). We name it SeqSEW for it is a variant of the Sparse Exponential Weighting

algorithm introduced in the stochastic setting by Dalalyan and Tsybakov (2007, 2008) which is

tailored for the prediction of individual sequences.

The choice of the heavy-tailed prior πτ is due to Dalalyan and Tsybakov (2007). The role of

heavy-tailed priors to tackle the sparsity issue was already pointed out earlier; see, for example, the

discussion by Seeger (2008, Section 2.1). In high dimension, such heavy-tailed priors favor sparsity:

sampling from these prior distributions (or posterior distributions based on them) typically results

in approximately sparse vectors, that is, vectors having most coordinates almost equal to zero and

the few remaining ones with quite large values.
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Parameters: threshold B > 0, inverse temperature η > 0, and prior scale τ > 0 with which we

associate the sparsity prior πτ ∈ M +
1 (Rd) defined by

πτ(du),
d

∏
j=1

(3/τ)du j

2
(
1+ |u j|/τ

)4
.

Initialization: p1 , πτ.

At each time round t > 1,

1. Get the input data xt and predicta as ŷt ,

∫
Rd

[
u ·ϕ(xt)

]
B

pt(du) ;

2. Get the observation yt and compute the posterior distribution pt+1 ∈ M +
1 (Rd) as

pt+1(du),

exp

(
−η

t

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2

)

Wt+1

πτ(du) ,

where

Wt+1 ,
∫
Rd

exp

(
−η

t

∑
s=1

(
ys −

[
v ·ϕ(xs)

]
B

)2

)
πτ(dv) .

a. The clipping operator [·]B is defined in Section 2.

Figure 2: The algorithm SeqSEW
B,η
τ .

Proposition 1 Assume that, for a known constant By > 0, the (x1,y1), . . . ,(xT ,yT ) are such that

y1, . . . ,yT ∈ [−By,By]. Then, for all B>By, all η6 1/(8B2), and all τ> 0, the algorithm SeqSEW
B,η
τ

satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt) . (4)

Corollary 2 Assume that, for some known constants By > 0 and BΦ > 0, the (x1,y1), . . . ,(xT ,yT )
are such that y1, . . . ,yT ∈ [−By,By] and ∑d

j=1 ∑T
t=1 ϕ2

j(xt)6 BΦ .

Then, when used with B = By, η =
1

8B2
y

, and τ =

√
16B2

y

BΦ
, the algorithm SeqSEW

B,η
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

y ‖u‖0 ln

(
1+

√
BΦ‖u‖1

4By ‖u‖0

)}
+ 16B2

y . (5)

Note that, if ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)| is finite, then the last corollary provides a sparsity

regret bound in the sense of (1). Indeed, in this case, we can take BΦ = d T ‖ϕ‖2
∞, which yields a

regret bound proportional to ‖u‖0 and that grows logarithmically in d, T , ‖u‖1, and ‖ϕ‖∞.
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To prove Proposition 1, we first need the following deterministic PAC-Bayesian inequality

which is at the core of our analysis. It is a straightforward consequence of Theorem 4.6 of Audibert

(2009) when applied to the square loss. An adaptive variant of this inequality will be provided in

Section 3.2.

Lemma 3 Assume that for some known constant By > 0, we have y1, . . . ,yT ∈ [−By,By].

For all τ > 0, if the algorithm SeqSEW
B,η
τ is used with B > By and η 6 1/(8B2), then

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2

ρ(du) +
K (ρ,πτ)

η

}
(6)

6 inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρ(du) +

K (ρ,πτ)

η

}
. (7)

Proof (of Lemma 3) Inequality (6) is a straightforward consequence of Theorem 4.6 of Audibert

(2009) when applied to the square loss, the set of prediction functions G ,
{

x 7→
[
u ·ϕ(x)

]
B

: u ∈
R

d
}

, and the prior4 π̃τ on G induced by the prior πτ on R
d via the mapping u∈R

d 7→
[
u ·ϕ(·)

]
B
∈G .

To apply the aforementioned theorem, recall from Cesa-Bianchi and Lugosi (2006, Section 3.3)

that the square loss is 1/(8B2)-exp-concave on [−B,B] and thus η-exp-concave,5 since η 6 1/(8B2)
by assumption. Therefore, by Theorem 4.6 of Audibert (2009) with the variance function δη ≡ 0

(see the comments following Remark 4.1 therein), we get

T

∑
t=1

(yt − ŷt)
2 6 inf

µ∈M +
1 (G)

{∫
G

T

∑
t=1

(
yt −g(xt)

)2
µ(dg) +

K (µ, π̃τ )

η

}

6 inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2

ρ(du) +
K (ρ̃, π̃τ )

η

}
,

where the last inequality follows by restricting the infimum over M +
1

(
G
)

to the subset
{

ρ̃ : ρ ∈
M +

1 (Rd)
}
⊂ M +

1

(
G
)
, where ρ̃ ∈ M +

1

(
G
)

denotes the probability distribution induced by ρ ∈
M +

1 (Rd) via the mapping u ∈ R
d 7→

[
u ·ϕ(·)

]
B
∈ G . Inequality (6) then follows from the fact that

for all ρ ∈ M +
1 (Rd), we have K (ρ̃, π̃τ )6 K (ρ,πτ) by joint convexity of K (·, ·).

As for Inequality (7), it follows from (6) by noting that

∀y ∈ [−B,B], ∀x ∈ R,
∣∣y− [x]B

∣∣6 |y− x| .

Therefore, truncation to [−B,B] can only improve prediction under the square loss if the observa-

tions are [−B,B]-valued, which is the case here since by assumption yt ∈ [−By,By]⊂ [−B,B] for all

t = 1, . . . ,T .

Remark 4 As can be seen from the previous proof, if the prior πτ used to define the algorithm Se-

qSEW was replaced with any prior π ∈ M +
1 (Rd), then Lemma 3 would still hold true with π instead

4. The set G is endowed with the σ-algebra generated by all the coordinate mappings g ∈ G 7→ g(x) ∈ R, x ∈ X (where

R is endowed with its Borel σ-algebra).

5. This means that for all y ∈ [−B,B], the function x 7→ exp
(
−η(y−x)2

)
is concave on [−B,B].
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of πτ. This fact is natural from a PAC-Bayesian perspective (see, e.g., Catoni, 2004; Dalalyan and

Tsybakov, 2008). We only—but crucially—use the particular shape of the sparsity-favoring prior πτ

to derive Proposition 1 from the PAC-Bayesian bound (7).

Proof (of Proposition 1) Our proof mimics the proof of Theorem 5 by Dalalyan and Tsybakov

(2008). We thus only write the outline of the proof and stress the minor changes that are needed

to derive Inequality (4). The key technical tools provided by Dalalyan and Tsybakov (2008) are

reproduced in Appendix B.2 for the convenience of the reader.

Let u∗ ∈ R
d. Since B > By and η 6 1/(8B2), we can apply Lemma 3 and get

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρ(du) +

K (ρ,πτ)

η

}

6
∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du)

︸ ︷︷ ︸
(1)

+
K (ρu∗,τ,πτ)

η︸ ︷︷ ︸
(2)

. (8)

In the last inequality, ρu∗,τ is taken as the translated of πτ at u∗, namely,

ρu∗,τ(du),
dπτ

du
(u−u∗)du =

d

∏
j=1

(3/τ)du j

2
(
1+ |u j −u∗j |/τ

)4
.

The two terms (1) and (2) can be upper bounded as in the proof of Theorem 5 by Dalalyan and

Tsybakov (2008). By a symmetry argument recalled in Lemma 22 (Appendix B.2), the first term

(1) can be rewritten as

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du) =

T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt) . (9)

As for the term (2), we have, as is recalled in Lemma 23,

K (ρu∗,τ,πτ)

η
6

4

η
‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)
. (10)

Combining (8), (9), and (10), which all hold for all u∗ ∈ R
d, we get Inequality (4).

Proof (of Corollary 2) Applying Proposition 1, we have, since B > By and η 6 1/(8B2),

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)

6 inf
u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}
+ τ2BΦ ,

since ∑d
j=1 ∑T

t=1 ϕ2
j(xt)6 BΦ by assumption. The particular (and nearly optimal) choices of η and τ

given in the statement of the corollary then yield the desired inequality (5).
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We end this subsection with a natural question about approximate sparsity: Proposition 1 en-

sures a low regret with respect to sparse linear combinations u ·ϕ, but what can be said for approxi-

mately sparse linear combinations, that is, predictors of the form u ·ϕ where u ∈R
d is very close to

a sparse vector? As can be seen from the proof of Lemma 23 in Appendix B.2, the sparsity-related

term
4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)

in the regret bound of Proposition 1 can actually be replaced with the smaller (and continous) term

4

η

d

∑
j=1

ln(1+ |u j|/τ) .

The last term is always smaller than the former and guarantees that the regret is small with respect

to any approximately sparse vector u ∈ R
d.

3.2 Unknown Bound By on the Observations but Known Bound BΦ on the Trace of the

Empirical Gram Matrix

In the previous section, to prove the upper bounds stated in Lemma 3 and Proposition 1, we assumed

that the forecaster had access to a bound By on the observations |yt | and to a bound BΦ on the trace

of the empirical Gram matrix. In this section, we remove the first requirement and prove a sparsity

regret bound for a variant of the algorithm SeqSEW
B,η
τ which is adaptive to the unknown bound

By = max16t6T |yt |; see Proposition 5 and Remark 6 below.

For this purpose we consider the algorithm of Figure 3, which we call SeqSEW∗
τ thereafter.

It differs from SeqSEW
B,η
τ defined in the previous section in that the threshold B and the inverse

temperature η are now allowed to vary over time and are chosen at each time round as a function of

the data available to the forecaster.

The idea of truncating the base forecasts was used many times in the past; see, for example, the

work of Vovk (2001) in the online linear regression setting, that of Györfi et al. (2002, Chapter 10)

for the regression problem with random design, and the papers of Györfi and Ottucsák (2007) and

Biau et al. (2010) for sequential prediction of unbounded time series under the square loss. A key

ingredient in the present paper is to perform truncation with respect to a data-driven threshold.

Proposition 5 For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

T+1 ‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}

+ τ2
d

∑
j=1

T

∑
t=1

ϕ2
j(xt) +5B2

T+1 ,

where B2
T+1 , max16t6T y2

t .

Remark 6 In view of Proposition 1, the algorithm SeqSEW∗
τ satisfies a sparsity regret bound which

is adaptive to the unknown bound By = max16t6T |yt |. The price for the automatic tuning with

respect to By consists only of the additive term 5B2
T+1 = 5B2

y .
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Parameter: prior scale τ > 0 with which we associate the sparsity prior πτ ∈ M +
1 (Rd) defined

by

πτ(du),
d

∏
j=1

(3/τ)du j

2
(
1+ |u j|/τ

)4
.

Initialization: B1 , 0, η1 ,+∞, and p1 , πτ.

At each time round t > 1,

1. Get the input data xt and predicta as ŷt ,

∫
Rd

[
u ·ϕ(xt)

]
Bt

pt(du);

2. Get the observation yt and update:

• the threshold Bt+1 , max16s6t |ys|,
• the inverse temperature ηt+1 , 1/

(
8B2

t+1

)
,

• and the posterior distribution pt+1 ∈ M +
1 (Rd) as

pt+1(du),

exp

(
−ηt+1

t

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)

Wt+1

πτ(du) ,

where
Wt+1 ,

∫
Rd

exp

(
−ηt+1

t

∑
s=1

(
ys −

[
v ·ϕ(xs)

]
Bs

)2

)
πτ(dv) .

a. The clipping operator [·]B is defined in Section 2.

Figure 3: The algorithm SeqSEW∗
τ .

As in the previous section, several corollaries can be derived from Proposition 5. If the forecaster

has access beforehand to a quantity BΦ > 0 such that ∑d
j=1 ∑T

t=1 ϕ2
j(xt) 6 BΦ, then a suboptimal

but reasonable choice of τ is given by τ = 1/
√

BΦ; see Corollary 7 below. The simpler tuning

τ = 1/
√

dT of Corollary 8 will be useful in the stochastic batch setting (cf., Section 4).6 The proofs

of the next corollaries are immediate.

Corollary 7 Assume that, for a known constant BΦ > 0, the (x1,y1), . . . ,(xT ,yT ) are such that

∑d
j=1 ∑T

t=1 ϕ2
j(xt)6 BΦ. Then, when used with τ = 1/

√
BΦ, the algorithm SeqSEW∗

τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

T+1 ‖u‖0 ln

(
1+

√
BΦ ‖u‖1

‖u‖0

)}

+5B2
T+1 +1 ,

6. The tuning τ = 1/
√

dT only uses the knowledge of T , which is known by the forecaster in the stochastic batch setting.

In that framework, another simple and easy-to-analyse tuning is given by τ = 1/(‖ϕ‖∞

√
d T )—which corresponds

to BΦ = d T ‖ϕ‖2
∞—but it requires that ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)| be finite. Note that the last tuning satisfies

the scale-invariant property pointed out by Dalalyan and Tsybakov (2012a, Remark 4).
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where B2
T+1 , max16t6T y2

t .

Corollary 8 Assume that T is known to the forecaster at the beginning of the prediction game.

Then, when used with τ = 1/
√

dT , the algorithm SeqSEW∗
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

T+1 ‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5B2

T+1 ,

where B2
T+1 , max16t6T y2

t .

As in the previous section, to prove Proposition 5, we first need a key PAC-Bayesian inequality.

The next lemma is an adaptive variant of Lemma 3.

Lemma 9 For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +8B2
T+1 K (ρ,πτ)

}
+4B2

T+1 (11)

6 inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρ(du) +8B2

T+1 K (ρ,πτ)

}
+5B2

T+1 , (12)

where B2
T+1 , max16t6T y2

t .

Proof (of Lemma 9) The proof is based on arguments that are similar to those underlying Lemma 3,

except that we now need to deal with B and η changing over time. In the same spirit as in Auer

et al. (2002), Cesa-Bianchi et al. (2007) and Györfi and Ottucsák (2007), our analysis relies on the

control of (lnWt+1)/ηt+1 − (lnWt)/ηt where W1 , 1 and, for all t > 2,

Wt ,

∫
Rd

exp

(
−ηt

t−1

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)
πτ(du) .

Before controlling (lnWt+1)/ηt+1 − (lnWt)/ηt , we first need a little comment. Note that all ηt’s

such that ηt =+∞ (i.e., Bt = 0) can be replaced with any finite value without changing the predic-

tions of the algorithm (since the sum ∑
t−1
s=1 above equals zero). Therefore, we assume in the sequel

that (ηt)t>1 is a non-decreasing sequence of finite positive real numbers.

First step: On the one hand, we have

lnWT+1

ηT+1

− lnW1

η1

=
1

ηT+1

ln

∫
Rd

exp

(
−ηT+1

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

)
πτ(du) − 1

η1

ln1

=− inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +
K (ρ,πτ)

ηT+1

}
, (13)
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where the last equality follows from a convex duality argument for the Kullback-Leibler divergence

(cf., e.g., Catoni 2004, p. 159) which we recall in Proposition 21 in Appendix B.1.

Second step: On the other hand, we can rewrite (lnWT+1)/ηT+1 − (lnW1)/η1 as a telescopic sum

and get

lnWT+1

ηT+1

− lnW1

η1

=
T

∑
t=1

(
lnWt+1

ηt+1

− lnWt

ηt

)
=

T

∑
t=1

(
lnWt+1

ηt+1

− lnW ′
t+1

ηt︸ ︷︷ ︸
(1)

+
1

ηt

ln
W ′

t+1

Wt︸ ︷︷ ︸
(2)

)
, (14)

where W ′
t+1 is obtained from Wt+1 by replacing ηt+1 with ηt ; namely,

W ′
t+1 ,

∫
Rd

exp

(
−ηt

t

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)
πτ(du) .

Let t ∈ {1, . . . ,T}. The first term (1) is non-positive by Jensen’s inequality (note that x 7→ xηt+1/ηt is

concave on R
∗
+ since ηt+1 6 ηt by construction). As for the second term (2), by definition of W ′

t+1,

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∫
R

d

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

exp

(
−ηt

t−1

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)

Wt

πτ(du)

=
1

ηt

ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

pt(du) . (15)

where (15) follows by definition of pt . The next paragraphs are dedicated to upper bounding the

last integral above. First note that this is straightforward in the particular case where yt ∈ [−Bt ,Bt ].
Indeed, by definition of ηt , 1/(8B2

t ) and by the fact that the square loss is 1/(8B2
t )-exp-concave

on [−Bt,Bt ] (as in Lemma 3),7 we get from Jensen’s inequality that

∫
Rd

e
−ηt

(
yt−
[

u·ϕ(xt)
]

Bt

)2

pt(du)6 exp

(
−ηt

(
yt −

∫
Rd

[
u ·ϕ(xt)

]
Bt

pt(du)

)2
)

= e−ηt (yt−ŷt)
2

,

where the last equality follows by definition of ŷt . Taking the logarithms of both sides of the last

inequality and dividing by ηt , we can see that the quantity on the right-hand side of (15) is bounded

from above by −
(
yt − ŷt

)2
.

In the general case, we cannot assume that yt ∈ [−Bt ,Bt ], since it may happen that |yt | >
max16s6t−1 |ys| , Bt . As shown below, we can still use the exp-concavity of the square loss if

we replace yt with its clipped version [yt ]Bt
. More precisely, setting ŷt,u , [u ·ϕ(xt)]Bt

for all u ∈R
d,

the square loss appearing in the right-hand side of (15) equals

(
yt − ŷt,u

)2
=
(
[yt ]Bt

− ŷt,u

)2
+
(
yt − [yt ]Bt

)2
+2
(
yt − [yt ]Bt

)(
[yt ]Bt

− ŷt,u

)

=
(
[yt ]Bt

− ŷt,u

)2
+
(
yt − [yt ]Bt

)2
+2
(
yt − [yt ]Bt

)(
[yt ]Bt

− ŷt

)
+ ct,u , (16)

7. To be more exact, we assigned some arbitrary finite value to ηt when Bt = 0. However, in this case, the square loss

is of course ηt -exp-concave on [−Bt ,Bt ] = {0} whatever the value of ηt .
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where we set

ct,u , 2
(
yt − [yt ]Bt

)(
ŷt − ŷt,u

)

>−4Bt

∣∣yt − [yt ]Bt

∣∣>−4Bt(Bt+1 −Bt) , (17)

where the last two inequalities follow from the property ŷt , ŷt,u ∈ [−Bt,Bt ] (by construction) and

from the elementary8 yet useful upper bound
∣∣yt − [yt ]Bt

∣∣6 Bt+1 −Bt .

Combining (16) with the lower bound (17) yields that, for all u ∈ R
d,

(
yt − ŷt,u

)2
>
(
[yt ]Bt

− ŷt,u

)2
+Ct , (18)

where we set Ct ,
(
yt − [yt ]Bt

)2
+2
(
yt − [yt ]Bt

)(
[yt ]Bt

− ŷt

)
−4Bt(Bt+1 −Bt).

We can now continue the upper bounding of (1/ηt) ln(W ′
t+1/Wt). Indeed, substituting the lower

bound (18) into (15), we get that

1

ηt

ln
W ′

t+1

Wt

6
1

ηt

ln

[∫
Rd

exp
(
−ηt

(
[yt ]Bt

− ŷt,u

)2
)

pt(du)

]
−Ct

6
1

ηt

ln

[
exp

(
−ηt

(
[yt ]Bt

−
∫
Rd

ŷt,u pt(du)

)2
)]

−Ct (19)

=−
(
[yt ]Bt

− ŷt

)2 −Ct (20)

=−
(
yt − ŷt

)2
+4Bt(Bt+1 −Bt) , (21)

where (19) follows by Jensen’s inequality (recall that ηt , 1/(8B2
t ) and that the square loss is

1/(8B2
t )-exp-concave on [−Bt ,Bt ]),

9 where (20) is entailed by definition of ŷt,u and ŷt , and where

(21) follows by definition of Ct above and by elementary calculations.

Summing (21) over t = 1, . . . ,T and using the upper bound Bt(Bt+1 −Bt) 6 B2
t+1 −B2

t , Equa-

tion (14) yields

lnWT+1

ηT+1

− lnW1

η1

6−
T

∑
t=1

(yt − ŷt)
2 +4

T

∑
t=1

(
B2

t+1 −B2
t

)

=−
T

∑
t=1

(yt − ŷt)
2 +4B2

T+1 . (22)

Third step: Putting (13) and (22) together, we get the PAC-Bayesian inequality

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +
K (ρ,πτ)

ηT+1

}
+4B2

T+1 ,

which yields (11) since ηT+1 , 1/(8B2
T+1) by definition.10 The other PAC-Bayesian inequality (12),

which is stated for non-truncated base forecasts, is a direct consequence of (11) and of the following

two arguments: for all u ∈R
d and all t = 1, . . . ,T ,

(
yt − [u ·ϕ(xt)]Bt

)2
6
(
yt −u ·ϕ(xt)

)2
+(Bt+1 −Bt)

2 (23)

8. To see why this is true, it suffices to rewrite [yt ]Bt
in the three cases yt <−Bt , |yt |6 Bt , or yt > Bt .

9. Same remark as in Footnote 7.

10. If BT+1 = 0, then yt = ŷt = 0 for all 1 6 t 6 T , which immediately yields (11).
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and

T

∑
t=1

(Bt+1 −Bt)
2 6 B2

T+1 . (24)

Complement: proof of (23) and (24).

To see why (23) is true, we can distinguish between several cases. First note that this inequality is

straightforward when |yt |6 Bt (indeed, in this case, clipping u ·ϕ(xt) to [−Bt ,Bt ] can only improve

prediction). We can thus assume that |yt |> Bt , or just11 that yt > Bt . In this case, we can distinguish

between three sub-cases:

• if u ·ϕ(xt)<−Bt , then clipping improves prediction since yt > Bt ;

• if −Bt 6 u ·ϕ(xt)6 Bt , then the clipping operator [·]B has no effect on u ·ϕ(xt);

• if u·ϕ(xt)>Bt , then [u ·ϕ(xt)]Bt
=Bt so that (yt − [u ·ϕ(xt)]Bt

)2 = (Bt+1−Bt)
2 since Bt+1 = yt .

Therefore, in all three sub-cases described above, we have

(yt − [u ·ϕ(xt)]Bt
)2 6 max

{
(yt −u ·ϕ(xt))

2, (Bt+1 −Bt)
2
}
,

which concludes the proof of (23). As for (24), it follows from the inequality

T

∑
t=1

(Bt+1 −Bt)
2 6 sup

∆1,...,∆T>0

∑T
t=1 ∆t=BT+1

{
T

∑
t=1

∆2
t

}
= B2

T+1 ,

where the last equality is entailed by convexity of the function (∆1, . . . ,∆T ) 7→ ∑T
t=1 ∆2

t on the poly-

tope
{
(∆1, . . . ,∆T ) ∈R

T
+ : ∑T

t=1 ∆t = BT+1

}
. This concludes the proof.

Proof (of Proposition 5) The proof follows exactly the same lines as in Proposition 1 except that

we apply Lemma 9 instead of Lemma 3. Indeed, using Lemma 9 and restricting the infimum to the

ρu∗,τ, u∗ ∈ R
d (cf., (40)), we get that

T

∑
t=1

(yt − ŷt)
2 6 inf

u∗∈Rd

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du)+8B2

T+1K (ρu∗,τ,πτ)

}
+5B2

T+1

6 inf
u∗∈Rd

{
T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+32B2

T+1 ‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)}

+ τ2
d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5B2

T+1 ,

where the last inequality follows from Lemmas 22 and 23.

11. If yt <−Bt , it suffices to apply (23) with −yt and −u.
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3.3 A Fully Automatic Algorithm

In the previous section, we proved that adaptation to By was possible. If we also no longer assume

that a bound BΦ on the trace of the empirical Gram matrix is available to the forecaster, then we can

use a doubling trick on the nondecreasing quantity

γt , ln


1+

√√√√
t

∑
s=1

d

∑
j=1

ϕ2
j(xs)




and repeatedly run the algorithm SeqSEW∗
τ of the previous section for rapidly-decreasing values

of τ. This yields a sparsity regret bound with extra logarithmic multiplicative factors as compared

to Proposition 5, but which holds for a fully automatic algorithm; see Theorem 10 below.

More formally, our algorithm SeqSEW∗
∗ is defined as follows. The set of all time rounds t =

1,2, . . . is partitioned into regimes r = 0,1, . . . whose final time instances tr are data-driven. Let

t−1 , 0 by convention. We call regime r, r = 0,1, . . ., the sequence of time rounds (tr−1 +1, . . . , tr)
where tr is the first date t > tr−1 +1 such that γt > 2r. At the beginning of regime r, we restart the

algorithm SeqSEW∗
τ defined in Figure 3 with the parameter τ set to τr , 1/

(
exp(2r)−1

)
.

In particular, on each regime r, the current instance of the algorithm SeqSEW∗
τr

only uses the

past observations ys, s ∈ {tr−1+1, . . . , t −1}, to perform the online trunction and to tune the inverse

temperature parameter. Therefore, the algorithm SeqSEW∗
∗ is fully automatic.

Theorem 10 Without requiring any preliminary knowledge at the beginning of the prediction game,

SeqSEW∗
∗ satisfies, for all T > 1 and all (x1,y1), . . . ,(xT ,yT ) ∈ X ×R,

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+128

(
max

16t6T
y2

t

)
‖u‖0 ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)




+ 32
(

max
16t6T

y2
t

)
AT ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)}
+
(

1+9 max
16t6T

y2
t

)
AT ,

where AT , 2+ log2 ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
.

Though the algorithm SeqSEW∗
∗ is fully automatic, two possible improvements could be ad-

dressed in the future. From a theoretical viewpoint, can we contruct a fully automatic algorithm

with a bound similar to Theorem 10 but without the extra logarithmic factor AT ? From a practical

viewpoint, is it possible to perform the adaptation to BΦ without restarting the algorithm repeatedly

(just like we did for By)? A smoother time-varying tuning (τt)t>2 might enable to answer both ques-

tions. This would be very probably at the price of a more involved analysis (e.g., if we adapt the

PAC-Bayesian bound of Lemma 9, then a third approximation term would appear in (14) since πτt

changes over time).

Proof sketch (of Theorem 10) The proof relies on the use of Corollary 7 on all regimes r visited

up to time T . More precisely, note that γtr−1 6 2r by definition of tr (except maybe in the trivial case

when tr = tr−1 +1), which entails that

tr−1

∑
t=tr−1+1

d

∑
j=1

ϕ2
j(xt)6

(
e2r −1

)2

, BΦ,r .
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Since we tuned the instance of the algorithm SeqSEW∗
τ on regime r with τ = τr , 1/

√
BΦ,r, we

can apply Corollary 7 on regime r for all r. Summing the corresponding regret bounds over r then

yields the desired result. See Appendix A.1 for a detailed proof.

Theorem 10 yields the following corollary. It upper bounds the regret of the algorithm SeqSEW∗
∗

uniformly over all u ∈ R
d such that ‖u‖0 6 s and ‖u‖1 6U , where the sparsity level s ∈ N and the

ℓ1-diameter U > 0 are both unknown to the forecaster. The proof is postponed to Appendix A.1.

Corollary 11 Fix s ∈ N and U > 0. Then, for all T > 1 and all (x1,y1), . . . ,(xT ,yT ) ∈ X ×R, the

regret of the algorithm SeqSEW∗
∗ on

{
u ∈ R

d : ‖u‖0 6 s and ‖u‖1 6U
}

is bounded by

T

∑
t=1

(yt − ŷt)
2 − inf

‖u‖06s

‖u‖16U

T

∑
t=1

(
yt −u ·ϕ(xt)

)2

6 128
(

max
16t6T

y2
t

)
s ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


+ 32

(
max

16t6T
y2

t

)
AT s ln

(
1+

U

s

)

+
(

1+9 max
16t6T

y2
t

)
AT ,

where AT , 2+ log2 ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
.

4. Adaptivity to the Unknown Variance in the Stochastic Setting

In this section, we apply the online algorithm SeqSEW∗
τ of Section 3.2 to two related stochastic

settings: the regression model with random design (Section 4.1) and the regression model with fixed

design (Section 4.2). The sparsity regret bounds proved for this algorithm on individual sequences

imply in both settings sparsity oracle inequalities with leading constant 1. These risk bounds are of

the same flavor as in Dalalyan and Tsybakov (2008, 2012a) but they are adaptive (up to a logarithmic

factor) to the unknown variance σ2 of the noise if the latter is Gaussian. In particular, we solve two

questions left open by Dalalyan and Tsybakov (2012a) in the random design case.

In the sequel, just like in the online deterministic setting, we assume that the forecaster has

access to a dictionary ϕ = (ϕ1, . . . ,ϕd) of measurable base forecasters ϕ j : X → R, j = 1, . . . ,d.

4.1 Regression Model With Random Design

In this section we apply the algorithm SeqSEW∗
τ to the regression model with random design. In

this batch setting the forecaster is given at the beginning of the game T independent random copies

(X1,Y1), . . . ,(XT ,YT ) of (X ,Y ) ∈ X ×R whose common distribution is unknown. We assume there-

after that E[Y 2] < ∞; the goal of the forecaster is to estimate the regression function f : X → R

defined by f (x) , E[Y |X = x] for all x ∈ X . Setting εt , Yt − f (Xt) for all t = 1, . . . ,T , note that

Yt = f (Xt)+ εt , 1 6 t 6 T ,

and that the pairs (X1,ε1), . . . ,(XT ,εT ) are i.i.d. and such that E[ε2
1] < ∞ and E[ε1|X1] = 0 almost

surely. In the sequel, we denote the distribution of X by PX and we set, for all measurable functions
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h : X → R,

‖h‖L2 ,

(∫
X

h(x)2PX(dx)

)1/2

=
(
E
[
h(X)2

])1/2

.

Next we construct an estimator f̂T : X → R based on the sample (X1,Y1), . . . ,(XT ,YT ) that satisfies

a sparsity oracle inequality, that is, its expected L2-risk E
[ww f − f̂T

ww2

L2

]
is almost as small as the

smallest L2-risk ‖ f −u ·ϕ‖2
L2 , u ∈ R

d , up to some additive term proportional to ‖u‖0.

4.1.1 ALGORITHM AND MAIN RESULT

Even if the whole sample (X1,Y1), . . . ,(XT ,YT ) is available at the beginning of the prediction game,

we treat it in a sequential fashion. We run the algorithm SeqSEW∗
τ of Section 3.2 from time 1

to time T with τ = 1/
√

dT (note that T is known in this setting). Using the standard online-to-

batch conversion (see, e.g., Littlestone 1989; Cesa-Bianchi et al. 2004), we define our estimator

f̂T : X → R as the uniform average

f̂T ,
1

T

T

∑
t=1

f̃t (25)

of the estimators f̃t : X → R sequentially built by the algorithm SeqSEW∗
τ as

f̃t(x) ,

∫
Rd

[
u ·ϕ(x)

]
Bt

pt(du) . (26)

Note that, contrary to much prior work from the statistics community such as those of Catoni

(2004), Bunea and Nobel (2008) and Dalalyan and Tsybakov (2012a), the estimators f̃t : X →R are

tuned online. Therefore, f̂T does not depend on any prior knowledge on the unknown distribution

of the (Xt ,Yt), 1 6 t 6 T , such as the unknown variance E
[
(Y − f (X))2

]
of the noise, the normswwϕ j

ww
∞

, or the norms
ww f −ϕ j

ww
∞

(actually, the functions ϕ j and f −ϕ j do not even need to be

bounded in ℓ∞-norm).

In this respect, this work improves on that of Bunea and Nobel (2008) who tune their online

forecasters as a function of ‖ f‖∞ and supu∈U ‖u ·ϕ‖∞, where U ⊂ R
d is a bounded comparison

set.12 Their technique is not appropriate when ‖ f‖∞ is unknown and it cannot be extended to the

case where U = R
d (since supu∈Rd ‖u ·ϕ‖∞ = +∞ if ϕ 6= 0). The major technical difference is that

we truncate the base forecasts u ·ϕ(Xt) instead of truncating the observations Yt . In particular, this

enables us to aggregate the base forecasters u ·ϕ for all u ∈R
d , that is, over the whole R

d space.

The next sparsity oracle inequality is the main result of this section. It follows from the deter-

ministic regret bound of Corollory 8 and from Jensen’s inequality. Two corollaries are to be derived

later.

Theorem 12 Assume that (X1,Y1), . . . ,(XT ,YT )∈X ×R are independent random copies of (X ,Y )∈
X ×R, where E[Y 2]<+∞ and

wwϕ j

ww2

L2 , E[ϕ j(X)2]<+∞ for all j = 1, . . . ,d. Then, the estimator

12. Bunea and Nobel (2008) study the case where U is the (scaled) simplex in R
d or the set of its vertices.
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f̂T defined in (25)-(26) satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2 +32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 + 5
E
[
max16t6T Y 2

t

]

T
.

Proof sketch (of Theorem 12) By Corollary 8 and by definition of f̃t above and ŷt , f̃t(Xt) in

Figure 3, we have, almost surely,

T

∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T

∑
t=1

(
Yt −u ·ϕ(Xt)

)2
+32

(
max

16t6T
Y 2

t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(Xt)+5 max

16t6T
Y 2

t .

Taking the expectations of both sides and applying Jensen’s inequality yields the desired result. For

a detailed proof, see Appendix A.2.

Theorem 12 above can be used under several assumptions on the distribution of the output Y .

In all cases, it suffices to upper bound the amplitude E
[
max16t6T Y 2

t

]
. We present below a general

corollary and explain later why our fully automatic procedure f̂T solves two questions left open by

Dalalyan and Tsybakov (2012a) (see Corollary 14 below).

4.1.2 A GENERAL COROLLARY

The next sparsity oracle inequality follows from Theorem 12 and from the upper bounds on

E
[
max16t6T Y 2

t

]
entailed by Lemmas 24–26 in Appendix B. The proof is postponed to Appendix A.2.

Corollary 13 Assume that (X1,Y1), . . . ,(XT ,YT )∈X ×R are independent random copies of (X ,Y )∈
X ×R, that sup16 j6d

wwϕ j

ww2

L2 < +∞, that E|Y | < +∞, and that one of the following assumptions

holds on the distribution of ∆Y , Y −E[Y ].

•
(
BD(B)

)
: |∆Y |6 B almost surely for a given constant B > 0;

•
(
SG(σ2)

)
: ∆Y is subgaussian with variance factor σ2 > 0, that is, E

[
eλ∆Y

]
6 eλ2σ2/2 for all

λ ∈ R;

•
(
BEM(α,M)

)
: ∆Y has a bounded exponential moment, that is, E

[
eα|∆Y |]6 M for some given

constants α > 0 and M > 0;

•
(
BM(α,M)

)
: ∆Y has a bounded moment, that is, E

[
|∆Y |α

]
6 M for some given constants

α > 2 and M > 0.
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Then, the estimator f̂T defined above satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2 +64

(
E[Y ]2

T
+ψT

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 + 10

(
E[Y ]2

T
+ψT

)
,

where

ψT ,
1

T
E

[
max

16t6T

(
Yt −E[Yt ]

)2

]
6





B2

T
under Assumption

(
BD(B)

)
,

2σ2 ln(2eT )

T
under Assumption

(
SG(σ2)

)
,

ln2
(
(M+ e)T

)

α2 T
under Assumption

(
BEM(α,M)

)
,

M2/α

T (α−2)/α
under Assumption

(
BM(α,M)

)
.

Several comments can be made about Corollary 13. We first stress that, if T > 2, then the

two “bias” terms E[Y ]2/T above can be avoided, at least at the price of a multiplicative factor

of 2T/(T − 1) 6 4. This can be achieved via a slightly more sophisticated online clipping—see

Remark 19 in Appendix A.2.

Second, under the assumptions
(
BD(B)

)
,
(
SG(σ2)

)
, or

(
BEM(α,M)

)
, the key quantity ψT is

respectively of the order of 1/T , ln(T )/T and ln2(T )/T . Up to a logarithmic factor, this corresponds

to the classical fast rate of convergence 1/T obtained in the random design setting for different ag-

gregation problems (see, e.g., Catoni 1999; Juditsky et al. 2008; Audibert 2009 for model-selection-

type aggregation and Dalalyan and Tsybakov 2012a for linear aggregation). We were able to get

similar rates—with, however, a fully automatic procedure—since our online algorithm SeqSEW∗
τ

is well suited for bounded individual sequences with an unknown bound. More precisely, the finite

i.i.d. sequence Y1, . . . ,YT is almost surely uniformly bounded by the random bound max16t6T |Yt |.
Our individual sequence techniques adapt sequentially to this random bound, yielding a regret bound

that scales as max16t6T Y 2
t . As a result, the risk bounds obtained after the online-to-batch conversion

scale as E
[
max16t6T Y 2

t

]
/T . If the distribution of the output Y is sufficiently lightly-tailed—which

includes the quite general bounded-exponential-moment assumption—then we can recover the fast

rate of convergence 1/T up to a logarithmic factor.

We note that there is still a question left open for heavy-tailed output distributions. For example,

under the bounded moment assumption
(
BM(α,M)

)
, the rate T−(α−2)/α that we proved does not

match the faster rate T−α/(α+2) obtained by Juditsky et al. (2008) and Audibert (2009) under a

similar assumption. Their methods use some preliminary knowledge on the output distribution

(such as the exponent α). Thus, obtaining the same rate with a procedure tuned in an automatic

fashion—just like our method f̂T —is a challenging task. For this purpose, a different tuning of ηt

or a more sophisticated online truncation might be necessary.

Third, several variations on the assumptions are possible. First note that several classical

assumptions on Y expressed in terms of f (X) and ε , Y − f (X) are either particular cases of

the above corollary or can be treated similarly. Indeed, each of the four assumptions above on
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∆Y ,Y −E[Y ] = f (X)−E[ f (X)]+ε is satisfied as soon as both the distribution of f (X)−E[ f (X)]
and the conditional distribution of ε (conditionally on X ) satisfy the same type of assumption. For

example, if f (X)−E[ f (X)] is subgaussian with variance factor σ2
X and if ε is subgaussian condi-

tionally on X with a variance factor uniformly bounded by a constant σ2
ε , then ∆Y is subgaussian

with variance factor σ2
X +σ2

ε (see also Remark 20 in Appendix A.2 to avoid conditioning).

The assumptions on f (X)−E[ f (X)] and ε can also be mixed together. For instance, as explained

in Remark 20 in Appendix A.2, under the classical assumptions

‖ f‖∞ <+∞ and E

[
eα|ε|

∣∣∣ X
]
6 M a.s. (27)

or

‖ f‖∞ <+∞ and E

[
eλε
∣∣∣ X
]
6 eλ2σ2/2 a.s., ∀λ ∈ R , (28)

the key quantity ψT in the corollary can be bounded from above by

ψT 6





8‖ f‖2
∞

T
+

2ln2
(
(M+ e)T

)

α2 T
under the set of assumptions (27),

8‖ f‖2
∞

T
+

4σ2 ln(2eT )

T
under the set of assumptions (28).

In particular, under the set of assumptions (28), our procedure f̂T solves two questions left open

by Dalalyan and Tsybakov (2012a). We discuss below our contributions in this particular case.

4.1.3 QUESTIONS LEFT OPEN BY DALALYAN AND TSYBAKOV

In this subsection we focus on the case when the set of assumptions (28) holds true. Namely, the

regression function f is bounded (by an unknown constant) and the noise ε , Y − f (X) is subgaus-

sian conditionally on X with an unknown variance factor σ2 > 0. An important particular case is

when ‖ f‖∞ <+∞ and when the noise ε is independent of X and normally distributed N (0,σ2).

Under the set of assumptions (28), the two terms E
[
max16t6T Y 2

t

]
of Theorem 12 can be upper

bounded in a simpler and slightly tighter way as compared to the proof of Corollary 13 (we only use

the inequality (x+ y)2 6 2x2 + 2y2 once, instead of twice). It yields the following sparsity oracle

inequality.

Corollary 14 Assume that (X1,Y1), . . . ,(XT ,YT )∈X ×R are independent random copies of (X ,Y )∈
X ×R such that the set of assumptions (28) above holds true. Then, the estimator f̂T defined in (25)-

(26) satisfies

E

[www f − f̂T

www
2

L2

]

6 inf
u∈Rd

{
‖ f −u ·ϕ‖2

L2 +64
(
‖ f‖2

∞ +2σ2 ln(2eT )
) ‖u‖0

T
ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 +
10

T

(
‖ f‖2

∞ +2σ2 ln(2eT )
)
.

751



GERCHINOVITZ

Proof We apply Theorem 12 and bound E
[
max16t6T Y 2

t

]
from above. By the elementary inequality

(x+ y)2 6 2x2 +2y2 for all x,y ∈ R, we get

E

[
max

16t6T
Y 2

t

]
= E

[
max

16t6T

(
f (Xt)+ εt

)2

]
6 2

(
‖ f‖2

∞ +E

[
max

16t6T
ε2

t

])

6 2
(
‖ f‖2

∞ +2σ2 ln(2eT )
)
,

where the last inequality follows from Lemma 24 in Appendix B and from the fact that, for all

1 6 t 6 T and all λ ∈ R, we have E
[
eλεt
]
= E

[
eλε
]
= E

[
E
[
eλε
∣∣X
]]

6 eλ2σ2/2 by (28). (Note that

the assumption of conditional subgaussianity in (28) is stronger than what we need, that is, subgaus-

sianity without conditioning.) This concludes the proof.

The above bound is of the same order (up to a lnT factor) as the sparsity oracle inequal-

ity proved in Proposition 1 of Dalalyan and Tsybakov (2012a). For the sake of comparison we

state below with our notations (e.g., β therein corresponds to 1/η in this paper) a straightforward

consequence of this proposition, which follows by Jensen’s inequality and the particular13 choice

τ = min
{

1/
√

dT ,R/(4d)
}

.

Proposition 15 (A consequence of Prop. 1 of Dalalyan and Tsybakov 2012a)

Assume that sup16 j6d

wwϕ j

ww
∞
< ∞ and that the set of assumptions (28) above holds true. Then,

for all R > 0 and all η 6 η̄(R) ,
(
2σ2 + 2sup‖u‖16R ‖u ·ϕ− f‖2

∞

)−1
, the mirror averaging ag-

gregate f̂T : X → R defined by Dalalyan and Tsybakov (2012a, Equations (1) and (3)) with τ =
min
{

1/
√

dT ,R/(4d)
}

satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

‖u‖16R/2

{
‖ f −u ·ϕ‖2

L2 +
4

η

‖u‖0

T +1
ln

(
1+

√
dT ‖u‖1 +2d

‖u‖0

)}

+
4

dT

d

∑
j=1

wwϕ j

ww2

L2 +
1

(T +1)η
.

We can now discuss the two questions left open by Dalalyan and Tsybakov (2012a).

Risk bound on the whole R
d space. Despite the similarity of the two bounds, the sparsity oracle

inequality stated in Proposition 15 above only holds for vectors u within an ℓ1-ball of finite radius

R/2, while our bound holds over the whole R
d space. Moreover, the parameter R above has to be

chosen in advance, but it cannot be chosen too large since 1/η > 1/η̄(R), which grows as R2 when

R →+∞ (if ϕ 6= 0). Dalalyan and Tsybakov (2012a, Section 4.2) thus asked whether it was possible

to get a bound with 1/η < +∞ such that the infimum in Proposition 15 extends to the whole R
d

space. Our results show that, thanks to data-driven truncation, the answer is positive.

Note that it is still possible to transform the bound of Proposition 15 into a bound over the whole

R
d space if the parameter R is chosen (illegally) as R = 2‖u∗‖1 (or as a tight upper bound of the last

13. Proposition 1 of Dalalyan and Tsybakov (2012a) may seem more general than Corollary 14 at first sight since it holds

for all τ > 0, but this is actually also the case for Corollary 14. The proof of the latter would indeed have remained

true had we replaced τ = 1/
√

dT with any value of τ > 0 (see Proposition 5). We however chose the reasonable value

τ = 1/
√

dT to make our algorithm parameter-free. As noted earlier, if ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)| is finite and

known by the forecaster, another simple and easy-to-analyse tuning is given by τ = 1/(‖ϕ‖∞

√
d T ).
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quantity), where u∗ ∈R
d minimizes over Rd the regularized risk

‖ f −u ·ϕ‖2
L2 +

4

η̄(2‖u‖1)

‖u‖0

T +1
ln

(
1+

√
dT ‖u‖1 +2d

‖u‖0

)

+
4

dT

d

∑
j=1

wwϕ j

ww2

L2 +
1

(T +1) η̄(2‖u‖1)
.

For instance, choosing R = 2‖u∗‖1 and η = η̄(R), we get from Proposition 15 that the expected L2-

risk E
[
‖ f − f̂T‖2

L2

]
of the corresponding procedure is upper bounded by the infimum of the above

regularized risk over all u ∈ R
d . However, this parameter tuning is illegal since ‖u∗‖1 is not known

in practice. On the contrary, thanks to data-driven truncation, the prior knowledge of ‖u∗‖1 is not

required by our procedure.

Adaptivity to the unknown variance of the noise. The second open question, which was raised by

Dalalyan and Tsybakov (2012a, Section 5.1, Remark 6), deals with the prior knowledge of the

variance factor σ2 of the noise. The latter is indeed required by their algorithm for the choice of the

inverse temperature parameter η. Since the noise level σ2 is unknown in practice, the authors asked

the important question whether adaptivity to σ2 was possible. Up to a lnT factor, Corollary 14

above provides a positive answer.

4.2 Regression Model With Fixed Design

In this section, we consider the regression model with fixed design. In this batch setting the fore-

caster is given at the beginning of the game a T -sample (x1,Y1), . . . ,(xT ,YT ) ∈ X ×R, where the xt

are deterministic elements in X and where

Yt = f (xt)+ εt , 1 6 t 6 T, (29)

for some i.i.d. sequence ε1, . . . ,εT ∈ R (with unknown distribution) and some unknown function

f : X →R. Next we construct an estimator f̂T : X →R of f based on the sample (x1,Y1), . . . ,(xT ,YT )
that satisfies a sparsity oracle inequality, that is, its expected mean squared error E

[
1
T ∑T

t=1( f (xt)−
f̂T (xt))

2
]

is almost as small as the smallest mean squared error 1
T ∑T

t=1( f (xt)− u ·ϕ(xt))
2, u ∈ R

d,

up to some additive term proportional to ‖u‖0.

In this setting, just like in Section 4.1, our algorithm and the corresponding analysis are a

straightforward consequence of the general results on individual sequences developed in Section 3.

As in the random design setting, the sample (x1,Y1), . . . ,(xT ,YT ) is treated in a sequential fashion.

We run the algorithm SeqSEW∗
τ defined in Figure 3 from time 1 to time T with the particular choice

of τ = 1/
√

dT . We then define our estimator f̂T : X → R by

f̂T (x) ,





1

nx
∑

16t6T
t:xt=x

f̃t(x) if x ∈ {x1, . . . ,xT} ,

0 if x /∈ {x1, . . . ,xT} ,

(30)

where nx ,
∣∣{t : xt = x

}∣∣= ∑T
t=1 I{xt=x}, and where the estimators f̃t : X → R sequentially built by

the algorithm SeqSEW∗
τ are defined by

f̃t(x) ,
∫
Rd

[
u ·ϕ(x)

]
Bt

pt(du) . (31)
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In the particular case when the xt are all distinct, f̂T is simply defined by f̂T (xt) , f̃t(xt) for all

t ∈ {1, . . . ,T} and by f̂T (x) = 0 otherwise. Therefore, in this case, f̂T only uses the observations

y1, . . . ,yt−1 to estimate f (xt) (in particular, f̂T (x1) is deterministic).

The next theorem is the main result of this subsection. It follows as in the random design

setting from the deterministic regret bound of Corollory 8 and from Jensen’s inequality. The proof

is postponed to Appendix A.3.

Theorem 16 Consider the regression model with fixed design described in (29). Then, the estimator

f̂T defined in (30)–(31) satisfies

E

[
1

T

T

∑
t=1

(
f (xt)− f̂T (xt)

)2

]
6 inf

u∈Rd

{
1

T

T

∑
t=1

(
f (xt)−u ·ϕ(xt)

)2

+32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT 2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+ 5

E
[
max16t6T Y 2

t

]

T
.

As in Section 4.1, the amplitude E
[
max16t6T Y 2

t

]
can be upper bounded under various assump-

tions. The proof of the following corollary is postponed to Appendix A.3.

Corollary 17 Consider the regression model with fixed design described in (29). Assume that one

of the following assumptions holds on the distribution of ε1.

•
(
BD(B)

)
: |ε1|6 B almost surely for a given constant B > 0;

•
(
SG(σ2)

)
: ε1 is subgaussian with variance factor σ2 > 0, that is, E

[
eλε1
]
6 eλ2σ2/2 for all

λ ∈ R;

•
(
BEM(α,M)

)
: ε has a bounded exponential moment, that is, E

[
eα|ε|] 6 M for some given

constants α > 0 and M > 0;

•
(
BM(α,M)

)
: ε has a bounded moment, that is, E

[
|ε|α
]
6 M for some given constants α > 2

and M > 0.

Then, the estimator f̂T defined in (30)–(31) satisfies

E

[
1

T

T

∑
t=1

(
f (xt)− f̂T (xt)

)2

]
6 inf

u∈Rd

{
1

T

T

∑
t=1

(
f (xt)−u ·ϕ(xt)

)2

+64

(
max16t6T f 2(xt)

T
+ψT

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT 2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+ 10

(
max16t6T f 2(xt)

T
+ψT

)
,
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where

ψT ,
1

T
E

[
max

16t6T
ε2

t

]
6





B2

T
if Assumption

(
BD(B)

)
holds,

2σ2 ln(2eT )

T
if Assumption

(
SG(σ2)

)
holds,

ln2 ((M+ e)T )

α2 T
if Assumption

(
BEM(α,M)

)
holds,

M2/α

T (α−2)/α
if Assumption

(
BM(α,M)

)
holds.

The above bound is of the same flavor as that of Dalalyan and Tsybakov (2008, Theorem 5).

It has one advantage and one drawback. On the one hand, we note two additional “bias” terms(
max16t6T f 2(xt)

)
/T as compared to the bound of Dalalyan and Tsybakov (2008, Theorem 5). As

of now, we have not been able to remove them using ideas similar to what we did in the random

design case (see Remark 19 in Appendix A.2). On the other hand, under Assumption
(
SG(σ2)

)
,

contrary to Dalalyan and Tsybakov (2008), our algorithm does not require the prior knowledge of

the variance factor σ2 of the noise.
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Appendix A. Proofs

In this appendix we provide the proofs of some results stated above.

A.1 Proofs of Theorem 10 and Corollary 11

Before proving Theorem 10, we first need the following comment. Since the algorithm SeqSEW∗
τ is

restarted at the beginning of each regime, the threshold values Bt used on regime r by the algorithm

SeqSEW∗
τ are not computed on the basis of all past observations y1, . . . ,yt−1 but only on the basis of

the past observations yt , t ∈ {tr−1 +1, . . . , t −1}. To avoid any ambiguity, we set Br,tr−1+1 , 0 and

Br,t , max
tr−1+16s6t−1

|ys| , t ∈ {tr−1 +2, . . . , tr} .

Proof (of Theorem 10) We denote by R , min{r ∈ N : T 6 tr} the index of the last regime. For

notational convenience, we re-define tR , T (even if γT 6 2R).
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We upper bound the regret of the algorithm SeqSEW∗
∗ on {1, . . . ,T} by the sum of its regrets on

each time interval. To do so, first note that14

T

∑
t=1

(yt − ŷt)
2 =

R

∑
r=0

tr

∑
t=tr−1+1

(yt − ŷt)
2 =

R

∑
r=0

(
(ytr − ŷtr)

2 +
tr−1

∑
t=tr−1+1

(yt − ŷt)
2

)

6
R

∑
r=0

(
2(y2

tr
+B2

r,tr)+
tr−1

∑
t=tr−1+1

(yt − ŷt)
2

)
(32)

6
R

∑
r=0

(
tr−1

∑
t=tr−1+1

(yt − ŷt)
2

)
+4(R+1)y∗T

2 , (33)

where we set y∗T , max16t6T |yt |, where (32) follows from the upper bound (ytr − ŷtr )
2 6 2(y2

tr
+

ŷ2
tr
)6 2(y2

tr
+B2

r,tr) (since |ŷtr |6 Br,tr by construction), and where (33) follows from the inequalities

y2
tr
6 y∗T

2 and

B2
r,tr , max

tr−1+16t6tr−1
y2

t 6 y∗T
2 .

But, for every r = 0, . . . ,R, the trace of the empirical Gram matrix on {tr−1 +1, . . . , tr −1} is upper

bounded by
tr−1

∑
t=tr−1+1

d

∑
j=1

ϕ2
j(xt)6

tr−1

∑
t=1

d

∑
j=1

ϕ2
j(xt)6 (e2r −1)2 ,

where the last inequality follows from the fact that γtr−1 6 2r (by definition of tr). Since in addition

τr , 1/
√

(e2r −1)2, we can apply Corollory 7 on each period {tr−1 + 1, . . . , tr − 1}, r = 0, . . . ,R,

with BΦ = (e2r −1)2 and get from (33) the upper bound

T

∑
t=1

(yt − ŷt)
2 6

R

∑
r=0

inf
u∈Rd

{
tr−1

∑
t=tr−1+1

(
yt −u ·ϕ(xt)

)2
+∆r(u)

}
+4(R+1)y∗T

2 , (34)

where

∆r(u), 32B2
r,tr ‖u‖0 ln

(
1+

(
e2r −1

)
‖u‖1

‖u‖0

)
+5B2

r,tr +1 . (35)

Since the infimum is superadditive and since
(
ytr − u · ϕ(xtr )

)2
> 0 for all r = 0, . . . ,R, we get

from (34) that

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

R

∑
r=0

(
tr

∑
t=tr−1+1

(
yt −u ·ϕ(xt)

)2
+∆r(u)

)
+4(R+1)y∗T

2

= inf
u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

R

∑
r=0

∆r(u)

}
+4(R+1)y∗T

2 . (36)

Let u ∈ R
d . Next we bound ∑R

r=0 ∆r(u) and 4(R+ 1)y∗T
2 from above. First note that, by the

upper bound B2
r,tr 6 y∗T

2 and by the elementary inequality ln(1+ xy) 6 ln((1+ x)(1+ y)) = ln(1+

14. In the trivial cases where tr = tr−1 +1 for some r, the sum ∑
tr−1
t=tr−1+1(yt − ŷt)

2 equals 0 by convention.
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x)+ ln(1+ y) with x = e2r −1 and y = ‖u‖1 /‖u‖0, (35) yields

∆r(u)6 32y∗T
2 ‖u‖0 2r +32y∗T

2 ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)
+5y∗T

2 +1 .

Summing over r = 0, . . . ,R, we get

R

∑
r=0

∆r(u)6 32
(
2R+1 −1

)
y∗T

2 ‖u‖0 +(R+1)

(
32y∗T

2 ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)
+5y∗T

2 +1

)
. (37)

First case: R = 0

Substituting (37) in (36), we conclude the proof by noting that AT > 2 + log2 1 > 1 and that

ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
> 1.

Second case: R > 1

Since R > 1, we have, by definition of tR−1,

2R−1 < γtR−1
, ln


1+

√√√√
tR−1

∑
t=1

d

∑
j=1

ϕ2
j(xt)


6 ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


 .

The last inequality entails that 2R+1−1 6 4 ·2R−1 6 4ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
and that R+1 6

2+ log2 ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
, AT . Therefore, one the one hand, via (37),

R

∑
r=0

∆r(u)6 128y∗T
2 ‖u‖0 ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


+32y∗T

2
AT ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)

+AT

(
5y∗T

2 +1
)
,

and, on the other hand,

4(R+1)y∗T
2 6 4AT y∗T

2 .

Substituting the last two inequalities in (36) and noting that y∗T
2 = max16t6T y2

t concludes the proof.

Proof (of Corollary 11) The proof is straightforward. In view of Theorem 10, we just need to

check that the quantity (continuously extended in s = 0)

128
(

max
16t6T

y2
t

)
s ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


+ 32

(
max

16t6T
y2

t

)
AT s ln

(
1+

U

s

)

is non-decreasing in s ∈ R+ and in U ∈R+.

This is clear for U . The fact that it also non-decreasing in s comes from the following remark.

For all U > 0, the function s ∈ (0,+∞) 7→ s ln(1+U/s) has a derivative equal to

ln

(
1+

U

s

)
− U/s

1+U/s
for all s > 0 .
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From the elementary inequality

ln(1+u) =− ln

(
1

1+u

)
>−

(
1

1+u
−1

)
=

u

1+u
,

which holds for all u ∈ (−1,+∞), the above derivative is nonnegative for all s > 0 so that the con-

tinuous extension s ∈ R+ 7→ s ln(1+U/s) is non-decreasing.

A.2 Proofs of Theorem 12 and Corollary 13

In this subsection, we set ε,Y − f (X), so that the pairs (X1,ε1), . . . ,(XT ,εT ) are independent copies

of (X ,ε) ∈ X ×R. We also define σ > 0 by

σ2 , E
[
ε2
]
= E

[
(Y − f (X))2

]
.

Proof (of Theorem 12) By Corollory 8 and the definitions of f̃t in (26) and ŷt , f̃t(Xt) in Figure 3,

we have, almost surely,

T

∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T

∑
t=1

(
Yt −u ·ϕ(Xt)

)2
+32

(
max

16t6T
Y 2

t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(Xt)+5 max

16t6T
Y 2

t .

It remains to take the expectations of both sides with respect to
(
(X1,Y1), . . . ,(XT ,YT )

)
. First note

that for all t = 1, . . . ,T , since εt , Yt − f (Xt), we have

E

[(
Yt − f̃t(Xt)

)2
]
= E

[(
εt + f (Xt)− f̃t(Xt)

)2
]

= σ2 +E

[(
f (Xt)− f̃t(Xt)

)2
]
,

since E
[
ε2

t

]
= E

[
ε2
]
, σ2 on the one hand, and, on the other hand, f̃t is a built on (Xs,Ys)16s6t−1

and E
[
εt

∣∣(Xs,Ys)16s6t−1,Xt

]
= E

[
εt

∣∣Xt

]
= 0 (from the independence of (Xs,Ys)16s6t−1 and (Xt ,Yt)

and by definition of f ).

In the same way,

E

[(
Yt −u ·ϕ(Xt)

)2
]
= σ2 +E

[(
f (Xt)−u ·ϕ(Xt)

)2
]
.

Therefore, by Jensen’s inequality and the concavity of the infimum, the last inequality becomes,

after taking the expectations of both sides,

T σ2 +
T

∑
t=1

E

[(
f (Xt)− f̃t(Xt)

)2
]
6 inf

u∈Rd

{
T σ2 +

T

∑
t=1

E

[(
f (Xt)−u ·ϕ(Xt)

)2
]

+32E

[
max

16t6T
Y 2

t

]
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

E
[
ϕ2

j(Xt)
]
+5E

[
max

16t6T
Y 2

t

]
.
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Noting that the T σ2 cancel out, dividing the two sides by T , and using the fact that Xt ∼ X in the

right-hand side, we get

1

T

T

∑
t=1

E

[(
f (Xt)− f̃t(Xt)

)2
]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2

+32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 + 5
E
[
max16t6T Y 2

t

]

T
.

The right-hand side of the last inequality is exactly the upper bound stated in Theorem 12. To

conclude the proof, we thus only need to check that E
[
‖ f − f̂T‖2

L2

]
is bounded from above by the

left-hand side. But by definition of f̂T and by convexity of the square loss,

E

[www f − f̂T

www
2

L2

]
, E

[(
f (X)− 1

T

T

∑
t=1

f̃t(X)

)2
]

6
1

T

T

∑
t=1

E

[(
f (X)− f̃t(X)

)2
]
=

1

T

T

∑
t=1

E

[(
f (Xt)− f̃t(Xt)

)2
]
.

The last equality follows classically from the fact that, for all t = 1, . . . ,T , (Xs,Ys)16s6t−1 (on which

f̃t is constructed) is independent from both Xt and X and the fact that Xt ∼ X .

Remark 18 The fact that the inequality stated in Corollary 8 has a leading constant equal to 1 on

individual sequences is crucial to derive in the stochastic setting an oracle inequality in terms of

the (excess) risks E
[
‖ f − f̂T‖2

L2

]
and ‖ f −u ·ϕ‖2

L2 . Indeed, if the constant appearing in front of the

infimum was equal to C > 1, then the T σ2 would not cancel out in the previous proof, so that the

resulting expected inequality would contain a non-vanishing additive term (C−1)σ2.

Proof (of Corollary 13) We can apply Theorem 12. Then, to prove the upper bound on E

[
‖ f − f̂T‖2

L2

]
,

it suffices to show that
E
[
max16t6T Y 2

t

]

T
6 2

(
E[Y ]2

T
+ψT

)
. (38)

Recall that

ψT ,
1

T
E

[
max

16t6T

(
Yt −E[Yt ]

)2
]
=

1

T
E

[
max

16t6T
(∆Y )2

t

]
,

where we defined (∆Y )t , Yt −E[Yt ] = Yt −E[Y ] for all t = 1, . . . ,T .

From the elementary inequality (x+ y)2 6 2x2 +2y2 for all x,y ∈R, we have

E

[
max

16t6T
Y 2

t

]
, E

[
max

16t6T

(
E[Y ]+ (∆Y )t

)2

]
6 2E[Y ]2 +2E

[
max

16t6T
(∆Y )2

t

]
.

Dividing both sides by T , we get (38).
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As for the upper bound on ψT , since the (∆Y )t , 1 6 t 6 T , are distributed as ∆Y , we can apply

Lemmas 24, 25, and 26 in Appendix B.3 to bound ψT from above under the assumptions
(
SG(σ2)

)
,(

BEM(α,M)
)
, and

(
BM(α,M)

)
respectively (the upper bound under

(
BD(B)

)
is straightforward):

E

[
max

16t6T
(∆Y )2

t

]
6





B2 if Assumption
(
BD(B)

)
holds,

σ2 +2σ2 ln(2eT ) if Assumption
(
SG(σ2)

)
holds,

ln2
(
(M+e)T

)
α2 if Assumption

(
BEM(α,M)

)
holds,

(MT)2/α if Assumption
(
BM(α,M)

)
holds .

Remark 19 If T > 2, then the two “bias” terms E[Y ]2/T appearing in Corollary 13 can be avoided,

at least at the price of a multiplicative factor of 2T/(T − 1) 6 4. It suffices to use a slightly more

sophisticated online clipping defined as follows. The first round t = 1 is only used to observe Y1.

Then, the algorithm SeqSEW∗
τ is run with τ= 1/

√
dT from round 2 up to round T with the following

important modification: instead of truncating the predictions to [−Bt,Bt ], which is best suited to the

case E[Y ] = 0, we truncate them to the interval
[
Y1 −B′

t,Y1 +B′
t

]
, where B′

t , max
16s6t−1

|Ys −Y1| .

If ηt is changed accordingly, that is, if ηt = 1/(8B′
t
2), then it easy to see that the resulting procedure

f̂T , 1
T−1 ∑T

s=2 f̃s (where f̃2, . . . , f̃T are the estimators output by SeqSEW∗
τ) satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2 +64

(
Var[Y ]

T −1
+ψT−1

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 +10

(
Var[Y ]

T −1
+ψT−1

)
,

where Var[Y ] , E
[
(Y −E[Y ])2

]
. Comparing the last bound to that of Corollary 13, we note that

the two terms E[Y ]2/T are absent, and that we loose a multiplicative factor at most of 4 since

Var[Y ]6 E
[
max26t6T (Yt −E[Yt ])

2
]
, (T −1)ψT−1 so that

Var[Y ]

T −1
+ψT−1 6 2ψT−1 6 2

(
T

T −1

)
ψT 6 4ψT .

Remark 20 We mentioned after Corollary 13 that each of the four assumptions on ∆Y is fulfilled

as soon as both the distribution of f (X)−E[ f (X)] and the conditional distribution of ε (condi-

tionally on X) satisfy the same type of assumption. It actually extends to the more general case

when the conditional distribution of ε given X is replaced with the distribution of ε itself (without

conditioning). This relies on the elementary upper bound

E

[
max

16t6T
(∆Y )2

t

]
= E

[
max

16t6T

(
f (Xt)−E[ f (X)]+ εt

)2

]

6 2E

[
max

16t6T

(
f (Xt)−E[ f (X)]

)2

]
+2E

[
max

16t6T
ε2

t

]
.
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From the last inequality, we can also see that assumptions of different nature can be made on

f (X)−E[ f (X)] and ε, such as the assumptions given in (27) or in (28).

A.3 Proofs of Theorem 16 and Corollary 17

Proof (of Theorem 16) The proof follows the sames lines as in the proof of Theorem 12. We thus

only sketch the main arguments. In the sequel, we set σ2 , E
[
ε2

1].
Applying Corollory 8 we have, almost surely,

T

∑
t=1

(
Yt − f̃t(xt)

)2
6 inf

u∈Rd

{
T

∑
t=1

(
Yt −u ·ϕ(xt)

)2
+32

(
max

16t6T
Y 2

t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5 max

16t6T
Y 2

t .

Taking the expectations of both sides, expanding the squares
(
Yt − f̃t(xt)

)2
and

(
Yt − u ·ϕ(xt)

)2
,

noting that two terms T σ2 cancel out,15 and then dividing both sides by T , we get

E

[
1

T

T

∑
t=1

(
f (xt)− f̃t(xt)

)2

]
6 inf

u∈Rd

{
1

T

T

∑
t=1

(
f (xt)−u ·ϕ(xt)

)2

+32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT 2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5

E
[
max16t6T Y 2

t

]

T
.

The right-hand side is exactly the upper bound stated in Theorem 16. We thus only need to check

that

E

[
1

T

T

∑
t=1

(
f (xt)− f̂T (xt)

)2

]
6 E

[
1

T

T

∑
t=1

(
f (xt)− f̃t(xt)

)2

]
. (39)

This is an equality if the xt are all distinct. In general we get an inequality which follows from the

convexity of the square loss. Indeed, by definition of nx, we have, almost surely,

T

∑
t=1

(
f (xt)− f̂T (xt)

)2
= ∑

x∈{x1 ,...,xT }
∑

16t6T
t:xt=x

(
f (xt)− f̂T (xt)

)2
= ∑

x∈{x1 ,...,xT }
nx

(
f (x)− f̂T (x)

)2

= ∑
x∈{x1 ,...,xT }

nx

(
f (x)− 1

nx
∑

16t6T
t:xt=x

f̃t(x)

)2

6 ∑
x∈{x1 ,...,xT }

nx

1

nx
∑

16t6T
t:xt=x

(
f (x)− f̃t(x)

)2
=

T

∑
t=1

(
f (xt)− f̃t(xt)

)2
,

15. Note that E
[
( f (xt)− f̃ (xt))εt

]
= 0 since f̃t(xt) and εt are independent. This is due to the fact that f̃t is built from

the past data only. In particular, truncating the predictions to B = max16t6T |Yt | might not work. A similar comment

could be made in the random design case (Section 4.1).
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where the second line is by definition of f̂T and where the last line follows from Jensen’s inequality.

Dividing both sides by T and taking their expectations, we get (39), which concludes the proof.

Proof (of Corollary 17) First note that

E

[
max

16t6T
Y 2

t

]
, E

[
max

16t6T

(
f (xt)+ εt

)2

]
6 2

(
max

16t6T
f 2(xt)+E

[
max

16t6T
ε2

t

])
.

The proof then follows exactly the same lines as for Corollary 13 with the sequence (εt) instead of

the sequence
(
(∆Y )t

)
.

Appendix B. Tools

Next we provide several (in)equalities that prove to be useful throughout the paper.

B.1 A Duality Formula for the Kullback-Leibler Divergence

We recall below a key duality formula satisfied by the Kullback-Leibler divergence and whose proof

can be found, for example, in the monograph by Catoni (2004, pp. 159–160). We use the notations

of Section 2.

Proposition 21 For any measurable space (Θ,B), any probability distribution π on (Θ,B), and

any measurable function h : Θ → [a,+∞) bounded from below (by some a ∈R), we have

− ln

∫
Θ

e−hdπ = inf
ρ∈M +

1 (Θ)

{∫
Θ

hdρ + K (ρ,π)

}
,

where M +
1 (Θ) denotes the set of all probability distributions on (Θ,B), and where the expectations∫

Θ hdρ ∈ [a,+∞] are always well defined since h is bounded from below.

B.2 Some Tools to Exploit Our PAC-Bayesian Inequalities

In this subsection we recall two results needed for the derivation of Proposition 1 and Proposition 5

from the PAC-Bayesian inequalities (7) and (12). The proofs are due to Dalalyan and Tsybakov

(2007, 2008) and we only reproduce them for the convenience of the reader.16

For any u∗ ∈ R
d and τ > 0, define ρu∗,τ as the translated of πτ at u∗, namely,

ρu∗,τ ,
dπτ

du
(u−u∗)du =

d

∏
j=1

(3/τ)du j

2
(
1+ |u j −u∗j |/τ

)4
. (40)

16. The notations are however slightly modified because of the change in the statistical setting and goal. The target

predictions ( f (x1), . . . , f (xT )) are indeed replaced with the observations (y1, . . . ,yT ) and the prediction loss ‖ f − fu‖2
n

is replaced with the cumulative loss ∑T
t=1

(
yt − u ·ϕ(xt)

)2
. Moreover, the analysis of the present proof is slightly

simpler since we just need to consider the case L0 = +∞ according to the notations of Theorem 5 by Dalalyan and

Tsybakov (2008).
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Lemma 22 For all u∗ ∈ R
d and τ > 0, the probability distribution ρu∗,τ satisfies

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du) =

T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt) .

Lemma 23 For all u∗ ∈ R
d and τ > 0, the probability distribution ρu∗,τ satisfies

K (ρu∗,τ,πτ)6 4‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)
.

Proof (of Lemma 22) For all t ∈ {1, . . . ,T} we expand the square
(
yt − u · ϕ(xt)

)2
=
(
yt − u∗ ·

ϕ(xt)+ (u∗−u) ·ϕ(xt)
)2

and use the linearity of the integral to get

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du) (41)

=
T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+

T

∑
t=1

∫
Rd

(
(u∗−u) ·ϕ(xt)

)2
ρu∗,τ(du)

+
T

∑
t=1

2
(
yt −u∗ ·ϕ(xt)

)∫
Rd
(u∗−u) ·ϕ(xt)ρu∗,τ(du)

︸ ︷︷ ︸
=0

The last sum equals zero by symmetry of ρu∗,τ around u∗, which yields

∫
R

uρu∗,τ(du) = u∗. As for

the second sum of the right-hand side, it can be bounded from above similarly. Indeed, expanding

the inner product and then the square
(
(u∗−u) ·ϕ(xt)

)2
we have, for all t = 1, . . . ,T ,

(
(u∗−u) ·ϕ(xt)

)2
=

d

∑
j=1

(u∗j −u j)
2ϕ2

j(xt)+ ∑
16 j 6=k6d

(u∗j −u j)(u
∗
k −uk)ϕ j(xt)ϕk(xt) .

By symmetry of ρu∗,τ around u∗ and the fact that ρu∗,τ is a product-distribution, we get

T

∑
t=1

∫
Rd

(
(u∗−u) ·ϕ(xt)

)2
ρu∗,τ(du) =

T

∑
t=1

d

∑
j=1

ϕ2
j(xt)

∫
Rd
(u∗j −u j)

2ρu∗,τ(du) +0

=
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)

∫
R

(u∗j −u j)
2 (3/τ)du j

2
(
1+ |u j −u∗j |/τ

)4
(42)

=τ2
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)

∫
R

3t2dt

2(1+ |t|)4
(43)

=τ2
T

∑
t=1

d

∑
j=1

ϕ2
j(xt) , (44)

where (42) follows by definition of ρu∗,τ, where (43) is obtained by the change of variables t =

(u j −u∗j)/τ, and where (44) follows from the equality

∫
R

3t2dt

2
(
1+ |t|

)4
= 1 that can be proved by in-

tegrating by parts. Substituting (44) into (41) concludes the proof.
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Proof (of Lemma 23) By definition of ρu∗,τ and πτ, we have

K (ρu∗,τ,πτ),

∫
Rd

(
ln

dρu∗,τ

dπτ
(u)

)
ρu∗,τ(du) =

∫
Rd

(
ln

d

∏
j=1

(
1+ |u j|/τ

)4

(
1+ |u j −u∗j |/τ

)4

)
ρu∗,τ(du)

=4

∫
Rd

(
d

∑
j=1

ln
1+ |u j|/τ

1+ |u j −u∗j |/τ

)
ρu∗,τ(du) . (45)

But, for all u ∈ R
d, by the triangle inequality,

1+ |u j|/τ 6 1+ |u∗j |/τ+ |u j −u∗j |/τ 6
(
1+ |u∗j |/τ

)(
1+ |u j −u∗j |/τ

)
,

so that Equation (45) yields the upper bound

K (ρu∗,τ,πτ)6 4
d

∑
j=1

ln
(
1+ |u∗j |/τ

)
= 4 ∑

j:u∗j 6=0

ln
(
1+ |u∗j |/τ

)
.

We now recall that ‖u∗‖0 ,
∣∣{ j : u∗j 6= 0}

∣∣ and apply Jensen’s inequality to the concave function

x ∈ (−1,+∞) 7−→ ln(1+ x) to get

∑
j:u∗j 6=0

ln
(
1+ |u∗j |/τ

)
= ‖u∗‖0

1

‖u∗‖0
∑

j:u∗j 6=0

ln
(
1+ |u∗j |/τ

)
6 ‖u∗‖0 ln

(
1+

∑ j:u∗j 6=0 |u∗j |
‖u∗‖0 τ

)

6 ‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)
.

This concludes the proof.

B.3 Some Maximal Inequalities

Next we prove three maximal inequalities needed for the derivation of Corollaries 13 and 17 from

Theorems 12 and 16 respectively. Their proofs are quite standard but we provide them for the

convenience of the reader.

Lemma 24 Let Z1, . . . ,ZT be T > 1 (centered) real random variables such that, for a given constant

ν > 0, we have

∀t ∈ {1, . . . ,T}, ∀λ ∈R, E

[
eλZt

]
6 eλ2ν/2 . (46)

Then,

E

[
max

16t6T
Z2

t

]
6 2ν ln(2eT ) .

Lemma 25 Let Z1, . . . ,ZT be T > 1 real random variables such that, for some given constants α> 0

and M > 0, we have

∀t ∈ {1, . . . ,T}, E

[
eα|Zt |

]
6 M .

Then,

E

[
max

16t6T
Z2

t

]
6

ln2
(
(M+ e)T

)

α2
.
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Lemma 26 Let Z1, . . . ,ZT be T > 1 real random variables such that, for some given constants α> 2

and M > 0, we have

∀t ∈ {1, . . . ,T}, E
[
|Zt |α

]
6 M .

Then,

E

[
max

16t6T
Z2

t

]
6 (MT )2/α .

Proof (of Lemma 24) Let t ∈ {1, . . . ,T}. From the subgaussian assumption (46) it is well known

(see, e.g., Massart 2007, Chapter 2) that for all x > 0, we have

∀t ∈ {1, . . . ,T} , P
(
|Zt |> x

)
6 2e−x2/(2ν) .

Let δ ∈ (0,1). By the change of variables x =
√

2ν ln(2T/δ), the last inequality entails that, for all

t = 1, . . . ,T , we have |Zt |6
√

2ν ln(2T/δ) with probability at least 1−δ/T . Therefore, by a union

bound, we get, with probability at least 1−δ,

∀t ∈ {1, . . . ,T} , |Zt |6
√

2ν ln(2T/δ) .

As a consequence, with probability at least 1−δ,

max
16t6T

Z2
t 6 2ν ln(2T/δ)6 2ν ln(1/δ)+2ν ln(2T ) .

It now just remains to integrate the last inequality over δ ∈ (0,1) as is made precise below. By the

change of variables δ = e−z, the latter inequality yields

∀z > 0 , P

[(
max16t6T Z2

t −2ν ln(2T )

2ν

)

+

> z

]
6 e−z , (47)

where for all x ∈ R, x+ , max{x,0} denotes the positive part of x. Using the well-known fact that

E[ξ] =
∫ +∞

0 P(ξ > z)dz for all nonnegative real random variable ξ, we get

E

[
max16t6T Z2

t −2ν ln(2T )

2ν

]
6 E

[(
max16t6T Z2

t −2ν ln(2T )

2ν

)

+

]

=

∫ +∞

0
P

[(
max16t6T Z2

t −2ν ln(2T )

2ν

)

+

> z

]
dz

6
∫ +∞

0
e−zdz = 1 ,

where the last line follows from (47) above. Rearranging terms, we get E
[
max16t6T Z2

t

]
6 2ν+

2ν ln(2T ), which concludes the proof.

Proof (of Lemma 25) We first need the following definitions. Let ψα : R+ → R be a convex

majorant of x 7→ eα
√

x on R+ defined by

ψα(x),

{
e if x < 1/α2 ,

eα
√

x if x > 1/α2 .
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We associate with ψα its generalized inverse ψ−1
α : R→ R+ defined by

ψ−1
α (y) =

{
1/α2 if y < e ,

(lny)2/α2 if y > e .

Elementary manipulations show that:

• ψα is nondecreasing and convex on R+;

• ψ−1
α is nondecreasing on R;

• x 6 ψ−1
α

(
ψα(x)

)
for all x ∈ R+.

The proof is based on a Pisier-type argument as is done, for example, by Massart (2007,

Lemma 2.3) to prove the maximal inequality E[max16t6T ξt ] 6
√

2ν ln T for all subgaussian real

random variables ξt , 1 6 t 6 T , with common variance factor ν > 0.

From the inequality x 6 ψ−1
α

(
ψα(x)

)
for all x ∈ R+ we have

E

[
max

16t6T
Z2

t

]
6 ψ−1

α

(
ψα

(
E

[
max

16t6T
Z2

t

]))

6 ψ−1
α

(
E

[
ψα

(
max

16t6T
Z2

t

)])
= ψ−1

α

(
E

[
max

16t6T
ψα

(
Z2

t

)])
,

where the last two inequalities follow by Jensen’s inequality (since ψα is convex) and the fact that

both ψ−1
α and ψα are nondecreasing.

Since ψα > 0 and ψ−1
α is nondecreasing we get

E

[
max

16t6T
Z2

t

]
6 ψ−1

α

(
E

[
T

∑
t=1

ψα

(
Z2

t

)
])

= ψ−1
α

(
T

∑
t=1

E

[
ψα

(
Z2

t

)]
)

6 ψ−1
α

(
T

∑
t=1

E

[
eα|Zt |+ e

])

6 ψ−1
α

(
MT + eT

)
=

ln2
(
MT + eT

)

α2
,

where the second line follows from the inequality ψα(x) 6 e+ eα
√

x for all x ∈ R+, and where the

last line follows from the bounded exponential moment assumption and the definition of ψ−1
α . It

concludes the proof.

Proof (of Lemma 26) As in the previous proof, we have, by Jensen’s inequality and the fact that

x 7→ xα/2 is convex and nondecreasing on R+ (since α > 2),

E

[
max

16t6T
Z2

t

]
6 E

[(
max

16t6T
Z2

t

)α/2
]2/α

= E

[
max

16t6T

∣∣Zt

∣∣α
]2/α

6 E

[
T

∑
t=1

∣∣Zt

∣∣α
]2/α

6 (MT )2/α

by the bounded-moment assumption, which concludes the proof.
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P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods, Theory and

Applications. Springer Series in Statistics. Springer, Heidelberg, 2011.

F. Bunea and A. Nobel. Sequential procedures for aggregating arbitrary estimators of a conditional

mean. IEEE Trans. Inform. Theory, 54(4):1725–1735, 2008. ISSN 0018-9448.

F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for regression learning. Technical

report, 2004. Available at http://arxiv.org/abs/math/0410214.

F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for Gaussian regression. Ann. Statist.,

35(4):1674–1697, 2007a. ISSN 0090-5364.

F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Sparsity oracle inequalities for the Lasso. Electron.

J. Stat., 1:169–194, 2007b. ISSN 1935-7524.

E. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n.

Ann. Statist., 35(6):2313–2351, 2007.

O. Catoni. Universal aggregation rules with exact bias bounds. Technical Report PMA-510, Labo-
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