
HAL Id: hal-00813300
https://hal.inria.fr/hal-00813300

Submitted on 15 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Webdamlog System Managing Distributed
Knowledge on the Web

Serge Abiteboul, Émilien Antoine, Julia Stoyanovich

To cite this version:
Serge Abiteboul, Émilien Antoine, Julia Stoyanovich. The Webdamlog System Managing Distributed
Knowledge on the Web. [Technical Report] 2013. �hal-00813300�

https://hal.inria.fr/hal-00813300
https://hal.archives-ouvertes.fr

The Webdamlog System

Managing Distributed Knowledge on the Web ∗

Serge Abiteboul
Inria Saclay & ENS Cachan

France
first.last@inria.fr

Émilien Antoine
Inria Saclay & ENS Cachan

France
first.last@inria.fr

Julia Stoyanovich
Drexel University, USA

Skoltech, Russia
stoyanovich@drexel.edu

April 15, 2013

We study the use of WebdamLog, a declarative high-level lan-
guage in the style of datalog, to support the distribution of
both data and knowledge (i.e., programs) over a network of au-
tonomous peers. The main novelty of WebdamLog compared to
datalog is its use of delegation, that is, the ability for a peer to
communicate a program to another peer.

We present results of a user study, showing that users can
write WebdamLog programs quickly and correctly, and with a
minimal amount of training. We present an implementation
of the WebdamLog inference engine relying on the Bud dat-
alog engine. We describe an experimental evaluation of the
WebdamLog engine, demonstrating that WebdamLog can be im-
plemented efficiently. We conclude with a discussion of ongoing
and future work.

1 Introduction

A number of works have argued for developing a holistic ap-
proach to distributed content management, e.g. P2P Content

Warehouse [1], Dataspaces [11] and Data rings [6]. The goal
is to facilitate the collaboration of autonomous peers towards
solving content management tasks. Such situations arise for
instance in personal information management (PIM), which is
often given as an important motivating example [11]. In [6], the
authors argued for founding such data exchange on declarative
languages, to facilitate the design of applications, notably by
non-technical users.

In the present work, we propose an approach for manag-
ing data and knowledge (i.e., programs) over a network of au-
tonomous peers. From a system viewpoint, the different actors
are autonomous and heterogeneous in the style of P2P [6, 11].
However, we do not see the system we developed as an alter-
native to existing network services such as Facebook or Flickr.
Rather, we view our system as the means of seamlessly manag-
ing distributed knowledge residing in any of these services, as
well as in a wide variety of systems managing personal or social
data.

Our system uses the WebdamLog language [4], a declarative
high-level language in the style of datalog, to support the dis-
tribution of both data and knowledge (i.e., programs) over a
network of autonomous peers. In recent years, there has been
renewed interest in using languages in the datalog family in
a large range of applications, from program analysis, to secu-
rity and privacy protocols, to natural language processing, to
multi-player games. The arguments in favor of datalog-style
languages are familiar ones: a declarative approach alleviates
the conceptual complexity on the user, while at the same time

∗This work has been partially funded by the European Research Coun-
cil under the European Community’s Seventh Framework Programme
(FP7/2007-2013); ERC grantWebdam, agreement 226513. http://

webdam.inria.fr/

allowing for powerful performance optimizations on the part of
the system.

WebdamLog is a datalog-style language that emphasizes coop-
eration between autonomous peers communicating in an asyn-
chronous manner. The WebdamLog language extends datalog in
a number of ways, supporting updates [9], distribution [3], nega-
tion [12], and, importantly, a novel feature called delegation [4].
As a result, WebdamLog is neither as simple nor as beautiful as
datalog. It is also more procedural, which is needed to capture
real Web applications with the peers’ knowledge evolving over
time.

We illustrate by example (Section 2) that the language (for-
mally recalled in Section 3) is indeed well adapted to specify-
ing realistic distributed content management tasks, notably in
PIM. Our technical contributions are described in the following
sections:

• We present results of a user study, showing that users can
write WebdamLog programs quickly and correctly, and with
a minimal amount of training (Section 4).

• We present an implementation of the WebdamLog engine
relying on the Bud datalog engine (Section 5). Our imple-
mentation supports novel linguistic features such as peer
and predicate variables and rule delegation.

• We describe an experimental evaluation of the WebdamLog

engine (Section 6).

We discuss related work in Section 7, outline future research
directions and conclude in Section 8.

2 Running example

Suppose that Alice and Bob are getting married, and their
friends want to offer them an album of photos in which the
bride and groom appear together. Such photos may be owned
by friends and family members of Alice and Bob. Owners of
the photos may store them on a variety of services and devices,
including, e.g., desktop computers, smartphones, Picasa, and
Flickr.

Making a photo album for Alice and Bob involves the follow-
ing steps: (1) Identify friends of Alice and Bob using Facebook
and Google+; (2) Find out where each friend keeps his/her pho-
tos and how to access them; (3) From among all photos that are
obtained, select those that feature both Alice and Bob, using,
e.g., tags or face recognition software; and (4) Ask Sue, a friend
of Alice, to verify that the selected photos are appropriate for
the photo album and to possibly exclude some from this album.

As should be clear from the example, such a task would be
much more manageable if it were executed automatically. Its
execution involves a certain amount of simple reasoning on the

1

part of the system, which can be naturally specified with declar-
ative rules. For example, for Step (1), the following WebdamLog

rule computes the union of Alice’s and Bob’s Facebook contacts
in a relation allFriends on Sue’s peer:

[rule at sue]

allFriends@sue($name) :- friends@aliceFB($name)

allFriends@sue($name) :- friends@bobFB($name)

using wrappers to Facebook for Alice and Bob.
In general, a peer name such as aliceFB or sueIPhone denotes

a system or a device associated to a particular URL. Also a
relation name such as friends or contacts denotes the name of a
relation or a service on the corresponding system/device.

For simplicity, we assume that a person’s name, e.g. alice,
corresponds to the name of the peer that the particular friend
uses as entry point to the Webdam system. (This name is thus
associated to a particular URL.) We assume that each such
peer keeps localization data for the corresponding person. For
instance, relation photoLocation in that peer tells where (i.e., at
which peers) this person keeps her photos. The following rule,
at peer sue, delegates Steps (2) and (3) of the photo album task
to the peers corresponding to the peers corresponding to her
friends:

[rule at sue]

album@sue($photo,$name) :-

allFriends@sue($name),

photoLocation@$name($peer),

photos@$peer($photo),

features@$peer($photo,alice),

features@$peer($photo,bob)

The key feature of this rule is the use of the WebdamLog lan-
guage to share the work. Let Dan be a friend, and so a possible
source. Then Sue’s peer will delegate the following rule to Dan’s
peer:

[rule at dan]

album@sue($photo,dan) :-

photoLocation@dan($peer),

photos@$peer($photo),

features@$peer($photo,alice),

features@$peer($photo,bob)

Now suppose that Dan uses both Picasa and Flickr. Then,
Dan’s peer will delegate to danPicasa (a wrapper for Dan’s ac-
count on Picasa) the following rule:

[rule at danPicasa]

album@sue($photo,dan) :-

photos@danPicasa($photo),

features@danPicasa($photo,alice),

features@danPicasa($photo,bob)

and similarly for Flickr.
Note how the tasks are automatically shared by many peers.

Observe that when new friends of Alice or Bob are discovered
(e.g., proposed by some known friends), Sue’s album, which is
defined intentionally, is automatically updated. Observe also
that, to simplify, we assume here that all peers use a similar
organization (ontology). This constraint may easily be removed
at the cost of slightly more complicated rules.

Now consider Step (4) in the photo album task. Sue may de-
cide, for instance, that photos of the couple from Dave’s Flickr
stream are inappropriate, and that Dave should be excluded
from the set of sources. Such manual curation by Sue may be
accomplished by modifying the definition of allFriends:

[rule at sue]

allFriends@sue($name) :- friends@aliceFB($name),

not blocked@sue($name)

allFriends@sue($name) :- friends@bobFB($name)

not blocked@sue($name)

By inserting/removing facts in blocked@sue, Sue now controls
who can participate. A similar control can also be added at the
photo or photo location level.

Observe that updates result in modifying the programs run-
ning at the participating peers. For instance, the sets of rules
at the various peers evolve, controlled by Sue’s updates as well
as by the discovery of new friends of Alice or Bob, and of new
sources of photos. Consequently, the album evolves as well.

We will use the example of this section throughout the paper
to demonstrate the salient features of our approach.

3 The WebdamLog Language

In this section, we briefly recall the language WebdamLog

from [4].
We assume the existence of a countable set of variables and

of a countable set of data values that includes a set of relation
names and a set of peer names. (Relation and peer names are
part of the data.) Variables start with the symbol $, e.g. $x.

Schema. A relation in our context is an expression m@p
where m is a relation name and p a peer name. A schema is an
expression (π, E, I, σ) where π is a possibly infinite set of peer
names, E is a set of extensional relations of the form m@p for
p ∈ π, I is a set of intentional relations of the form m@p for
p ∈ π, and σ, the sorting function, specifies for each relation
m@p, an integer σ(m@p) that is its sort. A relation cannot be
at the same time intentional and extensional.

Facts. A fact is an expression of the form m@p(a1, ..., an),
where n = σ(m@p) and a1, ..., an are data values. An example
of a fact is:

pictures@myalbum(1771.jpg, ”“Timbuktu′′”, 11/11/2011)
Rules. A term is a constant or a variable. A rule in a peer

p is an expression of the form:

[at p] $R@$P($U):-(¬) $R1@$P1($U1),. . . ,
(¬) $Rn@$Pn($Un)

where $R, $Ri are relation terms, $P, $Pi are peer terms, $U, $Ui

are vectors of terms. The following safety condition is imposed:
that $R and $P must appear positively bound in the body and
each variable occurring in a negative literal must also appear
positively bound in the body. In addition, rules are required
from left to right and it is also required that each peer name
$Pi must be positively bound in a previous atom.

Semantics. At a particular point in time, each peer p has a
state consisting of some facts, some rules specified locally, and
possibly of some rules that have been delegated to p by other
peers. Peers evolve by updating their base of facts, by sending
facts to other peers, and by updating their delegations to other
peers. So, both the set of facts and the set of delegated rules
evolve over time. (To simplify, we follow [4] in assuming that
the set of rules specified locally is fixed.)

The semantics of a rule with head m@p(u) in a peer p′ de-
pends on the nature of the relation in its head: whether it is
extensional (m@p in E) or intentional (m@p in I), and whether
it is local (p=p′) or not. We first consider rules in which all re-
lations occurring in the body are local; we call such rules local

rules. A subtlety lies in the use of variables for peer names. The
nature of a rule may depend on the instantiation of its variables,
i.e., one instantiation of a particular rule may be local, whereas
another may not be.

2

We distinguish 5 cases identified by a letter in which we clas-
sify the rules.

A. Local rule with local intentional head (datalog)
These rules define local intentional predicates, as in classic dat-
alog.

B. Local rule with local extensional head (local
database updates) Facts derived by this kind of rules are in-
serted into the local database. Note that, by default, like in
Dedalus[9], facts are not persistent. To have them persist, we
use rules of the form m@p(U) :- m@p(U). Deletion can be
captured by controlling the persistence of facts.

The two previous kinds of rules, containing only predicates of
the local peer, do not require network communication, and are
not affected by problems due to asynchronicity of the network.

C. Local rule with non-local extensional head (messag-
ing) Facts derived by rules of this kind are sent to other peers.
For example, the rule:

[at mi] $m@$p($name, ”“Happy birthday!′′”) :-
today@mi($date),
birthday@mi($name, $m, $p, $date)

where mi stands for my iPhone, results in sending a Happy
Birthday message to a contact on the day of his birthday. Ob-
serve that the name $p of the peer and the name $m of the
message varies depending on the person.

D. Local rule with non-local intentional head (view
delegation) Such a rule results in installing a view remotely.
For instance, the rule

[at mi] boyMeetsGirl@gossipsite($girl, $boy) :-
girls@mi($girl, $loc),
boys@mi($boy, $loc)

installs a join of two mi relations at gossipsite.

Finally we consider non-local rules.

E. Non-local (general delegation) Consider the rule

[at mi] boyMeetsGirl@gossipsite($girl, $boy) :-
girls@mi($girl, $loc), boys@ai($boy, $loc)

where ai stands for Alice’s iPhone. This results in installing, at
gossipsite, a view tr@mi and a rule, defined as follows:

[at mi] tr@mi@ai($girl, $loc) :-
girls@mi($girl, $loc)

[at ai] boyMeetsGirl@gossipsite($girl, $boy) :-
tr@mi@ai($girl, $loc), boys@ai($boy, $loc)

Note that both rules are now local. Note also that, when
girls@mi changes, this modifies the view at Alice’s iPhone, pos-
sibly changing the semantics of boyMeetsGirl@gossipsite.

In [4], we formally define the semantics of WebdamLog. We
show that, unless all peers and programs are known in advance,
delegation strictly increases the expressive power of the model.
If they are known in advance, delegation does not bring any
extra power. Of course, delegation is also useful in practice,
because it enables obtaining logic (rules) from other sites, and
deploying logic (rules) to other sites. Conditions for systems
to be deterministic are shown in [4], and are extremely restric-
tive. Even in the absence of negation, a WebdamLog system
will typically not be deterministic because of asynchronicity.

4 Usability of WebdamLog

We argued in the introduction that WebdamLog can be used to
declaratively specify distributed tasks in a variety of applica-
tions, including personal data management. We conducted a
user study to demonstrate the usability of WebdamLog in this
particular domain.

Participants. We recruited 27 participants for the user
study. We present a break-down of results by two groups.

Group 1 consisted of 16 participants with training in Com-
puter Science. Among them, 5 had basic database background,
and 4 were familiar with advanced database concepts, including
datalog. The group had the following break-down by highest
completed education level: 2 high school, 3 BS, 9 MS, and 2
PhD.

Group 2 consisted of 11 participants with no CS training, and
with the following break-down by highest completed education
level: 3 vocational school, 6 BS, 2 MS.

Study design. All participants were given a brief tutorial in
which basic features of WebdamLog were explained informally,
and demonstrated through examples. The tutorial took 15-20
minutes for Group 1 and 25 minutes for Group 2. Following the
tutorial, all participants were asked to take a written test. The
test consisted of three problems that tested comprehension of
different features of WebdamLog, including local and non-local
rules, rules with variable relation and peer names, and delega-
tion. In the tutorial and the test, we did not make an explicit
distinction between intentional and extensional relations, and
we ignored recursion.

The user study test had the following contents, reproduced
here literally, apart from formatting.

Problem 1. Consider the following relations and facts.

schema: songs(fileName,content) // the same at all peers

songs@lastFM("song1.mp3", "...")
songs@lastFM("song2.mp3", "...")
songs@lastFM("song3.mp3", "...")
songs@pandora("song4.mp3", "...")
songs@pandora("song5.mp3", "...")

1. Write one or several rules that copy all songs from lastFM

and Pandora into relation songs at peer myLaptop.

2. Suppose now that relation peers@myLaptop contains
names of peers on which to look for music. You can assume
that each peer stores songs in a relation called songs, with
the same schema as above. Write a WebdamLog program
that copies songs from all peers into songs@myLaptop.

3. Write a rule that copies songs from songs@myLaptop into
the songs relation on each peer whose name is listed in
peers@myLaptop.

Problem 2. Consider the following relations and facts.

schema: friends(friendName) photos(fileName,content)
inPhoto(fileName, friendName)

friends@facebook("ann")
friends@facebook("sue")
friends@facebook("zoe")

photos@ann("sunset.jpg", "...")
photos@ann("vacation.jpg", "...")
photos@ann("party.jpg", "...")

photos@sue("image1.jpg","...")
photos@sue("image2.jpg","...")

inPhoto@ann("vacation.jpg", "jane")
inPhoto@ann("vacation.jpg", "ann")
inPhoto@ann("party.jpg", "jane")

3

inPhoto@ann("party.jpg", "zoe")
inPhoto@ann("party.jpg", "sue")

inPhoto@sue("image2.jpg", "sue")
inPhoto@sue("image2.jpg", "jane")

Assume that photos and inPhoto relations at all peers have
the same schema. Consider now the following WebdamLog rule.

photos@myLaptop($X,$Z) :- friends@facebook($Y),
photos@$Y($X,$Z), inPhoto@$Y($X,"jane")

1. Explain in words what this rule computes.

2. List the facts in that are in photos@myLaptop after the
rule above is executed.

3. List the facts that are in photos@myLaptop if the following
rule is executed instead:

photos@myLaptop($X,$Z) :- friends@facebook($Y),
photos@$Y($X,$Z), inPhoto@$Y($X,"jane"),
inPhoto@$Y($X,"sue")

Problem 3. Recall the example from the tutorial, in which
we looked at subscribing the peer myLaptop to CNN news. This
example is reproduced below.

schema: news@cnn(text) news@myLaptop(source, text)
subscribers@cnn(peer)

news@cnn("US Olympic gold")
news@cnn("Higgs boson seen in action")
subscribers@cnn("myLaptop")

[at cnn] news@$X("cnn", $Y) :- subscribers@cnn($X),
news@cnn($Y)

Suppose that you would now like to receive CNN news on peer
myPhone, and to store them in relation news, with the schema
source,text. Describe at least 1 method for doing this. You
may assume that you can add rules at peers cnn, myLaptop and
myPhone, and that you can insert facts into relations on any of
these peers.

Results. The results of the study were very encouraging.
Group 1. On Problem 1, 3 participants received a score of

2.5 out of 3, while 13 participants received a perfect score. All
participants received a perfect score on Problem 2. Problem 3
was open-ended, and all participants gave at least one correct
answer. 4 participants gave 3 correct answers, 4 gave 2 correct
answers (2 of these also gave 1 incorrect answer each), and the
remaining 8 participants each gave 1 correct answer.

We also asked participants to record how long it took them
to answer each problem, in minutes. Problem 1 took between
2.5 and 6 minutes, Problem 2 between 2 and 9 minutes, and
Problem 3 between 1 and 8 minutes. We did not observe any
correlation between the time it took to answer questions and the
participant background in data management or even datalog.

Group 2. On Problem 1, the average score was 2.3, with the
following break-down: 6 participants received a perfect score,
3 received 2 out of 3, 1 had a score of 1, and 2 were not able
to solve the problem. On Problem 2, 10 participants received
a perfect score and 1 got a score of 2 out of 3. On Problem
3, 1 gave 5 good answers, 6 gave 3 good answers, 3 gave 2
good answers, and 2 gave no correct answer. The same two
participants failed to answer Problems 1 and 3.

The test took longer for the participants without CS training.
Problem 1 took between 6 and 8 minutes to solve in this group,
Problem 2 took between 5 and 8 minutes, and Problem 3 took
between 4 and 12 minutes.

Figure 1: WebdamLog engine in a full Webdam peer

Remark. We considered alternative ways in which a user
can interact with a WebdamLog system. We are currently de-
veloping an interface in which users will be able to write Web-

damLog programs, but will also have access to customizable
canned queries implementing common functionality. A SQL-
based approach is not a natural choice, since SQL does not
accommodate distribution, which is central to WebdamLog.

In summary, all technical and the majority of non-technical
participants of our study were able to both understand and
write WebdamLog programs correctly, with a minimal amount
of training. We observed a difference between the technical and
non-technical groups in terms of both correctness and time to
solution. Two members of the non-technical group were able to
understand WebdamLog programs but were not able to write
programs on their own. We believe that this issue will be alle-
viated once an appropriate user interface becomes available.

5 The WebdamLog System

In this section, we describe the architecture of the WebdamLog

system. We describe the implementation of the system, stress-
ing the novel features compared to standard datalog engines.

5.1 System architecture

Figure 1 shows the architecture of a WebdamLog peer. Facts
and rules are stored in a persistent store. The WebdamLog en-
gine, described in greater detail in the remainder of this section,
retrieves these facts and rules to process updates and answer
queries coming from the top layers. The Security module pro-
vides facilities for standard access control mechanisms such as
encryption, signatures and other authentication protocols. The
Communication module is responsible for exchanging facts and
rules with other peers.

Datalog evaluation has been intensively studied, and several
open-source implementations are available. We chose not to im-
plement yet another datalog engine, but instead to extend an
existing one. In particular, we considered two open-source sys-
tems that are currently being supported, namely, Bud [21] from
Berkeley University and IRIS [19] from Innsbruck University.
The IRIS system is implemented in Java and supports the main
strategies for efficient evaluation of standard local datalog. The
Bud system is implemented in the Ruby scripting language, and
initially seemed less promising from a performance viewpoint.
However, Bud provides mechanisms for asynchronous commu-
nication between peers, an essential feature for WebdamLog.

4

In absence of a real performance comparison, the choice was
not easy. We finally decided in favor of Bud, both because of
its support for asynchronous communication, and because its
scalability has been demonstrated in real-life scenarios such as
Internet routing.

5.2 WebdamLog computation in Bud

The Bud system supports a powerful datalog-like language in-
troduced in [8]. Indeed, we see Bud (and use it) as a dis-
tributed datalog engine with updates and asynchronous com-
munications.

A WebdamLog computation consists semantically of a se-
quence of stages, with each stage involving a single peer. Each
stage of a WebdamLog peer computation is in turn performed
by a three-step Bud computation, described next. Note that
we use the word stage for WebdamLog and step for Bud:

. . .
Stage at peer p Stage at peer q

. . .
Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

(1)

The 3 steps of a WebdamLog stage are as follows:

1. Inputs are collected including input messages from other
peers, clock interrupts and host language calls.

2. Time is frozen; the union of the local store and of the
batch of events received since the last stage is taken as an
extensional database, and a Bud program is run to fixpoint.

3. Outputs are obtained as side effects of the program, includ-
ing output messages to other peers, updates to the local
store, and host language callbacks.

Observe that a fixpoint computation is performed at Step 2
by the local datalog engine (namely the Bud engine). This
computation is based on a fixed program with no deletion over
a fixed set of extensional relations. In Step 3, deletion messages
may be produced, along with updates to the set of rules and
to the set of extensional relations (for different reasons, which
we will explain further). Note that all this occurs outside the
datalog fixpoint computation.

Relations appearing in the rules are implemented as Bud col-
lections. Bud distinguishes between three kinds of key-value
sets:

1. A table keeps a fact until an explicit delete order is received.
We use tables to support WebdamLog extensional relations.

2. A scratch is used for storing results of intermediate com-
putation. We use scratch collections to implement Web-

damLog local intentional relations. It is emptied at Step 1
and receives facts during fixpoint computation at Step 2.

3. A channel provides support for asynchronous communica-
tions. It records facts that have to be sent to other peers.
We use channels for that and in particular for messages
related to installing or removing delegations.

As in WebdamLog, facts in a peer are consumed by the engine
at each firing of the peer (each stage). To make facts persistent,
they have to be re-derived by the peer at each stage. This
is captured in our implementation by assuming that rules re-
derive extensional facts implicitly, unless a deletion message has
been received.

We observe a subtle point that lead us to not fully adopt the
original semantics of WebdamLog, as described in [4]. There,
we assumed for simplicity that messages are transmitted in-
stantaneously. This assumption is not realistic in practice, and
does not hold in our implementation. Since communications

are asynchronous, there is no guarantee in WebdamLog as to
when a fact written to a channel will be received by a remote
peer.

5.3 Implementing WebdamLog rules

We now describe how WebdamLog rules are implemented on
top of Bud. We distinguish between 4 cases. This brings us
to revisit the semantics of WebdamLog (from Section 3) with a
focus on implementation. As in Section 3, whether a rule in a
peer p is local (i.e., all relations occurring in the rule body are
p-relations) plays an important role. We consider 4 cases. The
last case (Case F) focuses on the use of variables for relation
and peer names. For the first 3 cases, we ignore such variables.

A-B-C. Simple local rules. In this cases, i.e., local rules
with either an extensional relation or a local intentional relation
in the head, WebdamLog rules can be directly supported by
identical Bud rules. (This takes care of local deduction as in
datalog (A), messages for local updates (B) and messages to
other peers (C).)

D. Local with non-local intentional head. From an im-
plementation viewpoint, this case is more tricky. We illustrate
it with an example. Consider an intentional relation s0@q de-
fined in the distributed setting by the following two rules:

[at p1] s0@q(X, Y) :- r1@p1(X, Y)
[at p2] s0@q(X, Y) :- r1@p2(X, Y)

Intuitively, the two rules specify a view relation s0@q at q that
is the union of two relations r1@p1 and r1@p2 from peers p1 and
p2, respectively. Consider a possible naive implementation that
would consist in materializing relation s0 at q, and having p1

and p2 send update messages to q. Now suppose that a tuple
〈0, 1〉 is in both r1@p1 and r1@p2. Then it is correctly in s0@q.
Now suppose that this tuple is deleted from r1@p1. Then a
deletion message is sent to q, resulting in wrongly deleting the
fact from s0@q.

The problem arises because the tuple 〈0, 1〉 originally had two
reasons to be in s0, and only one of the reasons disappeared.
To avoid this problem, we could use the provenance of the fact
〈0, 1〉 in s0@q.

A general approach for tracking provenance in our setting,
and to using it as basis for performance optimizations, is part
of ongoing work, and is outlined in Section 5.5. For now, we
can implement the following Bud rules at p1, p2 to correctly
support the two rules:

[at p1] s0p1@q(X, Y):- r1@p1(X, Y)
[at p2] s0p2@q(X, Y):- r1@p2(X, Y)
[at q] s0@q(X, Y):- s0p1@q(X, Y)
[at q] s0@q(X, Y):- s0p2@q(X, Y)

Note that relations s0p1 and s0p2 may be either intentional, in
which case the view is computed on demand, or extensional, in
which case the view is materialized.

E. Non-local rules. We consider non-local rules with exten-
sional head. (Non-local rules with intentional head are treated
similarly.) An example of such a rule is:

[at p] r0@q(X0):- r1@q1(X1),. . . ,ri@qi(Xi),. . .

with q1= . . . = qi−1 = p, qi = q 6= p, and with each Xj denoting
a tuple of terms. If we consider atoms in the body from left
to right, we can process at p the rule until we reach ri@q(Xi).
Peer p does not know how to evaluate this atom, but it knows
that the atom is in the realm of q. Therefore, peer p rewrites
the rule into two rules, as specified by the formal definition of
delegation in WebdamLog:

5

[at p] mid@q(Xmid) :- r1@p(X1),. . . ,ri−1@p(Xi−1)
[at q] r0@q(X0) :- mid@q(Xmid), ri@q(Xi),. . .

where mid identifies the message, and notably encodes, (i) the
identifier of the original rule, (ii) that the rule was delegated by
p to q, and (iii) the split position in the original rule. The tuple
Xmid includes the variables that are needed for the evaluation of
the second part of the rule, or for the head. Observe that the
first rule (at p) is now local. If the second rule, installed at q,
is also local, no further rewriting is needed. Otherwise, a new
rewriting happens, again splitting the rule at q, delegating the
second part of the rule as appropriate, and so on.

Observe that an evolution of the state of p may result in in-
stalling new rules at q, or in removing some delegations. Dele-
tion of a delegation is simply captured by updating the predi-
cate guarding the rule. Insertion of a new delegation modifies
the program at q. Note that in Bud the program of a peer is
fixed, and so adding and removing delegations is a novel fea-
ture in WebdamLog. Implementing this feature requires us to
modify the Bud program of a peer. This happens during Step
1 of the WebdamLog stage.

F. Relation and peer variables. Finally, we consider re-
lation and peer variables. In all cases presented so far, Web-

damLog rules could be compiled statically into Bud rules. This
is no longer possible in this last case. To see this, consider an
atom in the body of a rule. Observe that, if the peer name in
this atom is a variable, then the system cannot tell before the
variable is instantiated whether the rule is local or not. Also,
observe that, if the relation name in this atom is a variable,
then the system cannot know whether that relation already ex-
ists or not. In general, we cannot compile a WebdamLog rule
into Bud until all peer and relation variables are instantiated.

To illustrate this situation more precisely, consider a rule of
the form:

r0@p(X0):- r1@p($X), . . . ,$X@p(Xi),. . . ,

where r0@p is extensional and $X is a variable. This particular
rule is relatively simple since, no matter how the variable is
instantiated, the rule falls into the simple case B. However, it
is not a Bud rule because of the variable relation name $X.

Note that WebdamLog rules are evaluated from left to right,
and a constraint is that each relation and peer variable must
be bound in a previous atom. (This constraint is imposed by
the language.) Therefore, when we reach the atom $X@p(Xi),
the variable $X has been instantiated.

To evaluate this rule, we use two WebdamLog stages of the
peer. In the first stage, we bind $X with values found by in-
stantiating r1@p($X). Suppose that we find two values for $X,
say t1 and t2. We always wait for the next stage to introduce
new rules (there are two new rules in this case). More precisely,
new rules are introduced during Step 1 of the WebdamLog com-
putation of the next stage. In the example, the following rules
are added to the Bud program at p:

r0@p(X0):- t1@p(Xi),. . . ,
r0@p(X0):- t2@p(Xi),. . . ,

Observe that, even in the absence of delegation, having variable
relation and peer names allows the WebdamLog engine to pro-
duce new rules at run time, possibly leading to the creation of
new relations. This is a distinguishing feature of our approach,
and is novel to WebdamLog and to our implementation.

This example uses a relation name variable. Peer name vari-
ables are treated similarly. Observe that having a peer name
variable, and instantiating it to thousands of peer names, al-
lows us delegating a rule to thousands of peers. This makes
distributing computation very easy from the point of view of

the user, but also underscores the need for powerful security
mechanisms. Developing such mechanisms is in our immediate
plans for future work.

5.4 Running the fixpoint

The Bud engine evaluates the fixpoint using the semi-naive
algorithm, i.e., Bud saturates one stratum after another ac-
cording to a stratification given by the dependency graph. The
dependency graph is a directed hyper-graph with relations as
nodes, and with a hyper-edge from relations si to relation r if
there is a rule in which all si appear in the body and r appears
in the head. Since this is classic material, we omit the details
but observe that, since WebdamLog rules may be added or re-
moved at run-time, the program evolves, leading to changes
in the dependency graph. Therefore, the dependency graph is
recomputed at step 1 of a WebdamLog stage when receiving
new rules, and remains fixed for the following step 2. The Web-

damLog engine pushes further the differentiation technique that
serves as basis of the semi-naive algorithm.

Although, according to WebdamLog semantics, facts are con-
sumed and possibly re-derived, it would be inefficient to recom-
pute the proof of existence of all facts at each stage. Between
two consecutive stages, each relation keeps a cache of its previ-
ous contents. This cache may be invalidated by WebdamLog if
a newly installed rule creates a new dependency for this rela-
tion. Note that Bud already performs cache invalidation prop-
agation for facts, which we adapt to fit WebdamLog semantics.
This incremental optimization across stages allows us to run
the fixpoint computation only on the relations that may have
changed since the previous stage.

5.5 Maintaining dynamic peer state

A WebdamLog system executes in a highly dynamic environ-
ment, where peer state frequently changes, in terms of both
data and program, and where peers may come and go. This
is a strong departure from datalog-based systems such as Bud

that assume the set of peers and rules to be fixed. As part
of our ongoing work, we are focusing on efficiently supporting
dynamic changes in peer state, with the help of a novel kind of
a provenance graph.

We use provenance graphs to record the derivations of Web-

damLog facts and rules, and to capture fine-grained dependen-
cies between facts, rules, and peers. We build on the formalism
proposed in [13], where each tuple in the database is annotated
with an element of a provenance semiring, and annotations are
propagated through query evaluation. Provenance can be used
for a number of purposes such as explaining query results or
system behavior, and for debugging. Our primary use of prove-
nance is to optimize performance of WebdamLog evaluation in
presence of deletions. We are also currently investigating the
use of provenance for enforcing access control and for detecting
access control violations.

6 Experimental Evaluation

The goal of the experimental evaluation is to verify that Web-

damLog programs can be executed efficiently. We show here
that rewriting and delegation can be implemented efficiently.

In the experiments, we used synthetically generated data. All
experiments were conducted on up to 50 Amazon EC2 micro in-
stances, with 2 WebdamLog peers per instance. Micro-instances
are virtual machines with two process units, Intel(R) Xeon(R)
CPU E5507 @2.27GHz with 613 MB of RAM, running Ubuntu
server 12.04 (64-bit). All experiments were executed 4 times
with a warm start. We report averages over 4 executions.

6

The cost of delegation. We now focus is on measuring
WebdamLog overhead in dealing with delegations. Recall the
Bud steps performed by each peer at each WebdamLog stage,
described in Section 5.2. We can break down each step into
WebdamLog-specific and Bud-specific tasks as follows:

1. Inputs are collected

a) Bud reads the input from the network and populates
its channels.

b) WebdamLog parses the input in channels and up-
dates the dependency graph with new rules. The de-
pendency graph is used to control the rules that are
used in the semi-naive evaluation (see Section 5.4).

2. Time is frozen

a) Bud invalidates each ∆ (used by the semi-naive eval-
uation) that has to be reevaluated because it corre-
sponds to a relation that may have changed.

b) WebdamLog invalidates ∆ according to program up-
dates. Moreover, WebdamLog propagates deletions.
(Recall that the semi-naive evaluation deals only with
tuple additions.)

c) Bud performs semi-naive fixpoint evaluation for all
invalidated relations, taking the last ∆ for differenti-
ation.

3. Outputs are obtained

a) WebdamLog builds packets of rules and updates to
send.

b) Bud sends packets.

We report the running time of WebdamLog as the sum of
Steps 1b, 2b and 3a, and the running time of Bud as the sum
of Steps 1a, 2a, 2c and 3b. All running times are expressed
in percentage of the total running time, which is measured in
seconds. For each experiment, we will see that the running
time of WebdamLog-specific phases is reasonable compared to
the overall running time.

Non-local rules. In the first experiment, we evaluate the
running time of a non-local rule with an extensional head. Rules
of this kind lead to delegations. We use the following rule:

[at alice]

join@sue($Z) :- rel1@alice($X,$Y), rel2@bob($Y,$Z)

This rule computes the join of two relations at distinct peers
(rel1@alice and rel2@bob), and then installs the result, projected
on the last column, at the third peer (join@sue). Relations
rel1@alice and rel2@bob each contain 1 000 tuples that are pairs
of integers, with values drawn uniformly at random from the
1 to 100 range. In the next table, we report the total running
time of the program at each peer, as well as the break-down of
the time into Bud and WebdamLog.

WebdamLog Bud total
alice 10.8% 89.2% 0.10s
bob 4.0% 96.0% 0.87s
sue 0.7% 99.3% 0.02s

The portion of the overall time spent on WebdamLog compu-
tation on alice is fairly high: 10.8%. This is because that peer’s
work is essentially to delegate the join to bob. Peer bob spends
most of its time computing the join, a Bud computation. Peer
sue has little to do. As can be seen from these numbers, the
overhead of delegation is small.

Relation and peer variables. In the second experiment,
we evaluate the execution time of a WebdamLog program for
the distributed computation of a union. The following rule
uses relation and peer variables and executes at peer sue:

20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

% of matched facts

w
ai

tin
g

tim
e

at
 S

ue
 (

se
c)

QSQ evaluation
full materialization

Figure 2: Distributed QSQ optimization

[at sue]

union@sue($X) :- peers@sue($Y,$Z), $Y@$Z($X)

The relation peers@sue contains 12 tuples corresponding to 3
peers (including sue) with 4 relations per peer. Thus, the rule
specifies a union of 12 relations. Each relation participating
in the union contains 1 000 tuples, each with a single integer
column, and with values for the attribute drawn independently
at random between 1 and 10 000.

WebdamLog Bud total
sue 9.9% 90.1% 1.04s

remote1 1.1% 98.9% 0.04s
remote2 1.3% 98.7% 0.04s

Observe that sue does most of the work, both delegating rules
and also computing the union. The WebdamLog overhead is
9.9%, which is still reasonable. The running time on remote
peers is very small, and the WebdamLog portion of the compu-
tation is negligible.

QSQ-style optimization. In this experiment, we measure
the effectiveness of an optimization that can be viewed as a dis-
tributed version of query subquery (QSQ) [22], where only the
relevant data are communicated at query time. More precisely,
we consider the following view union2 on peer sue, defined as
the union of two relations.

[at sue]

union2@sue($name,$X) :- friendPhotos@alice($name,$X)

union2@sue($name,$X) :- friendPhotos@bob($name,$X)

Suppose we want to obtain the photos of Charlie, i.e. the
tuples in union2 that have the value “Charlie” for first at-
tribute. We vary the number of facts in friendPhotos@alice and
friendPhoto@bob that match the query. We compare the cost
of materializing the entire view to answer the query to that
of installing only the necessary delegations computed at query
time to compute the answer.

Results of this experiment are presented in Figure 2. We
report the waiting time at sue. As expected, QSQ-style opti-
mization brings important performance improvements (except
when almost all facts are selected). This shows its usefulness
in such a distributed setting.

7

7 Related work

The WebdamLog language is motivated by previous work on
the WebdamExchange system [5]. The system described there
could automatically adapt to a variety of protocols and access
methods found on the Web, notably for localizing data and for
access control [10]. In developing toy applications with Web-

damExchange [10], we realized the need for a logic that could
be used (i) to declaratively specify applications and (ii) to ex-
change application logic between peers. This motivated the
introduction of WebdamLog [4], a language based on rules that
can run locally and be exchanged between peers.

Distributed data management has been studied since the ear-
liest days of databases [20]. The fact that it is possible to access
data from several data sources has been studied under various
names, notably multi-databases or federated databases. The
setting we consider is in the spirit of peer-to-peer databases with
autonomous and heterogeneous data sources. Of course, stan-
dard query optimization techniques developed for distributed
database systems are relevant here. We insist in particular on
the techniques that are more relevant to our setting, which is
based on datalog. One should mention that there have been a
number of works on parallel or distributed evaluation of data-
log, e.g., [2, 16].

The use of declarative languages, in particular datalog ex-
tensions, for distributed data management has already been
advocated, e.g., in [3, 6]. There has recently been renewed
interest in this approach [15]. Several systems have been de-
veloped based on the declarative paradigm [14, 18, 17], with
performance comparable to that of systems based on impera-
tive languages. Our implementation uses the Bud system [21].
The language Dedalus [9] has been proposed as a formal foun-
dation for Bud. We prefer here to use the language WebdamLog,
in particular because it features delegation.

Most classic optimization techniques for datalog are relevant
to our work, in particular, semi-naive evaluation that is sup-
ported by Bud. We also considered the query-subquery opti-
mization [22] as adapted to the distributed context in [2].

8 Conclusion

This paper presents an implementation of the WebdamLog lan-
guage, introduced in [4]. The two main challenges for such an
approach are (i) the difficulty of writing rules for non-technical
users and (ii) the difficulty to offer good performance:

• With respect to (i), we present a user study that very
promisingly shows that the participants (many of them
not computer scientists) are able to understand and write
simple rules.

• With respect to (ii), we benefit from previous datalog opti-
mization techniques and efficient network communication
by relying on the Bud system to support the basic func-
tionality of distributed datalog. We show that the higher
level features of WebdamLog, notably delegation, can be
supported efficiently using logical rule rewriting.

All this demonstrates the feasibility of an approach based on
WebdamLog to support exchanges of data and rules between
rapidly evolving peers in a distributed and dynamic environ-
ment.

In the future, we are considering the following directions:

Access control One of the bases of WebdamLog is that a peer
can locally install rules that are specified by another peer.
Clearly, this is potentially very risky. Access control is
therefore of paramount importance. We plan to work

on access control, and in particular investigate the use of
provenance for enforcing access control and for detecting
access control violations.

Interface Our user study demonstrated that WebdamLog is
appropriate for specifying distributed data management
tasks. We are in the process of developing a user inter-
face for the WebdamLog system. We also plan to conduct
a follow-up user study (i) drawing from a larger pool of
participants, (ii) including more participants without any
CS training, and (iii) testing the usability of other aspects
of the language, notably intentional vs. extensional predi-
cates.

Application We intend to demonstrate the use of our system
with complete applications, e.g., for social networks and
personal data management.

Optimization We are currently developing a provenance-based
approach for efficiently supporting changes in program
state. Also, an optimization technique based on map-
reduce and intense parallelism has been proposed for dat-
alog [7]. It would be interesting to consider such an ap-
proach in our distributed setting.

References

[1] S. Abiteboul. Managing an XML warehouse in a P2P con-
text. In CAiSE, pages 4–13, 2003. 1

[2] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagno-
sis of asynchronous discrete event systems: datalog to the
rescue! In PODS, pages 358–367, 2005. 8

[3] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML
project: an overview. VLDB J., 17(5):1019–1040, 2008. 1,
8

[4] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A
rule-based language for Web data management. In PODS,
2011. 1, 2, 3, 5, 8

[5] S. Abiteboul, A. Galland, and N. Polyzotis. A model
for web information management with access control. In
WebDB Workshop, 2011. 8

[6] S. Abiteboul and N. Polyzotis. The data ring: Community
content sharing. In CIDR, pages 154–163, 2007. 1, 8

[7] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis,
and J. D. Ullman. Map-reduce extensions and recursive
queries. In EDBT, pages 1–8, 2011. 8

[8] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak.
Consistency analysis in bloom: a calm and collected ap-
proach. In CIDR, pages 249–260, 2011. 5

[9] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein,
D. Maier, and R. C. Sears. Dedalus: Datalog in Time
and Space. Technical Report UCB/EECS-2009-173, EECS
Department, University of California, Berkeley, December
2009. 1, 3, 8

[10] E. Antoine, A. Galland, K. Lyngbaek, A. Marian, and
N. Polyzotis. [Demo] Social Networking on top of the Web-
damExchange System. In ICDE, 2011. 8

8

[11] M. J. Franklin, A. Y. Halevy, and D. Maier. From
databases to dataspaces: a new abstraction for informa-
tion management. SIGMOD Record, 34(4):27–33, 2005. 1

[12] A. V. Gelder. Negation as failure using tight derivations for
general logic programs. J. Log. Program., 6(1&2):109–133,
1989. 1

[13] T. J. Green, G. Karvounarakis, and V. Tannen. Prove-
nance semirings. In PODS, pages 31–40, 2007. 6

[14] S. Grumbach and F. Wang. Netlog, a rule-based language
for distributed programming. In PADL, pages 88–103,
2010. 8

[15] J. M. Hellerstein. The declarative imperative: experiences
and conjectures in distributed logic. SIGMOD Record,
39(1):5–19, 2010. 8

[16] M. A. W. Houtsma, P. M. G. Apers, and S. Ceri. Dis-
tributed transitive closure computations: The disconnec-
tion set approach. In VLDB, 1990. 8

[17] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative networking: language, execution and
optimization. In SIGMOD, pages 97–108, 2006. 8

[18] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative over-
lays. In SOSP, volume 39, pages 75–90, 2005. 8

[19] U. of Innsbruck. Iris - integrated rule inference system.
http://iris-reasoner.org/. 4

[20] M. T. Özsu and P. Valduriez. Principles of Distributed

Database Systems, Third Edition. Springer, 2011. 8

[21] B. O. O. M. project. Bloom programming language. http:

//www.bloom-lang.net/. 4, 8

[22] L. Vieille. Recursive Axioms in Deductive Databases: The
Query/Sub-query Approach. In EDS, pages 253–267, 1986.
7, 8

9

