
HAL Id: hal-00815067
https://hal.inria.fr/hal-00815067

Submitted on 18 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Access Control for HTTP Operations on Linked Data
Luca Costabello, Serena Villata, Oscar Rodriguez Rocha, Fabien Gandon

To cite this version:
Luca Costabello, Serena Villata, Oscar Rodriguez Rocha, Fabien Gandon. Access Control for HTTP
Operations on Linked Data. ESWC - 10th Extended Semantic Web Conference - 2013, May 2013,
Montpellier, France. �hal-00815067�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49795559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00815067
https://hal.archives-ouvertes.fr

Access Control for HTTP Operations

on Linked Data

Luca Costabello1, Serena Villata1,
Oscar Rodriguez Rocha2, and Fabien Gandon1

1 INRIA Sophia Antipolis, France
firstname.lastname@inria.fr
2 Politecnico di Torino, Italy

oscar.rodriguezrocha@polito.it

Abstract. Access control is a recognized open issue when interacting
with RDF using HTTP methods. In literature, authentication and au-
thorization mechanisms either introduce undesired complexity such as
SPARQL and ad-hoc policy languages, or rely on basic access control
lists, thus resulting in limited policy expressiveness. In this paper we show
how the Shi3ld attribute-based authorization framework for SPARQL
endpoints has been progressively converted to protect HTTP operations
on RDF. We proceed by steps: we start by supporting the SPARQL 1.1
Graph Store Protocol, and we shift towards a SPARQL-less solution for
the Linked Data Platform. We demonstrate that the resulting authoriza-
tion framework provides the same functionalities of its SPARQL-based
counterpart, including the adoption of Semantic Web languages only.

1 Introduction

In scenarios such as Linked Enterprise Data, access control becomes crucial, as
not all triples are openly published on the Web. Solutions proposed in litera-
ture protect either SPARQL endpoints or generic RDF documents and adopt
Role-based (RBAC) [20] or Attribute-based (ABAC) [18] models. The Semantic
Web community is recently emphasizing the need for a substantially “Web-like”
interaction paradigm with Linked Data. For instance, the W3C Linked Data
Platform3 initiative promotes the use of read/write HTTP operations on triples,
thus providing a basic profile for Linked Data servers and clients. Another ex-
ample is the SPARQL 1.1 Graph Store Protocol4, a set of guidelines to interact
with RDF graphs with HTTP operations. Defining an access control model for
these scenarios is still an open issue5. Frameworks targeting HTTP access to
RDF resources rely on access control lists, thus offering limited policy expres-
siveness [13,14,17,19] (e.g., no location-based authorization). On the other hand,

3http://www.w3.org/TR/ldp/
4http://www.w3.org/TR/sparql11-http-rdf-update/
5http://www.w3.org/2012/ldp/wiki/AccessControl

existing access control frameworks for SPARQL [1,4,10] add complexity rooted
in the query language and in the SPARQL protocol, often introducing ad-hoc
policy languages, thus requiring adaptation to the HTTP-only scenario.

In this paper, we answer the research question: How to design an authoriza-
tion framework for HTTP-based interaction with Linked Data? This research
question breaks down into the following sub-questions: (i) how to define an au-
thorization model featuring expressive policies based on standard Web languages
only and (ii) how to adopt this model in HTTP-based interaction with Linked
Data scenarios like the Graph Store Protocol (GSP) and the Linked Data Plat-
form (LDP).

We adapt the Shi3ld authorization framework for SPARQL [4] to a SPARQL-
less scenario. We choose Shi3ld because its features satisfy our requirements: (i)
it adopts attribute-based access policies ensuring expressiveness, and (ii) exclu-
sively uses Semantic Web languages for policy definition and enforcement.

We illustrate Shi3ld-GSP, an intermediate version designed for the SPARQL
1.1 Graph Store HTTP Protocol. We progressively shift to the Linked Data
Platform context, a scenario where SPARQL is no longer present. We have de-
veloped two solutions for this scenario: (i) an authorization module embedding
a hidden SPARQL engine, and (ii) a framework where we completely get rid of
SPARQL. In the latter case, the Shi3ld framework adopts a SPARQL-less sub-
graph matcher which grants access if client attributes correspond to the declared
policy graphs. For each framework, we evaluate the response time and we show
how the authorization procedure impacts on HTTP operations on RDF data.

The key features of our attribute-based authorization frameworks for HTTP-
based interaction with Linked Data are (i) the use of Web languages only, i.e.,
HTTP methods and RDF, without ad-hoc languages for policies definition, (ii)
the adoption of attribute-based access conditions enabling highly expressive poli-
cies, and (iii) the adaptation to the GSP and LDP scenarios as a result of a
progressive disengagement from SPARQL. Moreover, Shi3ld is compatible and
complementary with the WebID authentication framework6.

In this paper, we focus on authorization only, without addressing the issues
related to authentication and identity on the Web. Although we discuss state-
of-the-art anti-spoofing techniques for attribute data, the present work does not
directly address the issue.

The remainder of this paper is organized as follows. Section 2 summarizes
the related work, and highlights the requirements of an authorization model for
our scenario. Section 3 describes the main insights of Shi3ld, and presents the
three proposed solutions to adapt the framework to HTTP operations on RDF.
An experimental evaluation of response time overhead is provided in Section 4.

6http://www.w3.org/2005/Incubator/webid/spec/

2 Related Work

Many access control frameworks rely on access control lists (ACLs) that define
which users can access the data. This is the case of the Web Access Control
vocabulary (WAC)7, that grants access to a whole RDF document. Hollenbach et
al. [13] present a system where providers control access to RDF documents using
WAC. In our work, we look for more expressive policies that can be obtained
without leading to an increased complexity of the adopted language or model.

Similarly to ACLs, other approaches specify who can access the data, e.g.,
to which roles access is granted. Among others, Giunchiglia et al. [12] propose
a Relation Based Access Control model (RelBAC) based on description logic,
and Finin et al. [9] study the relationship between OWL and RBAC [20]. They
briefly discuss possible ways of going beyond RBAC such as Attribute Based
Access Control, a model that grants access according to client attributes, instead
of relying on AC lists.

The ABACmodel is adopted in the Privacy Preference Ontology (PPO)8 [19],
built on top of WAC, where consumers require access to a given RDF file, e.g.,
a FOAF profile, and the framework selects the part of the file the consumer
can access, returning it. In our work, we go beyond the preference specification
based on FOAF profiles. Our previous work [4] adopts ABAC for protecting the
accesses to SPARQL endpoints using Semantic Web languages only.

Other frameworks introduce a high level syntax for expressing policies. Abel
et al. [1] present a context-dependent access control system for RDF stores,
where policies are expressed using an ad-hoc syntax and mapped to existing
policy languages. Flouris et al. [10] present an access control framework on top
of RDF repositories using a high level specification language to be translated
into a SPARQL/SerQL/SQL query to enforce the policy. Muhleisen et al. [17]
present a policy-enabled server for Linked Data called PsSF, where policies are
expressed using a descriptive language based on SWRL9. Shen and Cheng [21]
propose a Context-Based Access Control Model (SCBAC) where policies are
expressed using SWRL.

Access control models may consider not only the information about the con-
sumer who is accessing the data, but also the context of the request, e.g., time,
location. Covington et al. [5] present an approach where the notion of role pro-
posed in RBAC is used to capture the environment in which the access requests
are made. Cuppens and Cuppens-Boulahia [6] propose an Organization Based
Access Control model (OrBAC) that contains contextual conditions. Toninelli
et al. [22] use context-awareness to control access to resources, and semantic
technologies for policy specification. Corradi et al. [3] present UbiCOSM, a se-
curity middleware adopting context as a basic concept for policy specification
and enforcement.

7http://www.w3.org/wiki/WebAccessControl
8http://vocab.deri.ie/ppo
9http://www.w3.org/Submission/SWRL/

Table 1 summarizes the main characteristics of the related work described
above10: none of the presented approaches satisfies all the features that we re-
quire for protecting HTTP operations on Linked Data, i.e.: absence of ad hoc
policy languages, CRUD permission model, protection granularity at resource-
level, and expressive access control model to go beyond basic access control lists.

Web-

based
AC model

Policy

language

Protection

granularity

Permission

model

Context

Awareness

Conflict

verification
Eval.

WAC7 YES RBAC RDF RDF document R/W N/A N/A N/A

Abel et al. [1] YES ABAC Custom triples R YES N/A YES
Finin et al. [9] YES RBAC OWL/RDF resources N/A N/A N/A N/A
RelBAC [12] YES relation DL resources N/A N/A N/A N/A
Hollenbach[13] YES RBAC RDF RDF document R/W N/A N/A YES
Flouris et al. [10] YES RBAC Custom triples R N/A YES YES
PeLDS [17] YES RBAC SWRL RDF document R/W N/A N/A YES
PPO [19] YES ABAC RDF, SPARQL RDF doc(part) R/W N/A N/A N/A
SCBAC [21] YES context SWRL resources N/A YES YES N/A
Shi3ld-SPARQL[4] YES ABAC RDF, SPARQL named graphs CRUD YES N/A YES
Covington [5] NO RBAC Custom resources R/W YES YES N/A
CSAC [14] NO gen. RBAC XML resources R YES N/A N/A
Proteus[22] NO context DL Resources N/A YES YES YES
OrBAC [6] NO organizationDatalog resources R/W YES YES N/A
UbiCOSM [3] NO context RDF resources N/A YES YES YES

Table 1: A summarizing comparison of the related work.

3 Restricting HTTP operations on Linked Data

Before discussing how we modified the Shi3ld original proposition [4] to obtain
a SPARQL-less access control framework for HTTP operations on Linked Data,
we provide an overview of the original Shi3ld authorization model for SPARQL
endpoints. Shi3ld [4] presents the following key features:

Attribute-based paradigm. Shi3ld is an attribute-based authorization frame-
work, i.e., authorization check is performed against a set of attributes sent
by the client along the query that targets the resource. Relying on attributes
provides broad access policy expressiveness, beyond the access condition lists
adopted by RBAC frameworks. That means, among all, creating location-
based and temporal-based access policies.

Semantic Web languages only. Shi3ld uses access policies defined with Se-
mantic Web languages only, and no additional policy language needs to
be defined. In particular, the access conditions specified in the policies are
SPARQL ASK queries.

CRUD permission model. Access policies are associated to specific permis-
sions over the protected resource. It is therefore possible to specify rules
satisfied only when the access is in create, read, update and delete mode.

Granularity. The proposed degree of granularity is represented by named graphs,
allowing protection from triples up to whole dataset.

10We use N/A when the feature is not considered in the work.

The HTTP-based interaction with Linked Data requires some major modi-
fications to the above features: although we keep the attribute-based paradigm
and the CRUD permission model, the new versions of Shi3ld satisfy also the
following requirements:

Protection of HTTP access to resources. Protected resources are retrieved
and modified by clients using HTTP methods only, without SPARQL query-
ing11.

RDF-only Policies. In the SPARQL-less scenario, access conditions are RDF
triples with no embedded SPARQL.

Granularity. The atomic element protected by Shi3ld is a resource.

In this paper, we rely on the definition of resource provided by the W3C
Linked Data Platform Working Group: LDP resources are HTTP resources
queried, created, modified and deleted via HTTP requests processed by LDP
servers12. Linked Data server administrators adopting Shi3ld must define a num-
ber of access policies and associate them to protected resources. Access policies
and their components are formally defined as follows:

Definition 1. (Access Policy) An Access Policy (P) is a tuple of the form P =
〈ACS,AP,R〉 where (i) ACS is a set of Access Conditions to satisfy, (ii) AP is
an Access Privilege, and (iii) R is the resource protected by P .

Definition 2. (Access Condition) An Access Condition (AC) is a set of at-
tributes that need to be satisfied to interact with a resource.

Definition 3. (Access Privilege) An Access Privilege (AP) is the set of allowed
operations on the protected resource. AP = {Create,Read, Update,Delete}.

The lightweight vocabularies used by Shi3ld are s4ac13 for defining the pol-
icy structure, and prissma14 for the client attributes15. Client attributes include
user profile information, device features, environment data, or any given com-
bination of these dimensions, in compliance with the widely-accepted definition
by Dey [7] and the work by Fonseca et al.16 (we delegate refinements and ex-
tensions to domain specialists, in the light of the Web of Data philosophy). The
main classes and properties of these vocabularies are visualized in Figure 1.
Shi3ld offers a double notation for defining access conditions: with embedded
SPARQL (Figure 2a) for SPARQL-equipped scenarios and in full RDF (Fig-
ure 2b), adopted in SPARQL-less environments.

11This is in compliance with the LDP specifications.
12An LDP server is an “application program that accepts connections in order to

service requests by sending back responses” as specified by HTTP 1.1 definition.
13http://ns.inria.fr/s4ac
14http://ns.inria.fr/prissma
15Although this vocabulary provides classes and properties to model context-aware

attributes, it is not meant to deliver yet another contextual model: instead, well-known
Web of Data vocabularies and recent W3C recommendations are reused. For more
details, see Costabello et al. [4].

16http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui/

AccessConditionSet

AccessCondition

DisjunctiveACS

ConjunctiveACS

subClassOf

subClassOf

AccessPolicy

hasAccessCondition

AccessPrivilege

hasAccessPrivilege

appliesTo

UserDevice

Environment

Context

POI

Activity

foaf:Person

owl:equivalentClass

dcn:Device

geo:SpatialThing

owl:Thing geo:Point

environment

device user

hasAccessConditionSet

motion

nearbyEntity

poiLabel

poiCategory

ao:activity

subClassOf

foaf:based_near

s4ac:

prissma:

radius

subClassOf

hasContext

tl:start

tl:duration

hasQueryAsk

poi

Fig. 1: Interplay of s4ac and prissma vocabularies for Shi3ld access policies.

Example 1. Figure 2 presents two sample access policies, expressed with and
without SPARQL. The policy visualized in Figure 2a allows read-only access to
the protected resource exclusively by a specific user and from a given location.
The policy in Figure 2b authorizes the update of the resource by the given user,
only if he is currently near Alice.

:policy1 a s4ac:AccessPolicy;
 s4ac:appliesTo :protected_res;
 s4ac:hasAccessPrivilege s4ac:Read;
 s4ac:hasAccessConditionSet :acs1.

:acs1 a s4ac:AccessConditionSet;

 s4ac:ConjunctiveAccessConditionSet;

 s4ac:hasAccessCondition :ac1.

:ac1 a s4ac:AccessCondition;
 s4ac:hasQueryAsk

"""ASK
{?ctx a prissma:Context.
?ctx prissma:environment ?env.
?ctx prissma:user <http://johndoe.org/foaf.rdf#me>.
?env prissma:currentPOI ?poi.
?poi prissma:based_near ?p.
?p geo:lat ?lat; geo:lon ?lon.
FILTER(((?lat-45.8483) > 0 && (?lat-45.8483) < 0.5
|| (?lat-45.8483) < 0 && (?lat-45.8483) > -0.5)
&& ((?lon-7.3263) > 0 && (?lon-7.3263) < 0.5
|| (?lon-7.3263) < 0 && (?lon-7.3263) > -0.5))""".

PROTECTED

RESOURCE ACCESS

PRIVILEGE

ACCESS CONDITION

TO VERIFY

(a) SPARQL-based

:policy1 a s4ac:AccessPolicy;
 s4ac:appliesTo :protected_res;
 s4ac:hasAccessPrivilege s4ac:Update;
 s4ac:hasAccessConditionSet :acs1.

:acs1 a s4ac:AccessConditionSet;

 s4ac:ConjunctiveAccessConditionSet;

 s4ac:hasAccessCondition :ac1.

:ac1 a s4ac:AccessCondition;
 s4ac:hasContext :ctx1.

:ctx1 a prissma:Context;
prissma:user <http://johndoe.org/foaf.rdf#me>.
prissma:environment :env1

:env1 a prissma:Environment;

 prissma:nearbyEntity <http://alice.org#me>.

PROTECTED

RESOURCE ACCESS

PRIVILEGE

ACCESS CONDITION

TO VERIFY

(b) SPARQL-less

Fig. 2: Shi3ld access policies, expressed with and without SPARQL.

Whenever an HTTP query is performed on a resource, Shi3ld runs the autho-
rization algorithm to check if the policies that protect the resource are satisfied
or not. The procedure verifies the matching between the client attributes sent
with the query and the access policies that protect the resource.

Shi3ld deals with authorization only. Nevertheless, authentication issues can-
not be ignored as the trustworthiness of client attributes is critical for a reliable
access control framework. Shi3ld supports heterogeneous authentication strate-
gies, since the attributes attached to each client request include heterogeneous
data, ranging from user identity to environment information fetched by device
sensors (e.g. location). The trustworthiness of user identity is achieved thanks to
the WebID6 compatibility: in Shi3ld, user-related attributes are modelled with
the foaf vocabulary17, thus easing the adoption of WebID. Authenticating the
attributes fetched by client sensors is crucial to prevent tampering. Hulsebosch
et al. [14] provide a survey of verification techniques, such as heuristics relying on
location history and collaborative authenticity checks. A promising approach is
mentioned in Kulkarni and Tripathi [16], where client sensors are authenticated
beforehand by a trusted party. To date, no tamper-proof strategy is implemented
in Shi3ld, and this is left for future work.

Moreover, sensible data, such as current location must be handled with a
privacy-preserving mechanism. Recent surveys describe strategies to introduce
privacy mainly in location-based services [8,15]. Shi3ld adopts an anonymity-
based solution [8] and delegates attribute anonymisation to the client side, thus
sensitive information is not disclosed to the server. We rely on partially en-
crypted RDF graphs, as proposed by Giereth [11]. Before building the RDF
attribute graph and sending it to the Shi3ld-protected repository, a partial RDF
encryption is performed, producing RDF-compliant results, i.e., the encrypted
graph is still RDF (we use SHA-1 cryptographic hash function to encrypt RDF
literals). On server-side, every time a new policy is added to the system, the
same operation is performed on attributes included in access policies. As long
as literals included in access conditions are hashed with the same function used
on the client side, the Shi3ld authorization procedure still holds18.

We now describe the steps leading to a SPARQL-less authorization frame-
work for HTTP operations on Linked Data. Our first proposal is a Shi3ld au-
thorization framework for the SPARQL 1.1 Graph Store Protocol (Section 3.1).
In Sections 3.2 and 3.3 we describe two scenarios tailored to the Linked Data
Platform specifications, the second being completely SPARQL-less. Our work is
grounded on the analogies between SPARQL 1.1 functions and the HTTP proto-
col semantics, as suggested by the SPARQL Graph Store Protocol specification4.

3.1 Shi3ld for SPARQL Graph Store Protocol

The SPARQL 1.1 HTTP Graph Store Protocol4 (GSP) provides an alternative
interface to access RDF stored in SPARQL-equipped triple stores. The recom-
mendation describes a mapping between HTTP methods and SPARQL queries,

17http://xmlns.com/foaf/spec/
18The adopted technique does not guarantee full anonymity [15]. Nevertheless, the

problem is mitigated by the short persistence of client-related data inside Shi3ld cache:
client attributes are deleted after each authorization evaluation. Encryption is not ap-
plied to location coordinates and timestamps, as this operation prevents geo-temporal
filtering.

thus enabling HTTP operations on triples. The Graph Store Protocol can be
considered as an intermediate step towards an HTTP-only access to RDF data-
stores, since it still needs a SPARQL endpoint.

Figure 3a shows the architecture of the authorization procedure of Shi3ld for
GSP-compliant SPARQL endpoints (Shi3ld-GSP). Shi3ld-GSP acts as a module
protecting a stand-alone SPARQL 1.1 endpoint, equipped with a Graph Store
Protocol module. First, the client performs an HTTP operation on a resource.
This means that an RDF attribute graph is built on the client, serialized and sent
with the request in the HTTP Authorization header19. Attributes are saved
into the triple store with a SPARQL 1.1 query. Second, Shi3ld selects the access
policies that protect the resource. The access conditions (SPARQL ASK queries,
as in Figure 2a) included in the policies are then executed against the client
attribute graph. Finally, the results are logically combined according to the type
of access condition set (disjunctive or conjunctive) defined by each policy. If the
result returns true, the HTTP query is forwarded to the GSP SPARQL engine,
which in turns translates it into a SPARQL query. If the access is not granted,
a HTTP 401 message is delivered to the client.

3.2 Shi3ld-LDP with Internal SPARQL Engine

The Linked Data Platform Initiative (LDP) proposes a simplified configuration
for Linked Data servers and Web-like interaction with RDF resources. Compared
to the GSP case, authorization frameworks in this scenario must deal with a
certain number of changes, notably the absence of SPARQL and potentially the
lack of a graph store.

We adapt Shi3ld to work under these restrictions (Shi3ld-LDP). The frame-
work architecture is shown in Figure 3b. Shi3ld-LDP protects HTTP operations,
but it does not communicate with an external SPARQL endpoint, i.e. there are
no intermediaries between the RDF repository (the filesystem or a triple store)
and Shi3ld. To re-use the authorization procedure previously described, we in-
tegrate an internal SPARQL engine into Shi3ld, along with an internal triple
store. Although SPARQL is still present, this is perfectly legitimate in a Linked
Data Platform scenario, since the use of the query language is limited to Shi3ld
internals and is not exposed to the outside world20. Despite the architectural
changes, the Shi3ld model remains unchanged. Few modifications occur to the
authorization procedure, as described in Figure 3a: clients send HTTP requests
to the desired resource. HTTP headers contain the attribute graph, serialized as
previously described in Section 3.1. Instead of relying on an external SPARQL
endpoint, attributes are now saved internally, using an INSERT DATA query. The
access policies selection and the access conditions execution remain substantially
unchanged, but the whole process is transparent to the platform administrator,
as the target SPARQL endpoint is embedded in Shi3ld.

19We extend the header with the ad-hoc Shi3ld option. Other well-known proposals
on the web re-use this field, e.g. the OAuth authorization protocol.

20SPARQL is still visible in Access Policies (Figure 2a).

Shi3ld-GSPClient
SPARQL 1.1

GSP
Triple

Store

GET /data/resource HTTP/1.1

Host: example.org

Authorization: Shi3ld:base64(attributes)

INSERT/DATA(attributes)

SELECT(Access Policies)

ASK (AC1)

ASK (ACn)

.

.

.

GET /data/resource HTTP/1.1

Host: example.org

200 OK

HTTP HTTP

(a) Shi3ld-GSP

LDP Server

INSERT/DATA(attributes)

SELECT(Access Policies)

ASK (AC1)

ASK (ACn)

.

.

.

GET /data/resource HTTP/1.1

Host: example.org

Shi3ld-LDP Internal

Triple Store

Internal

SPARQL Engine
Shi3ld Frontend

Client

GET /data/resource HTTP/1.1

Host: example.org

Authorization: Shi3ld:base64(attributes)

200 OK

File

System/

Triple

Store

HTTP

getData()

Shi3ld Internal

(b) Shil3d-LDP (internal SPARQL engine)

File

System/

Triple

Store

Save attributes

Get Access Policies

attributes.contains(AC1)

attributes.contains(ACn)

.

.

.

Shi3ld-LDP

Subgraph

matcher
Shi3ld Frontend

Client

GET /data/resource HTTP/1.1

Host: example.org

Authorization: Shi3ld:base64(attributes)

LDP Server

HTTP Shi3ld Internal

GET /data/resource HTTP/1.1

Host: example.org

200 OK

getData()

(c) Shi3ld-LDP (SPARQL-less)

Fig. 3: Shi3ld Configurations

3.3 SPARQL-less Shi3ld-LDP

To completely fulfill the Linked Data Platform recommendations, thus achieving
a full-fledged basic profile for authorization frameworks, we drop SPARQL from
the Shi3ld-LDP framework described in Section 3.2. Ditching SPARQL allows
RDF-only access policies definition, and a leaner authorization procedure. To ob-
tain a SPARQL-less framework, we re-use the access policy model and the logical
steps of the previously described authorization procedure, although conveniently
adapted (Figure 3c). First, Shi3ld-LDP policies adopt RDF only, as shown in
Figure 2b: attribute conditions previously expressed with SPARQL ASK queries
(Figure 2a) are expressed now as RDF graphs. Second, the embedded SPARQL
engine used in Section 3.2 has been replaced: its task was testing whether client
attributes verify the conditions defined in each access policy. This operation

boils down to a subgraph matching problem. In other words, we must check if
the access conditions (expressed in RDF) are contained into the attribute graph
sent along the HTTP client query. Such subgraph matching procedure can be
performed without introducing SPARQL in the loop. To steer clear of SPARQL,
without re-inventing yet another subgraph matching procedure, we scrap the
SPARQL interpreter from the SPARQL engine [2] used in Section 3.2, keeping
only the underlying subgraph matching algorithm21.

To understand how the SPARQL-less policy verification procedure works and
comprehend the complexity hidden by the SPARQL layer, we now provide a com-
prehensive description of the adopted subgraph matching algorithm, along with
an overview of the RDF indexes used by the procedure. The algorithm checks
whether a query graph Q (the access condition) is contained in the reference
graph R (the client attributes sent along the query).
The reference graph R is stored in two key-value indexes (see example in Fig-
ure 4): index Is stores the associations between property types and property
subjects, and index Io stores the associations between property types and prop-
erty objects. Each RDF property type of R is therefore associated to a list of
property subjects Sp and a list of property objects Op. Sp contains URIs or
blank nodes, Op contains URIs, typed literals and blank nodes. Blank nodes are
represented as anonymous elements, and their IDs are ignored.
The query graph Q, i.e., the access condition attributes, is serialized in a list L
of subject-property-object elements {si, pi, oi}

22. Blank nodes are added to the
serialization as anonymous si or oi elements.
The matching algorithm works as follows: for each subject-property-object {si, pi,
oi} in L, it looks up the indexes Is and Io using pi as key. It then retrieves the
list of property subjects Sp and the list of property objects Op associated to
pi. Then, it searches for a subject in Sp matching with si, and an object in
Op matching with oi. If both matches are found, {si, pi, oi} is matched and the
procedure moves to the next elements in L. If no match is found in either Is
or Io, the procedure stops. Subgraph matching is successful if all L items are
matched in the R index. Blank nodes act as wildcards: if a blank node is found
in {si, pi, oi} as object oi or subject si, and Op or Sp contains one or more blank
nodes, the algorithm continues the matching procedure recursively, backtracking
in case of mismatch and therefore testing all possible matchings.
The example in Figure 4 shows a matching step of the algorithm, i.e., the suc-
cessful matching of the triple “ :b2 p:nearbyEntity http://alice.org/me”
against the client attributes indexes Is and Io. The highlighted triple is success-
fully matched against the client attributes R.

Note that policies might contain location and temporal constraints: Shi3ld-
GSP (Section 3.1) and Shi3ld-LDP with internal SPARQL endpoint (Section 3.2)
handle these conditions by translating RDF attributes into SPARQL FILTER

21Third-party SPARQL-less Shi3ld-LDP implementations might adopt other off-the-
shelf subgraph matching algorithms.

22A preliminary step replaces the query graph Q intermediate nodes into blank
nodes. Blank nodes substitute SPARQL variables in the matching procedure.

:policy1 a s4ac:AccessPolicy;
 s4ac:appliesTo :protected_res;
 s4ac:hasAccessPrivilege s4ac:Update;
 s4ac:hasAccessConditionSet :acs1.
:acs1 a s4ac:AccessConditionSet;
 s4ac:ConjunctiveAccessConditionSet;
 s4ac:hasAccessCondition :ac1.
:ac1 a s4ac:AccessCondition.
:ac1 s4ac:hasContext _:b1.

_:b1 a prissma:Context.
_:b1 p:user <http://johndoe.org/foaf.rdf#me>.
_:b1 p:environment _:b2.

_:b2 p:nearbyEntity <http://alice.org#me>.

_:b1

<http://johndoe.org#me>

_:b2

<http://alice.org#me>

p:nearbyEntity

pr:user p:environment

<http://johndoe.org#me>
:env_AC1

<http://alice.org#me>

p:nearbyEntity

p:user p:environment

p:nearbyEntity

:ctx_AC1

Reference Graph R
(Client Attributes)

Query Graph Q
(Access Condition)

L

p:user :ctx_AC1

p:environment :ctx_AC1

p:nearbyEntity :env_AC1

foaf:gender <blank>

Is

Sp:nearbyEntity

p:user <http://johndoe.org#me>

p:environment :env_AC1

p:nearbyEntity <http://jack.org#me>,

 <http://alice.org#me>

foaf:gender "male"

Io

Op:nearbyEntity

Access Policy for SPARQL-less Shi3ld

foaf:gender

"male"

s
i
 = _:b2

p
i
 = p:nearbyEntity

o
i
 = <http://alice.org#me>

Fig. 4: Example of subgraph matching used in the SPARQL-less Shi3ld-LDP.

clauses. The subgraph matching algorithm adopted by SPARQL-less Shi3ld-LDP
does not support geo-temporal authorization evaluation yet.

The three Shi3ld configurations described in this Section use the
Authorization header to send client attributes. Even if there is no limit to
the size of each header value, it is good practice to limit the size of HTTP re-
quests, to minimize latency. Ideally, HTTP requests should not exceed the size
of a TCP packet (1500 bytes), but in real world finding requests that exceed
2KB is not uncommon, as a consequence of cookies, browser-set fields and URL
with long query strings23. To keep size as small as possible, before base-64 en-
coding, client attributes are serialized in turtle (less verbose that N-triples and
RDF/XML). We plan to test the effectiveness of common lossless compression
techniques to reduce the size of client attributes as future work. Furthermore,
instead of sending the complete attribute graph along all requests, a server-side
caching mechanism would enable the transmission of attribute graph deltas (i.e.
only newly updated attributes will be sent to the server). Sending differences of
RDF graphs is an open research topic24 and we do not address the issue in this
paper.

23https://developers.google.com/speed/docs/best-practices/request
24http://www.w3.org/2001/sw/wiki/How_to_diff_RDF

4 Evaluation

We implemented the three scenarios presented in Section 3 as Java standalone
web services25. The Shi3ld-GSP prototype works with the Fuseki GSP-compliant
SPARQL endpoint26. The Shi3ld-LDP prototype with internal SPARQL end-
point embeds the KGRAM/Corese27 engine [2]. Our test campaign assesses the
impact of Shi3ld on HTTP query response time25. We evaluate the prototypes
on an Intel Xeon E5540, Quad Core 2.53 GHz machine with 48GB of memory.
In our test configuration, Shi3ld-GSP protects a Fuseki SPARQL server, while
Shil3d-LDP scenarios secure RDF resources saved on the filesystem. First, we
investigate the relationship between response time and the number of access con-
ditions to verify. Second, we test how access conditions complexity impacts on
response time. Our third test studies the response time with regard to different
HTTP methods. We execute five independent runs of a test query batch consist-
ing in 50 HTTP operations (tests are preceded by a warmup run). Each query
contains client attributes serialized in turtle (20 triples). The base-64 turtle se-
rialization of the client attributes used in tests25 is 1855 bytes long (including
prefixes). Tests do not consider client-side literal anonymization (Section 3).

Our first test shows the impact of the access conditions number on HTTP
GET response time (Figure 5a and 5b). Each policy contains one access condi-
tion, each including 5 triples. We progressively increased the number of access
conditions protecting the target RDF resource. Not surprisingly, the number of
access conditions defined on the protected resource impacts on response time. In
Figure 5a we show the results for Shi3ld-LDP scenarios: data show a linear rela-
tionship between response time and access conditions number. We tested the sys-
tem up to 100 access conditions, although common usage scenarios have a smaller
number of conditions defined for each resource. For example, the 5 access condi-
tion case is approximately 3 times slower than unprotected access. Nevertheless,
ditching SPARQL improved performance: Figure 5a shows that the SPARQL-
less configuration is in average 25% faster than its SPARQL-based counterpart,
due to the absence of the SPARQL interpreter. As predicted, the delay intro-
duced by Shi3ld-GSP is higher, e.g., 7 times slower for resources protected by
5 access policies (Figure 5b). This is mainly due to the HTTP communication
between the Shi3ld-GSP module and Fuseki. Further delay is introduced by the
Fuseki GSP module, that translates HTTP operations into SPARQL queries.
Moreover, unlike Shi3ld-LDP scenarios, Shi3ld-GSP uses a shared RDF store for
protected resources and access control-related data (client attributes and access
policies). This increases the execution time of SPARQL queries, thus determining
higher response time: in Figure 5b, we show the behaviour of Shi3ld-GSP with
two Fuseki server configurations: empty and with approximately 10M triples,
stored in 17k graphs (we chose the “4-hop expansion Timbl crawl” part of the

25Binaries, code and complete evaluation results are available at:
http://wimmics.inria.fr/projects/shi3ld-ldp

26http://jena.apache.org/documentation/serving_data
27http://tinyurl.com/corese-engine

Billion Triple Challenge 2012 Dataset28). Results show an average response time
difference of 14%, with a 27% variation for the 5 access condition case (Fig-
ure 5b). The number and the distribution of triples in the RDF store influence
Shi3ld-GSP response time. Results might vary when Shi3ld-GSP is coupled with
SPARQL endpoints adopting different indexing strategies or with different triple
number and graph partitioning.

In Figure 5c, we show the impact of access conditions complexity on HTTP
GET response time. The requested resource is protected by a single access condi-
tion, with growing complexity: we added up to 20 triples, and we assess an access
condition containing a FILTER clause (for SPARQL-based scenarios only). Re-
sults show no relevant impact on response time: this is because of the small size
of the client attributes graph, over which access conditions are evaluated (in
our tests, client attributes include 20 triples). Although attribute graph varies
according to the application domain, it is reasonable that size will not exceed
tens of triples.

The third test (Figure 5d) shows the delay introduced by Shi3ld for each
HTTP operation. The figure displays the difference between response time
with and without access control. We executed HTTP GET, POST, PUT and
DELETE methods. Each HTTP method is associated to a 5-triple access con-
dition. As predicted, the delay introduced by Shi3ld is independent from the
HTTP method.

In Section 2, we addressed a qualitative comparison with respect to the re-
lated work. On the other hand, addressing a quantitative evaluation is a tricky
point: among the list in Table 1, only few works explicitly designed for the Web
come with an evaluation campaign [1,4,10,13,17]. Moreover, although some of
these works provide a response time evaluation, the experimental conditions
vary, making the comparison difficult.

5 Conclusions

We described an authorization framework for HTTP operations on Linked
Data. The framework comes in three distinct configurations: Shi3ld-GSP (for
the SPARQL 1.1 Graph Store Protocol) and Shi3ld for the Linked Data Plat-
form (with and without the internal SPARQL endpoint). Our solutions feature
attribute-based access control policies expressed with Web languages only. Eval-
uation confirms that Shi3ld-GSP is slower than the Shi3ld-LDP counterparts,
due to the HTTP communication with the protected RDF store. Shi3ld-LDP
with internal SPARQL endpoint introduces a 3x delay in response time (when
resources are protected by 5 access conditions). Nevertheless, under the same
conditions, the SPARQL-less solution exhibits 25% faster response times. We
show that response time grows linearly with the number of access conditions,
and that the complexity of each access condition does not relevantly impact on
the delay.

28http://km.aifb.kit.edu/projects/btc-2012/

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'(")*+" #" $!" %!" #!" $!!"

!
"
#$
%
&
#"
'(
)*

"
''
+*

#,
'

-.."##'/%&0)1%&#'

,-.&/01234"5,4)6728"

,-.&/01234"5,4)672/9++8"

(a)

!"

#!"

$!!"

$#!"

%!!"

%#!"

&'"()*" #" $!" %!" #!" $!!"

!
"
#$
%
&
#"
'(
)*

"
''
+*

#,
'

-.."##'/%&0)1%&#'

+,-./012+3"456789":;<"*8'=5>"

+,-./012+3"4?$!@"8=-7/5*"-A"?$BC"D=E7,*>"

(b)

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

()"*+," '"*+"-."

/01234,5"

'"*+"-'!"

/01234,5"

'"*+"-#!"

/01234,5"

'"*+"-#!"

/01234,"6"

789:;<5"

!
"
#$
%
&
#"
'(
)*

"
''
+*

#,
'

=>1?3@AB=C" =>1?3@A9DC"-=C*<E95"

=>1?3@A9DC"-=C*<E934,,5"

(c)

!"

#"

$"

%"

&"

'!"

'#"

'$"

()*" +,-*" +.*" /)0)*)"

!
"#
$
%&
'
(
%$
")
*+

$
""
,+

%-
"-123456(-+" -1234560/+"7-+89:0;" -1234560/+"7-+89:04<==;"

(d)

Fig. 5: Shi3ld response time evaluation.

Future work includes ensuring the trustworthiness of attributes sent by the
client. Furthermore, a caching mechanism for client attributes must be intro-
duced, to speed up the authorization procedure. The caching mechanism must
be coupled with an efficient strategy to send attributes updates, to reduce the
average size of HTTP requests. Finally, an effective administration interface to
define access policies has to be designed, as user interaction issues should not be
underestimated.

References

1. F. Abel, J. L. De Coi, N. Henze, A. W. Koesling, D. Krause, and D. Olmedilla.
Enabling Advanced and Context-Dependent Access Control in RDF Stores. In
Procs of ISWC, LNCS 4825, pages 1–14, 2007.

2. O. Corby and C. Faron-Zucker. The kgram abstract machine for knowledge graph
querying. In Web Intelligence, pages 338–341. IEEE, 2010.

3. A. Corradi, R. Montanari, and D. Tibaldi. Context-based access control man-
agement in ubiquitous environments. In Procs of NCA, pages 253–260. IEEE
Computer Society, 2004.

4. L. Costabello, S. Villata, and F. Gandon. Context-aware access control for rdf
graph stores. In Procs of ECAI, 2012.

5. M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D.
Abowd. Securing context-aware applications using environment roles. In Procs of

SACMAT, pages 10–20, 2001.
6. F. Cuppens and N. Cuppens-Boulahia. Modeling contextual security policies. Int.

J. Inf. Sec., 7(4):285–305, 2008.
7. A. K. Dey. Understanding and using context. Personal Ubiquitous Computing,

5:4–7, 2001.
8. M. Duckham. Moving forward: location privacy and location awareness. In Procs

of SPRINGL, pages 1–3, 2010.
9. T. W. Finin, A. Joshi, L. Kagal, J. Niu, R. S. Sandhu, W. H. Winsborough, and

B. M. Thuraisingham. ROWLBAC: representing role based access control in OWL.
In Procs of SACMAT, pages 73–82. ACM, 2008.

10. G. Flouris, I. Fundulaki, M. Michou, and G. Antoniou. Controlling Access to RDF
Graphs. In Procs of FIS, LNCS 6369, pages 107–117. Springer, 2010.

11. M. Giereth. On partial encryption of rdf-graphs. In Procs of ISWC, pages 308–322,
2005.

12. F. Giunchiglia, R. Zhang, and B. Crispo. Ontology driven community access con-
trol. In Procs of SPOT, 2009.

13. J. Hollenbach, J. Presbrey, and T. Berners-Lee. Using RDF Metadata To Enable
Access Control on the Social Semantic Web. In Procs of CK-2009, 2009.

14. R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebben, and J. Reitsma.
Context sensitive access control. In Procs of SACMAT, pages 111–119. ACM, 2005.

15. J. Krumm. A survey of computational location privacy. Personal Ubiquitous

Comput., 13(6):391–399, Aug. 2009.
16. D. Kulkarni and A. Tripathi. Context-aware role-based access control in pervasive

computing systems. In Procs of SACMAT, pages 113–122, 2008.
17. H. Muhleisen, M. Kost, and J.-C. Freytag. SWRL-based Access Policies for Linked

Data. In Procs of SPOT, 2010.
18. T. Priebe, E. B. Fernández, J. I. Mehlau, and G. Pernul. A pattern system for

access control. In Procs of DBSec, pages 235–249, 2004.
19. O. Sacco, A. Passant, and S. Decker. An access control framework for the web of

data. In Proc. of TrustCom, IEEE, pages 456–463, 2011.
20. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. IEEE Computer, 29(2):38–47, 1996.
21. H. Shen and Y. Cheng. A semantic context-based model for mobile web services

access control. I. J. Computer Network and Information Security, 1:18–25, 2011.
22. A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A semantic context-aware

access control framework for secure collaborations in pervasive computing environ-
ments. In Procs of ISWC, LNCS 4273, pages 473–486. Springer, 2006.

