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Abstract: Security-sensitive components, such as single sign-on APIs, need to be safely deployed
on untrusted webpages. We present several new attacks on security components used in popular
web applications that demonstrate how failing to isolate such components leaves them vulnerable
to attacks both from the hosting website and other components loaded on the same page. These
attacks are not prevented by browser security mechanisms alone, because they are caused by
code interacting within the same origin. To mitigate these attacks, we propose to combine fine-
grained component isolation at the JavaScript level with cryptographic mechanisms. We present
Defensive JavaScript (DJS), a subset of the language that guarantees the behavioral integrity of
trusted scripts loaded in an untrusted page. We give a sound type system, type inference tool and
build defensive libraries for cryptography and data encodings. We show the effectiveness of our
solution by implementing several isolation patterns that fix some of our original attacks. We use
a translation of a fragment of DJS to to applied pi-calculus to verify concrete security policies of
critical components against various classes of web attackers.

Key-words: JavaScript, security, cross-site scripting, cross-site request forgery, browser cryp-
tography, single sign-on, encrypted cloud storage



Chargement d’interfaces de scurit dans des sites web tiers

Résumé : Certaines librairies critiques pour la scurit, par exemple pour l’authentification
unique (single sign-on), ncssitent d’tre charges dans des sites tiers non srs. Nous montrons
comment le manque d’isolation entre ces librairies et leur page hte les rendent vulnrables aux
scripts tiers qui partagent le mme environnement, y compris pour des services trs largements
utiliss. Les mcanismes de scurit des navigateurs sont impuissants face ces attaques car elles
interviennent en dessous de la granularit des politiques de scurit, fixe par origine (protocole, nom
de domaine et numro de port). Afin de mitiger ces attaques, nous proposons de combiner une
isolation fine de ces librairies au niveau du langage avec des protections cryptographiques. cette
fin, nous introduisons DJS, un fragment de JavaScript qui protge l’intgrit de l’excution d’un script
dans un environnement JavaScript hostile. Nous nous appuyons sur un systme de types infrables
et sur un ensemble de librairies (elles-mme bien types) pour implmenter des solutions gnriques
aux attaques que nous avons dcouvertes. Nous vrifions la validit de ces schmas l’aide d’une
traduction d’un sous-ensemble de DJS vers le pi-calcul appliqu contre diffrent types d’attaques.

Mots-clés : JavaScript, security, cross-site scripting, cross-site request forgery, browser cryp-
tography, single sign-on, encrypted cloud storage
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1 Defensive Security on
Untrusted Websites

Web users increasingly store sensitive personal
data on servers spread across the web. The
main advantage of this dispersal is that users
can access their data from browsers on mul-
tiple devices, and easily share this data with
friends and colleagues. The main disadvantage
is that the concentration of sensitive data on
servers makes them tempting targets for cyber-
criminals, who use increasingly sophisticated
browser-based attacks to steal user data.

In response to these concerns, web applica-
tions now offer users more control over who
gets access to their data, using authoriza-
tion protocols and cryptographic mechanisms.
These mechanisms are typically embedded as
JavaScript components that run on partially-
trusted web pages and protect user data from
unauthorized parties, until the user explicitly
gives her permission by entering a password or
clicking on a button.

Popular examples of such components in-
clude single sign-on mechanisms such as Login
with Facebook, social sharing widgets such as
the ubiquitous Like button, payment process-
ing APIs such as Google Checkout, password
manager bookmarklets such as Lastpass, and
client-side encryption libraries used by cloud
storage services such as Wuala.

We investigate the security of such compo-
nents when they are loaded on untrusted web-
sites alongside other third-party components,
including frameworks such as jQuery or li-
braries such as Google Analytics. Can the com-
ponent be protected from interference or at-
tacks from other code running on the same web-
page?

Same Origin Policy. Most browser-based secu-
rity mechanisms are based on the origin from
which a webpage was loaded, defined as the do-
main of the website and the protocol and port
used to retrieve it (e.g. https://facebook.

com). The Same Origin Policy of the browser
isolates JavaScript global environments associ-
ated with different origins, while allowing code
from different global environments associated

to the same origin to interact, for example by
reading each other’s global variables or call-
ing each other’s functions. Scripts included
into a page using the <script> tag share the
global environment of that page regardless of
the URL from which they were sourced. Frames
sourced from the same origin can access each
other’s documents. Newer HTML5 APIs, such
as postMessage, localStorage, and WebCrypto,
all enforce access control based on origin.

Hence, security components can rely on the
browser to protect their secrets and functional-
ity from malicious components on other origins.
Conversely, if a malicious script is loaded in any
page on an origin, it may access all capabilities
available to that origin.

Attacks on Security Components. In Section 3,
we survey the state of the art in two classes of
security components: OAuth 2.0 single sign-on
mechanisms (e.g. “Login with Facebook”) and
client-side encryption libraries used for cloud
storage applications. These components are
specifically designed to be deployed on partially
trusted websites. So, they isolate their code
using a variety of techniques, such as frames,
browser extensions, and Java applets. Secure
communication within a component or with the
hosting page then relies on some combination
of cryptography with HTML5 messaging and
storage APIs.

Despite their use of such sophisticated mech-
anisms, we still found attacks against many of
these components that completely break their
stated security goals. Table 1 summarizes some
of these attacks. These attacks broadly fall in
three categories:

� Origin spoofing : a malicious website fools
a security component into thinking that it
has been loaded into a different, trusted
origin.

� Rootkits: a malicious script that runs be-
fore a security component tampers with
the JavaScript environment to affects the
component’s functionality and steals its se-
crets.

� Cross-Site Scripting (XSS): an XSS vul-
nerability on any page in a trusted ori-
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4 Delignat-Lavaud & Bhargavan & Maffeis

gin enables an attacker to inject a mali-
cious script that can interact with a secu-
rity component on that origin and steal its
secrets.

These kinds of attacks are well known, but our
study shows that they are difficult to avoid even
for security-conscious developers.

Rather than suggest ad hoc point-fixes to
specific vulnerabilities, we advocate a new de-
fensive programming style with strong formal
guarantees against entire classes of attacks. We
show how developers may write defensive com-
ponents in JavaScript that combine cryptogra-
phy and browser security mechanisms, but are
still safe to deploy in untrusted environments.

Programming Securely in JavaScript. The se-
curity components we consider in this paper are
written primarily in JavaScript and use a num-
ber of HTML5 APIs. Before proceeding, it is
perhaps worth questioning whether JavaScript
(or HTML5) is even a suitable programming
environment for security.

To take an instructive example, JavaScript
cryptography has proved to be quite contro-
versial. On the one hand, a number of web
applications use JavaScript cryptographic li-
braries like the Stanford JavaScript Crypto Li-
brary (SJCL) [31]. On the other hand, secu-
rity experts criticize the use of such libraries in
comparison with both traditional desktop ap-
plications and server-based cryptography (see
for example [29]). The gist of these argument
is that: (1) a crypto library downloaded from a
server does not protect the user against server-
side tampering (due to hacking) or from client-
side tampering (due to XSS); (2) JavaScript
is too flexible for cryptography, since it al-
lows basic language constructs to be redefined;
(3) JavaScript lacks core functionality like a
cryptographically strong random number gen-
erator; (4) JavaScript runtimes, being new and
untested, may be more vulnerable to side-
channel attacks.

Do these criticisms mean that cryptographic
libraries like SJCL and components that use
them are doomed to be insecure? In Sections 6
and 7, we show that it is possible to avoid some
of these pitfalls as long as one is willing to pro-

gram both the cryptographic library and its ap-
plications in a restricted subset, and as long as
one can rely upon some trusted server for some
tasks.

Notably, in our cryptographic applications,
we address the four concerns above as fol-
lows: (1) we download security components
from a trusted third-party script server; the
same origin policy of the browser then protects
our scripts from client-side tampering; (2) we
write our crypto library in a defensive subset
of JavaScript that ensures independence from
the untrusted environment; (3) we rely on the
script server to provide us with entropy for gen-
erating keys; (4) we never expose any long-term
keys to the browser, hence any side-channel at-
tacks may only expose short-term session keys.
In short, we forbid random number generation
and long-term key storage on the browser, we
rely on a third-party server for code distribu-
tion and key management, and program defen-
sively in a subset of JavaScript.

Towards Defensive JavaScript Components.
Requiring that all scripts on an origin be
trusted is too demanding. Instead, we advo-
cate that security components be designed in a
way that they resist attacks. Rather than rely
on origin-based security mechanisms, we inves-
tigate language-based isolation for such secu-
rity components. This leads us to identify the
defensive JavaScript problem:

Define a defensive subset of JavaScript to write
stateful functions whose behavior cannot be in-
fluenced (other than by varying their input pa-
rameters) by untrusted code running in the
same JavaScript environment, whether the code
is run before or after installing such functions.
Moreover, untrusted code should not be able to
learn secrets by accessing the source code of de-
fensive functions or directly accessing their in-
ternal state.

This problem is harder than the one tackled
by JavaScript subsets such as ADsafe [12] or
Caja [11], which focus on protecting a trusted
page by sandboxing untrusted components. In
particular, those subsets rely on the assump-
tion that the initial JavaScript environment is
trusted (no rootkit is installed) and that the
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Embedding of Security Components in Untrusted Third-Party Websites 5

untrusted code can be restricted to ensure that
it cannot escape its sandbox. In our case, de-
fensive code must run securely in a potentially
rootkitted JavaScript engine, and the untrusted
code is arbitrary.

Our Approach and Contributions. We present
DJS, a defensive subset of JavaScript for pro-
gramming security components that can run
safely on untrusted web pages. To our knowl-
edge, DJS is the first language-based isola-
tion mechanism that does not restrict untrusted
JavaScript, or even the surrounding HTML5
environment, and that does not need to be
loaded first in the browser.

We use DJS to program defensive libraries for
cryptography and JSON serialization. Build-
ing on DJS programs, defensive cryptography,
and browser-based security mechanisms such as
iframes, we show how to build defensive compo-
nents with strong security guarantees, even in
malicious environments. We use these compo-
nents to fix some of the web application attacks
we found.

Our main contributions are:

� We identify common concerns for appli-
cations that embed secure components in
arbitrary 3rd party websites, and identify
new attacks specific to these applications.

� We propose DJS as a linguistic solution to
program defensive security components.

� We give an automated tool to verify if a
piece of JavaScript code is valid DJS.

� We define DJCL, a defensive crypto library
with encoding and decoding utilities that
can be safely used in untrusted JavaScript
environments.

� We identify general patterns that leverage
DJS and cryptography to enforce compo-
nent isolation in the browser, and in par-
ticular, we propose fixes to several broken
web applications.

Demonstrations of our type inference pro-
gram, defensive scripts and an up-to-date copy
of this technical report are available anony-
mously at http://www.defensivejs.com.

Outline. Section 2 briefly discusses related
work. Section 3 studies common security com-
ponents and presents new attacks on popu-
lar web applications that motivate defensive
JavaScript. Section 4 introduces DJS. Section 5
states our main security theorem about DJS
programs. Section 6 describes our defensive li-
braries and Section 7 describes several defensive
applications. Section 9 concludes.

2 Related Work

Attacks on JavaScript Security Components.
Our threat model, of untrusted scripts that
tamper with a web page before a security com-
ponent is run, is sometimes called a JavaScript
rootkit. It has been explored both in the con-
text of bookmarklets that try to authenticate
the origin in which they are loaded [2], and in
the context of frame busting defences, by which
a web page tries to detect if it is loaded inside
an iframe element [28]. In this paper, we gen-
eralize the threat model to address defensive
programming in a wider variety of applications.

Many attacks on single sign-on components
in websites have been discovered in recent
years, including XML-rewriting attacks on
SAML [30], token redirection and CSRF at-
tacks on OAuth 2.0 [6], and a variety of log-
ical flaws in OpenID and OAuth implementa-
tions [33]. The last two of these list attacks that
are similar in flavor to our attacks of Section 3.
In particular, [33] reports a Flash-specific at-
tack on the Facebook single sign-on compo-
nent. Other recent attacks related to the prob-
lems considered in this paper include those on
payment processing components [34], password
manager key derivation [9], and various appli-
cations for encrypted cloud storage [10].

We cite these works as further evidence for
the need for provably secure defensive program-
ming techniques for web security components.
None of the above papers proposes any generic
countermeasures beyond point-fixes to specific
vulnerabilities. In contrast, we propose DJS for
preventing some of these attacks and show how
to use it with cryptography to program secure
applications.
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6 Delignat-Lavaud & Bhargavan & Maffeis

Category Example Isolation Mechanism Threat Attack
Single Sign-On Library Facebook JS SDK Frames Token Phishing Origin Spoofing
Single Sign-On Client Yahoo (Facebook Login) Frames Open Redirector Token Redirection
Web Browser Firefox Frames, CSP Cross-Origin Access Redirection URI Theft
Password Manager 1Password Browser Extension Phishing Origin Spoofing
Password Form Filler LastPass Bookmarklet, Cryptography Phishing Password (Key) Theft
Cloud Storage SpiderOak JavaScript Cryptography CSRF Shared Folder Theft
Cryptographic Web Application ConfiChair Java Cryptography XSS Password (Key) Theft

Table 1: Example Attacks on Security Components

Frame-based Isolation. A number of works ex-
plore the use of frames and inter-frame commu-
nication to isolate untrusted components on a
page [8, 7, 20, 22, 3]. These mechanisms typ-
ically assume that the parent page is trusted,
and a bootstrapping script is run first to set
up frame isolation and inter-frame communica-
tion. However, in our application scenarios, the
hosting page is typically untrusted and the se-
curity component must be ready to be loaded
into a malicious environment.

A recent work in this category [3] proposes
a privilege-separation mechanism for HTML5
applications that isolates all website code ex-
cept a small trusted script within frames that
are given temporary (sandboxed) origins. Ac-
cesses to the parent website are performed via
the HTML5 postMessage API. To make this
work, the website code has to be slightly rewrit-
ten to work within a frame, and website inter-
actions such as AJAX calls incur a performance
penalty due to cross-frame messaging. In con-
trast, we propose to only rewrite and isolate se-
curity components, leaving untrusted code un-
changed. Considering that the vast majority of
code on a website is not security-critical, our
approach promises better performance, while
removing the dependence on running first.

Secure JavaScript Subsets. A variety of
JavaScript subsets attempt to restrict access
from untrusted scripts to sensitive APIs loaded
on trusted web pages [15, 24, 23, 26, 27, 21, 25,
32]. Our goal is instead to run trusted com-
ponents within untrusted web pages, hence our
security goals are stronger, and our language
restrictions are different. In practice, many
of these solutions rely on first-starter privilege,
that is, they only offer isolation on web pages
where their setup code runs first so that it
can restrict the code that follows. For exam-

ple, [32] propose a subset called Secure EC-
MAScript in which all untrusted code must be
written. Since this subset forbids any modifica-
tion of language prototypes it is incompatible
with popular JavaScript libraries such as Proto-
type and MooTools. This language restriction
is imposed by a bootstrapper that freezes all
the language prototypes and hides dangerous
APIs. In our setting, the attacker runs first,
and such defences are not available. Moreover,
we only want to restrict the security-sensitive
website code.

Trusted Wrappers for JavaScript. Recent
work [16] explores whether trusted code can
be protected from an untrusted JavaScript en-
vironment. All trusted code is written in the
F* functional language, and then compiled to
JavaScript. Their main theorem states that
two F* programs are behaviorally equivalent in
F* if and only if their translations are behav-
iorally equivalent in JavaScript. That is, the
JavaScript environment cannot break the se-
crecy and authenticity invariants However, we
found that malicious code in the HTML doc-
ument can quite effectively break the security
invariants of their JavaScript code. We discov-
ered several counterexamples to their defensive
wrappers and security applications. In particu-
lar, F* programs that hide sensitive DOM func-
tions do not hide them anymore when trans-
lated to JavaScript, and secrets stored in F*
programs may be leaked by their JavaScript
translations. We have reported our counterex-
amples to the authors of [16], leading to fixes
in their defensive wrappers and ongoing discus-
sions on extending their results to our attacker
model.

Secure Information Flow for JavaScript. Sev-
eral recent works [19, 13, 5] propose information
flow analyses for various subsets of JavaScript

Inria
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that aim to enforce a form of noninterference;
put simply, high-security data is kept isolated
from low-security data. These analyses are
typically implemented as dynamic checks at
runtime, since static analysis is infeasible for
general JavaScript programs. In contrast, we
present a static analysis that identifies a sub-
set of JavaScript for which a different property
called defensiveness holds. Defensiveness does
not guarantee security; defensive programs may
still leak secrets or accept tainted data. How-
ever, it does guarantee a form of functional in-
tegrity that we call independence. Relating de-
fensiveness formally to noninterference remains
future work, but we conjecture that programs
written in our defensive subset of JavaScript
may lend themselves more easily to information
flow analysis.

3 Security Components:
Examples and Attacks

Table ?? summarizes attacks that we found on
a number of commercial security components.
Each row in the table is corresponds to one cat-
egory of components and is representative; we
typically found similar attacks on a number of
other components in the same category.

In this Section, we study in detail the imple-
mentations of two security components that try
to protect user data from other components on
the same (untrusted) web page. In each case,
we show how the component can be attacked
by a malicious script on the hosting page, and
argue that their security should be independent
of their environment. Our attacks bypass exist-
ing sophisticated defenses in these applications
amd demostrate the need for verified defensive
programming techniques for JavaScript.

3.1 OAuth 2.0: Single Sign-On
and API Authorization

Websites such as Facebook, Google, and Live,
protect API access to user data through the
OAuth 2.0 [18] authorization protocol. To ac-
cess user data from any of these websites, a
web application must first obtain an access to-

ken from an authorization server. The token is
issued only if the user explicitly gives her per-
mission.

A typical use for such tokens is to authen-
ticate a user, by retrieving her email address.
This is the basis of single sign-on solutions pro-
vided by various social networks (e.g. Login
with Facebook). More generally, the token may
be used to retrieve user data for personaliza-
tion, or to post a comment on a user’s social
profile (e.g. Like buttons).

All major authorization providers offer
JavaScript SDKs to allow web applications to
easily request and use access tokens through a
simple client-side API. We consider the design
of the Facebook JavaScript SDK. In particular,
the SDK exports the FB.login() method that con-
tacts Facebook to verify that the current user is
logged in to Facebook, checks that the user has
authorized the current website, and retrieves a
fresh access token. The page can then access
the token directly by calling FB.getAccessToken(),
or attach it automatically to API requests using
FB.api().

The goal of the login component of the SDK
is to ensure that only authorized applications
are given a token to access the user data. In its
strongest server-side configuration, the OAuth
protocol requires each application to authen-
ticate its token request with its identifier and
secret key (obtained during registration), and
requires that the authorization server only re-
turns the token to a preregistered application
URI.

When returning tokens to JavaScript clients,
however, authorization servers are more per-
missive. They do not require application au-
thentication, because storing or using long term
secret keys in JavaScript is considered danger-
ous. They require only that the destination web
page be on the same origin as the application’s
registered URI, because browsers do not offer a
reliable way to distinguish one page on an origin
from another. If a user authorizes a website to
access her Facebook profile, she is authorizing
every script on every page that can be loaded
in that website’s origin. If any of them is mali-
cious, it will be able to obtain the access token
by calling FB.getAccessToken().

RR n° 8285



8 Delignat-Lavaud & Bhargavan & Maffeis

Figure 1: Example security components: (a) Facebook JavaScript SDK single sign-on, (b) Con-
fiChair website document decryption

We found that even this limited notion of
security is not satisfied by common JavaScript
login components. Figure 1(a) shows how
the Facebook SDK component obtains a
token for the current user and website on a
browser. When a script on the website W

calls FB.login(), two iframes are created. The
first OAuth iframe is sourced from Facebook’s
authorization server (https://www.facebook.
com/dialog/oauth?client_id=<W’sid>).
This website authenticates the user (with
a cookie) and after checking that the user
has previously authorized W, it redirects
the iframe to a new URL with the ac-
cess token as a fragment identifier (https:
//static.ak.facebook.com/connect/xd_

arbiter.php#token=<accesstoken>). The
JavaScript loaded from this page retrieves the
access token from the URL and sends it to the
second iframe.

The second Proxy iframe is sourced from
the same webpage that the first frame
is redirected to, but with a fragment
identifier indicating the origin of the host
page (https://static.ak.facebook.com/
connect/xd_arbiter.php#origin=W). Since
both frames are now on the same origin, they
can directly read each other’s variables and call
each other’s functions. The OAuth iframe calls
a proxyMessage function on the Proxy iframe
to deliver the access token. This function
then forwards the token to the waiting FB.login

callback function on the hosting webpage W,
by sending a postMessage event to the parent
frame with target origin W.

This is the flow on a trusted website W. To

protect against a malicious website M that loads
the SDK and tries to steal a user’s access tokens
by pretending to be W, the login method relies
on the following security mechanisms:

1. Both iframes are sourced from origins dis-
tinct from the current webpage, so scripts
on M cannot look inside the OAuth and
Proxy iframes, except to read or write their
source URIs.

2. Scripts on M cannot directly access Face-
book because the browser and the web
server will prevent such cross-origin ac-
cesses.

3. The redirection of the OAuth iframe is
transparent to the page; so M cannot read
the redirection URI and hence the access
token in its fragment identifier.

4. When the OAuth iframe calls proxyMessage

on the Proxy iframe, the browser would
prevent this call unless both frames were
on the same origin. Hence, the OAuth
frame cannot accidentally leak its token to
a different frame or window on M.

5. When the Proxy iframe uses postMessage to
send the access token to the parent, it sets
the target origin to W; and the browser will
refuse to deliver this message to a different
origin M.

All these five mechanisms are variations of the
so-called browser Same Origin Policy. Essen-
tially, if M and W are different origins, their
pages, scripts, frames, and messages are pro-
tected from each other.
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Origin Spoofing Attacks on the Facebook
SDK. We found three ways of confusing the
Proxy iframe into releasing its access token to
an unauthorized website.

1. The first attack relies on the fact that al-
though the OAuth iframe only obtains access
tokens for an authorized origin W and the Proxy
iframe only releases access tokens to the origin
in its fragment identifier, there is no check guar-
anteeing that these origins are the same. We
wrote a malicious website M that mimics the
Facebook login component to open two iframes.
It gives the OAuth iframe the application id
and origin for W and the Proxy iframe the ori-
gin for M. The OAuth iframe duly gets the
token for W and passes it to the Proxy iframe
that forwards the token to M.

As a result, if a user clicks on a malicious
website M, that website can steal the access to-
kens for any other website that the user has
authorized. In practice, our proof-of-concept
website can steal authorization codes and login
tokens for major websites that enable Facebook
login, such as Yahoo, Pinterest, and Live, and
also security sensitive services for tax prepara-
tion (H&R Block), online health (HealthVault),
and banking (Movenbank). Moreover, M can
obtain any visiting users’ Facebook profile in-
formation and write to their walls. This last
capability enables M to propagate itself like a
worm through the social network.

After our report, Facebook quickly fixed their
website to prevent the attack using already ex-
isting code for comparing the origins provided
to the two frames. However, we found two other
ways to bypass this origin comparison, which
we subsequently reported and helped fix.

2. Our second attack relies on a weakness
in the origin parsing and comparison code of
the xd_arbiter.php page. In order to en-
able subdomain x.y.W of W to obtain W’s ac-
cess token, the origin comparison code first ex-
tracts the domain from both origins and ver-
ifies that the domain provided to the OAuth
frame D is a suffix of the domain provided to
the Proxy frame D’. More precisely it checks
that ”.”+D is a suffix of ”.”+D’. However, the do-
main parsing regular expression is broken, and

given an origin https://M?origin=.W, it re-
turns M?origin=.W. Consequently, if the mali-
cious website gives the Proxy iframe this origin,
the origin comparison for W succeeds and the
access token for W is leaked to M. (The URL
https://M?origin=.W is not strictly an origin
but is accepted by the postMessage function in
all browsers we tested.)

3. Our third attack relies on parameter pars-
ing confusion. If M gives the OAuth frame two
origin parameters, the PHP code for the au-
thorization server takes the second parameter
as the origin. However, the JavaScript code in
the xd arbiter takes the first parameter as the
origin. Consequently, M can get the authoriza-
tion server to return a token for W but then get
the JavaScript origin comparison and authenti-
cation to be performed for M.

Breaking Redirection Transparency on
Firefox. Our second class of attacks demon-
strates how redirection URIs such as the ones
used to deliver Facebook access tokens may be
inadvertently leaked by a browser.

1. We found that a recent version of the
Firefox browser failed to isolate iframe loca-
tions. A malicious website M could start an
iframe sourced from M, store a pointer to its
document.location object, and then redirect the
frame to (say) the Facebook OAuth endpoint
to obtain a token for W. When the server redi-
rects the frame back to the Proxy endpoint with
the access token in its fragment URI, this URI
should not be accessible to the parent page M.
However, the stored pointer to the frame’s loca-
tion broke this isolation and allowed M to steal
W’ access token.

2. Our second attack was on Firefox’s imple-
mentation of Content Security Policy (CSP), a
recent proposal for increasing website security
against XSS attacks. A notable feature of CSP
is that a website can ask the browser to report
any access to unauthorized URIs back to the
website. Suppose, for example, that the web-
site M asks the browser to block all access to
static.ak.facebook.com from its pages and
report violations of this policy. If the website
starts the OAuth iframe pretending to be W,
the Facebook OAuth server will issue an access
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token for the user and redirect to the blocked
URL with a fragment identifier containing the
access token. Firefox would then report this vi-
olation to M by sending it the full redirection
URL, including the access token for W.

Both these attacks enable a malicious website
M to obtain the access token for any other au-
thorized website W by relying on bugs in Fire-
fox. We reported these bugs, and they are now
fixed.

Inadequacy of Origin-based Authoriza-
tion. With the fixes above, Facebook access
tokens are restricted to the origins for which
they are issued. That is still not good enough.

On websites that host user content, such as
Dropbox, some parts of the origin may be un-
der the control of a malicious user. For ex-
ample, we found that user pages hosted under
dl.dropbox.com were able to obtain access to-
kens issued for Dropbox (which used the origin
dropbox.com).

HTTP redirectors on a website may inadver-
tently leak access tokens. We found an open
redirector on the electronic voting website He-
lios [1] that enabled a malicious website to ob-
tain the access token for any Helios user (and
hence log in and vote in her name). Other
websites that incorporate redirection into their
functionality, such as Yahoo Search and Bitly
also enabled malicious websites to steal tokens
that were meant for Yahoo and Bitly’s login
pages.

All these attacks were reported and subse-
quently fixed by restricting access tokens to
subdomains of these websites. However, the
problem of authenticating token requests and
preventing tokens from leaking in referrer head-
ers and to malicious scripts remains unresolved.

New protocol extensions to OAuth 2.0 such
as OpenID Connect attempt to address these
problems by introducing cryptography, in the
form of signed and encrypted JSON web tokens,
to protect tokens from untrusted web pages.
We believe this is a promising development,
but as we demonstrate in the following section,
getting cryptography right comes with its own
challenges.

3.2 Client-side Encryption for
Host-Proof Web Applications

In response to increasingly effective server-side
attacks on databases and websites, some web
applications store all user data encrypted on
notionally untrusted cloud servers, using keys
that are known only to the user, not even to
the web application. All plaintext data accesses
are performed in the browser, after download-
ing and decrypting ciphertext from the cloud.

This architecture has been adopted by cloud
storage services such as SpiderOak and Wuala,
password managers such as LastPass and Pass-
Pack, and privacy conscious applications such
as Helios, for electronic voting, CryptoCat, for
encrypted chats, and ConfiChair, for conference
management.

The host-proof design provides an effective
defence against offline attacks where a hacker
has stolen a server-side database, and can-
not decrypt it easily without each user’s keys.
It is less effective against active adversaries
who may tamper with the cryptographic com-
ponents as they are being delivered to the
browser. To address this concern, some ap-
plications use signed Java applets, others use
JavaScript cryptography within browser exten-
sions, whereas others use reputed JavaScript
cryptographic libraries such as SJCL [31].

We consider the ConfiChair conference man-
agement system [4] as an illustrative example
of incorporating client-side encryption for cloud
storage as part of a wider web application.
ConfiChair aims to provide its users with for-
mal privacy guarantees that are much stronger
than existing systems like EasyChair. A confer-
ence chair logs into ConfiChair and starts a new
conference and invites a set of users to serve on
the program committee. The conference has a
public-private keypair (where the private key
is known only to the chair) and a shared re-
viewing key (known to the program commit-
tee.). Authors log into ConfiChair and submit
papers by encrypting each paper under a fresh
symmetric key, which is encrypted under the
conference public key and uploaded along with
the paper. After submissions are closed, the
chair reindexes all the papers (using a mixnet)
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and sends them, re-encrypted under the review-
ing key, to their allocated reviewers. Reviews
are similarly encrypted and sent back to the
chair, who finally reveals all review to the cor-
responding authors. All encrypted papers and
encrypted reviews are stored on an untrusted
server in the cloud. Each ConfiChair user has
a keypurse consisting of all her keys for differ-
ent roles at various conferences; this keypurse
is encrypted under a key derived from her pass-
word and also stored in the cloud.

Figure 1(b) shows how the ConfiChair web-
site downloads and decrypts a single paper be-
longing to an author. The user enters her pass-
word on a login page and this password is stored
in the HTML5 local storage, but not sent to
the server. Instead an authenticator derived
from the password is sent to the website. Sub-
sequently, the conference manager may down-
load the user’s encrypted keypurse and paper
from the cloud server. The client-side encryp-
tion library uses a Java applet to first decrypt
the keypurse using a key derived from the pass-
word, and then uses the appropriate key from
the keypurse to decrypt the paper. It caches
the decrypted keypurse also in the local storage
for subsequent paper downloads and uploads.
When the user logs out, her password and keys
are deleted from the local storage.

The protocol of ConfiChair has been proven
to satisfy several security properties under the
following assumptions:

� The paper is encrypted under the key-
purse, which is in turn encrypted under the
password known only to the user, so an at-
tacker who obtains the keypurse or paper
from the cloud or the network cannot read
it.

� All cryptography is implemented in the
signed Java applet, so it is tamper-proof.

� The password and keypurse are stored
temporarily in local storage, but by the
same origin policy only pages on the Con-
fiChair website have access to them.

� We assume that all the JavaScript loaded
by the ConfiChair website is loaded from

a secure server and cannot been tampered
with by a malicious adversary.

However, those result do not consider standard
web-based attacks on the ConfiChair website.

An XSS Attack on ConfiChair. The main
weakness of the design of ConfiChair is that
the password and keypurse are available in local
storage to any script running on the ConfiChair
origin. Even if all the scripts on ConfiChair are
trusted, an XSS attack may introduce a new
script that may read and steal this data.

We found an XSS attack on the “change-
role” functionality of ConfiChair that enables
an arbitrary website to inject a script into the
conferences page on ConfiChair. This script
can then steal the user’s password and keys and
send them to the malicious website. So, if an
author visits the malicious website, it can read
all the authors’ submissions. However, if the
conference chair visits the website, the entire
conference can be compromised.

We reported this vulnerability to the Con-
fiChair authors and we are in the process of
discussing fixes. Despite the XSS attack, one
may argue that storing passwords and keys in
local storage is bad design but cryptographic
web applications often have to balance robust
key management with ease of use (e.g. how
many times to ask the user for a password). For
example, we found a JSONP CSRF attack on
the encrypted cloud storage service SpiderOak,
that enables malicious websites to steal decryp-
tion keys for shared files. The root cause of the
attack is that SpiderOak maintains two sets of
keys, one for private files and one for shared
files. The first set is derived from a user’s
passphrase, but the second is not, and hence
has to be stored on the server, leaving it open
to theft via CSRF and other attacks.

Using cryptography is not a guarantee of se-
curity. One must question whether the cryp-
tographic library itself can be tampered with,
how the keys are managed, and what is the
authorization mechanism used before releas-
ing plaintext data to a website. Host-proof
web applications have a higher bar of security
than normal websites since their whole design is
meant to free the user from trusting the server.
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Implementing host-proof application correctly
demands robustness against common web at-
tacks such as XSS and CSRF. In Section 4
we advocate a defensive programming style for
such cryptographic components that trusts as
little of the surrounding code as possible.

Rootkit Attacks on Password Manager
Bookmarklets. Password manager book-
marklets, such as those provided by LastPass,
PassPack and SuperGenPass, provide a second
factor of authentication to a password man-
ager; when clicked, they inject cryptographic
code into a webpage that retrieves or computes
the password for the current page (if any) with
the aid of a password manager. We found at-
tacks on all of these bookmarklets that allow
malicious websites to tamper with their cryp-
tographic functionality and/or steal their en-
cryption keys. We have yet to encounter any
truly defensive commercial cryptographic book-
marklets. In Section 7, we propose a secure lo-
gin bookmarklet that relies on defensive cryp-
tography in JavaScript.

4 Defensive JavaScript

In this Section we define DJS, a defensive sub-
set of JavaScript for writing trusted compo-
nents that interact with untrusted webpages
while preventing undesirable interferences and
attacks. Beside the primary goal of defensive-
ness, other goals underpinning the design of
DJS are: membership must be decidable by
a simple static analysis backed up by formal
correctness guarantees; run-time performance
overhead should be minimal; DJS code should
be compatible with existing browsers (running
either ECMA Script 3 or 5). In order to address
these goals, in some cases we have decided to re-
strict DJS beyond what is strictly necessary for
defensiveness. In Section 4.4 we discuss some
extensions to DJS that we believe would not
impact its soundness. In practice, an arbitrary
JavaScript program is considered valid DJS if
it is accepted by the automatic conformance
checker described in Section 4.3, which in turn
is based on the type system of Section 4.2. A
pleasant side effect of DJS typing is that it im-

poses hygienic coding practices similar to those
of the popular JSLint tool, encouraging high
quality code that is easy to reason about.

4.1 Threats and Countermea-
sures

We now summarize the main threats to defen-
sive code and the countermeasures adopted in
the design of DJS.

Dependence on non-defensive state.
Threats: The result returned by a defensive
function must depend only on its (defensive)
state and on the invocation parameters, so that
it can be relied on even when the function is
called from within a compromised JavaScript
environment. In JavaScript, unexpected non-
local access can arise for example from its non-
standard scoping rules, from the prototype-
based inheritance mechanism, from automated
type conversion and from the possibility to in-
stall getters and setters on object properties.
Countermeasures: Defensive code should not
access variables or call functions defined out-
side of the defensive code itself. In particular,
defensive code should not use global variables,
and should not try to access properties of de-
fensive objects that are inherited via the proto-
type chain from non-defensive objects (this also
covers the case of non-defensive getters and set-
ters).

Source code leakage. Threats: Defensive
scripts are downloaded as source code and can-
not call DOM functions (which are under the
control of the attacker), therefore any persis-
tent state must be included implicitly in the
script itself. For example, a common usage pat-
tern is to include a session-specific nonce that
can be used as a source of randomness, as a
session identifier or as a key. Therefore, the
source code of a defensive function is consid-
ered secret, and should not be available to the
untrusted code.

We identify four attack vectors that a trusted
script can use to read (at least part of) the
source code of another script in the same ori-
gin: using the toSource property of a func-
tion, using the stack property of an exception,
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reading the code of an inlined script from the
DOM, or re-loading a remote script as data us-
ing AJAX or Flash. Note that since the se-
cret is session-specific, a malicious server that
has the power to ignore the SOP and read
script sources from any origin, would not be
able to obtain the nonce useful for a specific
browser session. Countermeasures: To avoid
the first attack, defensive code only exports to
untrusted code stub functions that internally
call the functions whose source code is sensitive.
Calling toSource on the former only shows the
stub code and does not reveal the source code
of the latter. To avoid the second attack, de-
fensive code should either be exception-free or
catch all possible exceptions. To avoid the third
attack, defensive code is never directly inlined
in a page. To avoid the fourth attack, defensive
scripts are only served from dedicated domains
that do not allow cross-domain resource shar-
ing.

Defensive pointer leakage. Threats:
Since defensive functions can maintain run-
time state containing sensitive information,
untrusted code should not be able to ob-
tain arbitrary pointers to defensive objects.
In JavaScript, an untrusted function that is
called by defensive code can use the caller

chain starting from its own arguments object
to traverse the call stack and obtain direct
pointers to defensive objects (inner functions,
their arguments objects, etc.). Countermea-
sures: Both the JavaScript specification and
recent releases of Firefox, Chrome, Internet Ex-
plorer and Opera prevent deleting or overwrit-
ing caller pointers, so defensive code needs to
avoid this threat by never calling non-defensive
functions. This is not an additional restriction
because, as discussed above, it is also needed to
avoid dependence on non-defensive state.

4.2 DJS: formal definition

We now formally define DJS, our defensive sub-
set of JavaScript, by a combination of syntac-
tic restrictions and type checking. The “strict
mode” of ECMAScript 5 (ES5S) guarantees
some properties useful for defensiveness, such
as lexical scoping or safe binding of this, but for

compatibility with a large number of deployed
web browsers which only support ECMAScript
3, we do not rely on ES5S features. 1 DJS
code that does not use the with statement is
valid ES5S code.

Syntax. The syntax of DJS is reported in Fig-
ure 2. In this section we present only the core of
DJS, omitting derivable constructs such as for
example for loops, switch, and the increment
operator. Tokens prefixed by @ refer to the
lexical categories of the standard ECMAScript
syntax.

A DJS program is essentially an arbitrary
DJS function on strings wrapped in a stub that
hides the function inside the variable “ ” of its
closure, and dynamically typechecks the input
parameter x. For simplicity, functions have all
variables declarations at the beginning and a
single return statement at the end.

Statements and expressions are standard. As
often required to allow static analyses, there is
no general computed property access e[e] in
the syntax. However, we include dynamic ac-
cessors that allow numeric, within-bound prop-
erty access for arrays and strings using built-in
dynamic checks, such as x[(e>>>0)%x.length].
If x is a non-empty array and e is known to eval-
uate to a number, then e>>>0 is a positive inte-
ger, and the expression (e>>>0)%x.length eval-
uates to a value in [0..x.length − 1]. Further-
more, if x.length is known to be a power of 2,
e&2^n-1 also ensures that the access is not out
of bounds; because of its conciseness and small
overhead this check is favoured in practice.

Types. DJS types and their subtyping rela-
tion are defined in Figure 3. Function types are
standard, and are distinct from method types
that single out a variable ρ for the type of the
this parameter. In order to avoid accessing ar-

1On the other hand, our type system gives stronger
guarantees than ES5S even on lexical scoping and the
safe binding of this. For example, it prevents excep-
tions and ensures that methods are not called outside
objects, whereas in ES5S if a method is called outside an
object, this is bound to undefined and access to its
properties will cause an exception. Similarly, write ac-
cess to global variables from a strict function will cause
an exception only if the variable is not defined, whereas
our type system prevents access to all non-local vari-
ables.
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rays and strings beyond limits, array and string
types are indexed by a lower bound on their
length.

The type system of DJS is mostly monomor-
phic, that is, new variables must be initial-
ized with a value of some type, and once a
type is assigned to a variable it cannot sub-
sequently change. However, a standard width-
subtyping relation <: captures polymorphism
in the length of arrays and strings, as well as
the set of properties of objects.

Typing environments Γ reflect the nesting of
the lexical scoping up to the expression that is
being typed. Each scope typing frame Φ con-
tains bindings of identifiers to types, and is an-
notated with s or o depending on whether the
scope object corresponding to Φ is an activation
record, created by calling a function, or a user
object, loaded onto the scope using with. This
distinction is important to statically prevent ac-
cess to prototype chains. If the current frame is
[Φ]s, an unresolved identifier can be looked up
in the rest of the typing environment Γ. If the
current frame is [Φ]o then an unresolved identi-
fier should be resolved by following a prototype
chain, which we consider a type error.

Typing rules. The typing rules are detailed
in figure 4. The rules for literals are stan-
dard. In particular, the rule for typing object
literals keeps the object structure intact and
only abstracts each ei into its corresponding
type τi. The rule for accessors and dynamic
accessors ensure that the property being ac-
cessed is directly present in the corresponding
string, array or object. For example, to type-
check Γ ` s[3] : number using rule ArrA, s

must be typeable as an array of at least 4 num-
bers. The rules for dynamic accessor benefit
from knowing that the index is a number mod-
ulo the size of admissible index values. Rule
RecScope looks up variables recursively only
through activation records. This is to avoid
following a prototype chain, potentially leading
to non-defensive objects, in the case when the
top-level scope is an object frame and an iden-
tifier is not found locally. Rule With illustrates
the case when an object frame is added to the
typing environment. The rules for statements
just propagate typing to sub-terms. The rules

for binary and unary operators are standard.
The -Cast rules type safe type-casts that do
not involve executing user-defined type conver-
sion code. The FunDef typing rule is helped by
the structure we impose on the function body.
It adds an activation record frame to the typ-
ing environment and adds all the local variable
declarations inductively. Finally, it typecheks
the body statement s and the type of the re-
turn expression r. Rule MetDef invokes rule
FunDev after adding a formal this parameter
to the function and extending the input type
with the this type ρ. Rule FunCall is stan-
dard, whereas rule MetCall forces an explicit
syntax for method invocation in order to deter-
mine a valid type of the this parameter ρ. In
particular, ρ must be such that method l has a
function type compatible with the potentially
more general type given to l in the original ob-
ject. The current type system does not allow
recursive method calls. In practice, we can al-
ways infer the ρ type for non-recursive method
invocations.

4.3 Conformance checker tool

A JavaScript program is considered valid DJS
if it is accepted by our conformance checker.
The tool automatically type checks an input
script or provides informative error messages if
the script fails to typecheck. Figure 5 shows
a screenshot with a type error and then the
correct inferred type.

Type inference. In our type system, an ob-
ject such as {a:0, b:1} can be assigned mul-
tiple types: {a:number,b:number}, {a:number},
{b:number} or {}. Subtyping induces a partial
order relation on the admissible types of an ex-
pression; the goal of type inference is to com-
pute the maximal admissible type of a given
expression.

To compute this type, the tool implements
a restricted variant of Hindley–Milner infer-
ence where objects, arrays and strings are
polymorphic in the number of fields. For
example, the generalized type for the func-
tion function f(x){return x[2]} is ∃τ,∀n ≥
3, [τ ]n → τ . Notice that the use of an exis-
tential instead of a universal quantifier in front
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of τ shows that in our system there is no gen-
eralization for function types. This is due to
the well-known problem of mutable references
breaking functional polymorphism. Thus, if the
type inference processes the term f([1,2,3]),
unification will force τ = number, and any later
attempt to use f(["a","b","c"]) will cause a
unification error.

The unification of polymorphic object types
yields the union of the two sets of properties:
starting from x : τ , after processing x.a + x.b,
unification yields τ = {a : τ1, b : τ2} and τ1 =
τ2. Literal constructors are assigned their max-
imal, non polymorphic type {xi : Ti}i∈[1..n].
Unification of a polymorphic object type {X}
with the non polymorphic type {xi : Ti}i∈[1..n]

checks that X ⊆ {xi : Ti}i∈[1..n].
Our tool uses type inference as a heuristic,

and relies on the soundness of the type check-
ing rules of Section 4.2 for its correctness. Here
we do not give further details of our inference
and unification algorithms, which are standard.
We invite interested readers to refer to our im-
plementation of type inference, which we claim
is polynomial in the size of the input expression
to typecheck.

4.4 Limitations and extensions of
DJS

Because of its very specific goals, DJS doesn’t
offer many features JavaScript programmers
normally rely on, most notably:

� prototype functions of base objects such as
strings (charCodeAt, indexOf, substr...),
arrays (map, forEach, slice...) or regular
expressions (exec, test...);

� access to library and DOM functions
(eval, encodeURIComponent, XML-
HttpRequest, createElement...);

� property enumeration for(i in o);

� constructors and prototype inheritance
(new, instanceof...);

� extensible arrays and objects and arbitrary
property access (new objects can only be
created with a fixed shape);

� user exceptions.

While most of the above features
break defensiveness (sometimes subtlety:
function(){return "a" in {}}), some are in
fact compatible with defensiveness but were
not included in core DJS, either because they
would significantly complicate the type sys-
tem, or because their safety depends on more
restrictive assumptions about the behavior of
non-defensive programs.

Constructors. Since any literal function f

has a prototype property, it is possible to as-
sign a literal object to f.prototype and instan-
tiate the constructor using new f(). While this
pattern is widespread in JavaScript, it does not
offer any additional expressiveness, since pro-
totype methods can be replaced with functions
that accept the target object as an argument.
For simplicity we do not include constructors
in DJS although they can be used safely in this
manner.

User exceptions. Our type inference tool
partially supports user exceptions using a spe-
cial binding @exception in the typing envi-
ronment that gets introduced when entering a
try block or function. The throw statement is
equivalent to an assignment to this binding,
and the catch(e) block exposes this internal
binding through the identifier e. The types of
functions and methods are extended to support
an optional exception type along with their re-
turn types. In a try block, any function or
method that is called must have an optional ex-
ception type that can unify with @exception.
Calling a function with an exception type out-
side a try block will propagate this type to its
parent function, or cause inference to fail at the
top level.

By treating return statement like exceptions,
type inference also allows functions to return
prematurely rather than enforcing DJS’s strict
function syntax.

Extensible objects. In core DJS arrays
and objects cannot be extended by adding new
properties. In general, this problem is not
straightforward. For example, we found that
the mechanism to extend JavaScript arrays by
setting their length property is broken: while
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it correctly removes properties when decreasing
the length, it does not create new ones when
the length is increased, so accesses beyond the
previous length value are resolved non-locally
through the prototype chain (as a result, we al-
low only read access to the length property of
arrays in DJS).

Still, extensible arrays are very useful for ex-
ample when parsing a JSON string contain-
ing arrays of unknown length. For this rea-
son, we implemented the recursive list type
’a list = null + {head:’a, tail:’a list} in
the type checker, and provided a defensive list
library LArray.js for DJS. This solution is in-
spired by the encoding of recursive algebraic
data types as nested objects with name and
parameters properties proposed in [16]. We do
not use this encoding in full generality as it con-
flicts with our goals about automatic inference
(the programmer would have to declare alge-
braic types in annotations) and performance
(ML-like lists introduce a linear access time
plus a method call overhead, compared to a
direct property access). Moreover, since our
syntax is a subset of JavaScript, it is not nat-
ural to define new type constructors since they
share the syntax of literal objects.

A more general solution to safely extend ob-
jects is based on the observation that watches,
getters and setters can only be defined by giving
an explicit property name to monitor. Thus, if
every property name within a defensive script is
prefixed by a long, one-time random prefix, the
attacker cannot poison the base prototypes to
intercept access to the properties. The prop-
erty accessor e[PREFIX+p] can be safely used
for any object e and property p, existing or
new. It is also possible to use for(x in o)

to check which properties belong to the script
(those that start with the prefix) and which
were defined in the underlying prototype. In
the DJS library DObject.js we build on this in-
tuition to provide extensible objects, arrays and
strings along with their default methods (con-
cat, split, push etc.). Despite the obvious ben-
efits of this solution, its safety depends on a
strong assumption about the capability of ar-
bitrary JavaScript code. While we believe this
assumption to hold for current browsers, it is

well possible that an extension of JavaScript
may break this property. For example, mecha-
nisms such as noSuchMethod suggest that
an object-wide property access method may
be introduced in ECMA6, where it appears as
catch-all proxies in current drafts.

Dynamic accessors. The core DJS syn-
tax includes two direct dynamic accessors for
arrays and strings. In many cases though,
strings and arrays are scanned linearly, so we
include in the full language also the pattern
for(i=0;i<x.length;x++){s} where x is a vari-
able of type string or array and i does not ap-
pear on the left hand side of any assignment
within s. We rely heavily on this construction
in our defensive code for its ubiquity and com-
plete lack of overhead.

5 Defensiveness

We now present the formal argument of defen-
siveness for DJS. The main notations, mostly
borrowed from [17], are reported in Figure 6.
The execution of a JavaSCript program P in
the initial heap H (the memory), with current
scope chain L (the stack) is denoted by

H,L, P −→H ′, r,Σ

where H ′ is the final memory, r is the returned
value and Σ is a trace of function calls. A heap
cell (l, x) 7→ v denotes that the object in mem-
ory at location l has a field x storing value v.
Heaps are obtained by composing cells with the
commutative and associative juxtaposition op-
erator ∗. A scope chain is a list of addresses
of objects in the heap that reflects the nest-
ing of lexical scopes at a given execution point.
Traces record the address, actual parameters
and return values of every function call exe-
cuted during a computation, and will be useful
to discuss defensiveness formally.

5.1 Attacker model

The informal goal of defensiveness is to protect
the behavior of sensitive JavaScript functions
that will be invoked by arbitrary adversarial
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code, when loaded in a JavaScript engine where
adversarial code has already run.

Even if we had the formal semantics of
JavaScript, using the execution of arbitrary
programs in that semantics as a way to cap-
ture attackers would be a fragile solution
due to implementation differences between the
browsers, undocumented features, and foresee-
able changes in future versions of the language.

Instead, we propose a general attacker
model inspired by the successful Dolev-Yao
attacker [14] used in the analysis of crypto-
graphic protocols, where the network is the at-
tacker. In JavaScript, we claim that the mem-
ory is the attacker. We model known and un-
known semantics of arbitrary malicious code
by allowing the attacker to arbitrarily change
one (well-formed) JavaScript memory into an-
other. In this spirit, our use of the notation
H,L, P −→H ′, r,Σ should be taken to signify
that H ′, r,Σ are respectively the final memory,
the result and the execution trace of an arbi-
trary program P that may use non-standard or
undocumented features of JavaScript, and that
is executed according to any of the main exist-
ing JavaScript implementations.

Without making any further assumption, the
attacker is just too powerful and nothing cer-
tain can be said about the properties of a sys-
tem. Therefore, in the Dolev-Yao case, the at-
tacker is restricted by the reasonable assump-
tion that it is not able to guess secret crypto-
graphic keys. Similarly, in the JavaScript case,
we need to make the reasonable assumptions
(satisfied by all known JavaScript implemen-
tations) that the attacker cannot manufacture
pointers to existing memory locations to which
it does not have access, and that it cannot peek
inside function scopes.

Let an attacker memory be any JavaScript
heap that includes at least all the native objects
and the constant memory locations on which
the semantics relies. In other words, an at-
tacker memory is just an arbitrary memory in
which JavaScript programs can be run.

Let a user memory be a heap whose domain
only includes dynamically allocated (fresh) lo-
cations. A user memory denotes local mem-
ory allocated during the execution of some user

code. A JavaScript program cannot in general
be executed just in user memory, because for
example it would contain the definition of na-
tive objects, prototype and scope objects that
are necessary for safe execution.

In order to limit the power of the mem-
ory attacker, assume that in any reasonable
JavaScript semantics, the execution of an arbi-
trary program in an attacker memory extended
with a fresh user memory leads to a final mem-
ory that can be partitioned in two disjoint com-
ponents, where one of the two is the unchanged
fresh user memory. This assumption, formal-
ized below, captures the fact that the attacker
cannot forge pointers.

Assumption 1 (Memory safety). Assume P
is an arbitrary JavaScript program, H is an at-
tacker memory and L an scope chain for H. For
any user memory H1,

∀H ′, r,Σ. Σ|call(H1) = ∅ ⇒
(H ∗=H1, L, P −→H ′, r,Σ ⇒ ∃H2.H

′ =
H2 ∗=H1),
where call(H1) denotes the calls to functions in
H that contain a pointer to H1 in their internal
lexical scope.

H ∗=H ′ means that H and H ′ have disjoint
domains and that H does not contain pointers
to objects in the domain of H ′. Note that a
function in H can still contain in its internal
scope chain a pointer to an activation record
defined in H ′, so Assumption 1 holds only un-
der the hypothesis that P does not trigger a
call to a function that has in its scope an ob-
ject from H1.

5.2 Formal defensiveness

We now formally define the two properties that
capture our intuitive notion of defensiveness
from Section 5.

Definition 1 (Behavioral secrecy). The func-
tion wrapper E[−] maintains the behavioral
secrecy of a function expression F if an arbi-
trary scriptQ cannot tell the difference between
the script x = E[F ] and the script x = E[FID],
where FID = function(y){return y}, without
calling F or FID.
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∀Σ. (Σ|l = ∅)⇒
(
∀H,L,H ′, r.

∃HF .H, L, x =
(E[F ]l);P −→H ′ ∗=HF , r,Σ⇔
∃HFID

.H, L, x =
(E[FID]l);P −→H ′ ∗=HFID

, r,Σ
)
.

2 In the case of DJS, we want this prop-
erty to hold when E[−] is the wrapper code
corresponding to the <djs−program> produc-
tion of the DJS syntax, and when F is the
<function> code assigned to variable ” ” in
the wrapper. F is the sensitive function where
we may hide secrets even in the source code.
The adversarial code P obtains in variable x a
pointer l to the wrapper function, and can per-
form any operation (including accessing prop-
erties of l) except calling l itself to try to glean
a secret from F . If it fails (that is, our code sat-
isfies Definition 1) then we know that the secret
is safe, unless F explicitly reveals it. Note that
behavioral secrecy is weaker than the standard
notion of secrecy from the literature because it
is (intentionally!) possible to call a defensive
function and inspect its result.

Definition 2 (Independence). The function
wrapper E[−] preserves the independence of a
function expression F if, whenever it is called
with the same parameters, it returns the same
results. ∀H,L, P1, P2, H1, H2, r1, r2,Σ1,Σ2.(

H,L, x = E[F ]l;P1−→H1, r1,Σ1

∧ H,L, x = E[F ]l;P2−→H2, r2,Σ2

)
⇒

(
Σ1 ∼cl Σ2 ⇒ Σ1 ∼l Σ2

)
where Σ1 ∼l Σ2 , (Σ1)|l = (Σ2)|l and ∼cl is de-
fined like ∼l except that it ignores the results
of the calls to l.

In the case of DJS, x is a global variable
where we export the wrapped, defensive func-
tion F . The intuition is that P1 and P2 are dif-
ferent attackers that have access to l and can
therefore call F through the wrapper. The use
of ∼cl on the resulting traces is needed to make
sure that P1 and P2 call F the same number
of times, in the same order, and with the same
parameters. Since F can maintain state, this is

2This definition could be generalized to FID being an
arbitrary function, but we chose specifically the identity
function to help the intuition.

a necessary condition if we expect it to return
the same results.

5.3 Type safety

Before arguing that DJS can be used to define
functions that enjoy Behavioral secrecy and In-
dependence, we establish a stronger type safety
property for the whole subset. This requires a
formal semantics of a JavaScript fragment that
covers at least DJS; for our proof, we adapt the
operational semantics described in [17], which

we denote by H,L, P
DJS−→ H ′, r. 3 However,

since DJS uses only few and basic language
features, we claim that our formal results do
not depend on the specific choice of the seman-
tics, and are robust to reasonable revisions of
JavaScript. We formalize this intuition as an
explicit assumption.

Assumption 2 (Core semantics). If

H,L, P
DJS−→ H ′, r then there exists Σ

such that H,L, P −→H ′, r,Σ.

The type safety theorem below states that
any well-typed DJS program evaluates to a se-
mantic value r (which can be a memory loca-
tion, ground value or reference, but not a run-
time error or a JavaScript exception), and that
types are preserved by the computation.

Theorem 1 (Type safety). Let s be a DJS
statement such that Γ ` s : T . The execution
of s in a user memory compatible with Γ and
extended with an attacker memory yields a fi-
nal user memory still compatible with Γ and
extended with the same attacker memory, and
a result of type T .

∀Γ, T. Γ ` s:T ⇒ ∀H1, L.(H1, L) |= Γ⇒
∃r,HF .∀HA.HA ∗=H1, L, s

DJS−→ HF , r∧
∃H2.(HF = HA ∗=H2 ∧ (H2, L) |= Γ ∧ Γ `
H2(r):T ).

The proof of this Theorem is reported in Ap-
pendix A. Besides the soundness of our type

3While we made an effort to keep this section self-
contained, a detailed exposition of formal JavaScript
semantics goes beyond the scope of this paper, and we
address the reader to [17] for further details.
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system, this theorem establishes other proper-
ties of well-typed executions that are relevant
to defensiveness. The condition (H1, L) |= Γ
enforces the presence in the domain of H of all
objects that may be accessed during the evalu-
ation of s, and prevents the presence of native
objects that may be accessed directly by the at-
tacker. This is important for the factorization
of the heap into a user memory that is updated
during execution and an attacker memory that
remains constant, meaning that DJS code does
not cause any side effect to the attacker, which
is important for behavioral secrecy. Note also
that the existential quantification on result r
precedes the universal quantification on the at-
tacker memory, showing that the result of a
purely defensive computation is not affected by
the adversary, which is important for indepen-
dence.

We are ready to state our main theorem, on
the defensiveness of DJS functions loaded by
the DJS wrapper. Implicitly, we rely on As-
sumption 2 to consider DJS executions as valid
arbitrary JavaScript executions.

Theorem 2 (Defensiveness). Let F be the
DJS function expression function(y){body}, for
an arbitrary body. If ∅ ` F : string → string
then the wrapper <djs−program> (where
<function> is set to “F”) maintains the be-
havioral secrecy and preserves the indepen-
dence of F .

The proof of this Theorem is reported in Ap-
pendix A.

6 Defensive Libraries

In the previous sections we detailed various re-
strictions we imposed on DJS to enforce de-
fensiveness. Next, we show that DJS is still
expressive enough to program security-critical
components. In particular, we describe two de-
fensive libraries for cryptography and data en-
coding.

6.1 DJCL: the Defensive
JavaScript Crypto Library

We took as our starting point two reputable
and widely used JavaScript libraries for cryp-
tography: SJCL [31] (covering hashing, block
ciphers, encoding and number generation) and
JSBN (covering big integers, RSA, ECC, key
generation). We converted a part of these li-
braries to DJS and verified it with our confor-
mance checking tool. Our implementation cov-
ers the following primitives: AES on 256 bit
keys, SHA-256, HMAC, RSA on moduli up to
2048 bits using OAEP for encryption and PSS
for signature.

In general, cryptographic algorithms are well
suited to the defensive style, because they use
standard arithmetic operators on bitstrings and
are usually self-contained. Still, when manip-
ulating arrays of bitstrings, we needed to add
dynamic checks to many array accesses. These
checks introduce a performance overhead com-
pared to non-defensive implementations. Inter-
estingly, however, we found that the lack of dy-
namic object extension in defensive code lets
JIT compilers better optimize DJS programs,
yielding a speedup that more than offsets any
overhead from dynamic checks.

We evaluated the performance of DJCL us-
ing the jsperf benchmark engine on Chrome
23, Firefox 16, Safari 5.1 and IE 9. We found
our implementation of AES to be about as fast
as SJCL’s on all browsers, while our version of
the SHA-256 block function performed slightly
better on some (from similar performance in
IE to up to 50% faster in Chrome). For RSA,
we found our version of modular exponentia-
tion to perform the same as jsbn. In prac-
tice, DJS performance depends also on the sig-
nificant overhead for encoding and converting
strings to input words of block functions. De-
pending on the encoding of the input (UTF-8,
base64, hex string), high-level operations like
CBC encryption or SHA-256 hashing can be-
come significantly (up to 80%) slower than non-
defensive code.
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6.2 DJSON: Type-Safe JSON Se-
rialization and Parsing

Implementing encodings in DJS is far more
challenging than cryptography. The prob-
lem is that defensive code cannot rely
on String.charCodeAt, encodeUriComponent, and
String.fromCharCode, since they may have been
manipulated by an attacker, but these func-
tions are needed to encode and decode Uni-
code characters. For ASCII characters, we
store the entire encoding table in a literal
object and use a special dynamic accessor
(x.length==1 && x<=”c”? t[x] : d) that forces the
object t to contain all characters from the null
byte to c; still, this method is up to a hundred
times slower than charCodeAt, which is heavily
optimized. For Unicode characters, storing a
literal table is infeasible due to its size. Instead,
we rely on the built-in lexicographic order on
strings to store the complete UTF-8 alphabet
in a string and use binary search to find the
code of a given character. We offer special op-
timizations for the ASCII subset.

In addition to code point lookup, the de-
coding of unicode characters into the corre-
sponding byte sequences must be performed
manually. Because the usual method of us-
ing unescape and encodeURIComponent is actu-
ally quite slow, this change can increase perfor-
mance.

In most of our applications, the input string
of a DJS program represents a JSON ob-
ject. While serializing well-typed JSON objects
poses no problems, parsing serialized JSON
strings generally requires the ability to cre-
ate extensible objects. Instead, we rewrite
JSON.parse defensively by requiring two addi-
tional parameters to parse a string: the first
is a description of the fields and types that are
expected from the input string, the second is a
preallocated object of the right shape that will
be filled by DJSON.parse. In principle, our type
inference tool should be able to automatically
generate the appropriate type schema and ob-
ject literal, but for now we require this informa-
tion from the programmer. Any type mismatch
or missing field during will result in a parsing
error.

As for serialization, it suffers from the in-
ability to differentiate properties of an ob-
ject and properties from its prototype with-
out Object.hasOwnProperty: both in and
for(i in o) will accept properties set in the ob-
ject’s prototype. Like before, we must known
at runtime the type of the object being serial-
ized. Once again, this type is known by the
type system, but to avoid any compilation or
preprocessing step of DJS code we again require
this type to be provided by the programmer.

6.3 JOSE: libraries for JSON
Cryptography

Combining DJCL and DJSON, we imple-
mented a family of emerging JSON cryptog-
raphy standards, including JSON Web Tokens
(JWT), JSON Web Signatures (JWS), and
JSON Web Encryption (JWE). Our defensive
JOSE library is fully interoperable with other
implementations in PHP. It is able to exchange
encrypted and signed tokens with them, while
keeping its keys secret from its hosting page.
The performance of our library is comparable
to that of PHP (and it is noticeably faster in
Chrome.) We rely on this library to build se-
cure communications for our defensive applica-
tions.

7 Applications

Using DJS and the defensive libraries, we pro-
gram several defensive patterns and use them
to build applications: i) We show how to dis-
tribute scripts with embedded secrets so that
the pages into which they are loaded cannot
learn these secrets. In particular, we show
how to distribute cryptographic keys using this
mechanism. ii) We show how to use JWE
to program secure channels between defensive
scripts and other entities such as websites (via
AJAX), frames (via postMessage), or other de-
fensive scripts (via function calls). iii) We show
how to implement fine-grained access control
for local storage using encryption.
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7.1 Secure Script Server and En-
crypted AJAX

Since defensive scripts can be loaded from any
origin, we rely on the concept of a secure script
server to deliver the defensive scripts of a given
component provider. Concretely, this is a web
service running in a trusted, isolated origin
(a subdomain like defscripts.facebook.com)
that accepts as parameters a script name and
a target origin.

It first checks that the target origin is regis-
tered with a publicKey, and that the requested
script exists in the defensive script store. It au-
thenticates that the target origin is the same as
the hosting origin by verifying the Origin header
on the request. When this header is not avail-
able, we can fall back to a client-side origin
verification method based on encrypted AJAX,
which is described below.

The next step is to generate a fresh hostKey.
This will be used to encrypt communication
with the target origin’s server and be wrapped
using publicKey.

The last step is to retrieve the sessionKey,
which should be the same in all subsequent re-
quests during the same browsing session. We
rely on a cookie-based session to keep track of
this key; if no valid session cookie is provided
in the request, a new session is created with a
fresh sessionKey.

Finally, the requested script is returned with
the authenticated origin, publicKey, hostKey and
sessionKey embedded defensively into the script.

A simple use case for the embedded keys is to
perform an encrypted AJAX query to the host
page’s server. The following example demon-
strates how to use this pattern to get the cur-
rent time:

1 (function(){

2 var origin = ’x.com’;

3 var RPC = (function() {

4 var publicKey = "...", hostKey = "...";

5 var DJCL = {...}, state = 0;

6 var _ = function(x) {

7 state = 1-state;

8 if(!state) // Request

9 return DJCL.JWE.create(x, hostKey,

publicKey);

10 else // Response

11 return DJCL.JWE.parse(x, hostKey, publicKey

);

12 }

13 return function(x) {

14 if(typeof x==’string’) return _(x)

15 }})();

16 return function() {

17 var xhr = new XMLHttpRequest();

18 var d = RPC("getTime()");

19 xhr.open("GET", "http://"+origin+"/RPC?d="+d)

;

20 xhr.onload = function() {

21 alert(’The time is: ’+RPC(xhr.response));

22 };

23 xhr.send();

24 }

25 })()()

If the requested origin could not be authen-
ticated by the script server, a similar AJAX
request containing the encrypted hostKey under
publicKey and returning the origin encrypted un-
der hostKey and signed with the host private key
can be used to recover the genuine origin.

7.2 Securing Login with Face-
book

Our survey of OAuth 2.0 implementations in
Section 3 revealed many different ways that ac-
cess tokens could be leaked to malicious web-
sites. While some of our attacks exploited bugs
that should legitimately be fixed, we believe
that a secure login component cannot rely on
the host website not having any vulnerabilities
on any of its webpages. Instead we propose a
new defensive architecture for Facebook login
that makes it robust even in the face of such
vulnerabilities.

Restricting Access Tokens. As a first step, we
propose that the Facebook SDK should never
expose the access token directly to the hosting
webpage where it could then be stolen by an un-
trusted script. As a proof-of-concept, we show
how to achieve this using iframes and cryptog-
raphy.

Suppose the website W registers the origin
https://fb.W.com at Facebook. It then loads the
entire Facebook SDK within a frame sourced
from https://fb.W.com. This frame can obtain
the access token by calling FB.login and then
call FB.api, however the parent window has no
direct access to the token or these functions.
Instead, the iframe at https://fb.W.com offers a
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limited API to the parent window. The par-
ent may send a message to request FB.login() or
FB.api(), but these messages must be authenti-
cated using a host key that is only made avail-
able to defensive scripts loaded from a script
server at https://secure.W.com. If the par-
ent asks for the token by sending a message re-
questing FB.getAccessToken(), the frame returns
the token encrypted under the host key.

As a consequence of these modifications, we
are able to wrap the full Facebook JavaScript
SDK within a defensive component that never
reveals access tokens to untrusted scripts and
only allows trusted scripts to call the Facebook
API. As a further enhancement, the wrapper
could also filter requests to FB.api and only en-
able a subset of the capabilities granted by the
access token, a feature that cannot be offered
by that current Facebook SDK.

Two Factor Authentication. As a second step,
we show how to use a bookmarklet to obtain
second factor of authentication for the Face-
book Login component. One weakness of Face-
book’s implementation of the OAuth protocol
is that once a user has authorized a website, the
website is able to request a token for the user
on all subsequent visits, even if the user did
not want to identify herself on every visit. Her
only option to regain her privacy is to explic-
itly de-authorize the website on Facebook. In-
stead, inspired by bookmarklets used by pass-
word managers, we propose a new mechanism
that Facebook could use to verify that the user
indeed meant to login to a website.

To use Facebook login, users download
and install a JavaScript bookmarklet on their
browser that contains its own identifier and se-
cret key. When the bookmarklet is clicked on
a webpage, it installs a defensive script on the
web page that is willing to countersign, with
its secret key, any FB.login request generated
by the hosting webpage. The JavaScript SDK
(hosted within the iframe) now requires that
the postMessage for FB.login be signed both us-
ing the host key for the current hosting page
and the bookmarklet key.

Hence, the current webpage will be unable
to log the user into Facebook, unless the user
clicked on the bookmarklet. To ensure that

the website does not cache the bookmarklet’s
response and replay it later, we implement a
challenge response mechanism, where the book-
marklet signature must include a nonce pro-
vided by the Facebook SDK.

This bookmarklet-based solution signifi-
cantly increases the security of Facebook lo-
gin but would not have been possible without
our ability to program the bookmarklet defen-
sively and embed our defensive HMAC-SHA256
library in it, since bookmarklets execute in the
context of the current active page and are thus
vulnerable to rootkitting. Our bookmarklet is
able to fit the relevant parts of DJCL and DJ-
SON into a self-contained defensive script un-
der 3KB.

7.3 Securing Client-side Encryp-
tion for ConfiChair

We propose two defensive mechanisms to im-
prove the security of web applications that use
client-side encryption APIs for cloud storage.

For applications like Helios, Wuala, and Con-
fiChair, that use a Java applet for cryptog-
raphy, we propose to replace the applet with
DJCL. This has the dual advantage of signifi-
cantly increasing the performance of the appli-
cation (up to 100 times faster on large inputs)
and of reducing the attack surface by removing
the Java runtime from the trusted computing
base.

For applications that need to store session
keys or long term keys in the browser, we pro-
pose a new encrypted local storage mechanism
leveraging defensive cryptography. We show-
case these mechanisms by making ConfiChair
more resilient to XSS attacks.

We set up a secure script server at https:

//secure.confichair.org that serves a script
that first verifies that it has been loaded on
ConfiChair (using one of the two origin authen-
tication methods we described), and then ex-
poses a cryptographic API with the following
functions:

derive_secret_key:

(input:string, salt:string) -> key:string

encryptData, decryptData:

(data:string, key:string, IV:string) -> string
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Defensive Program Lines of Code Typechecking Time
DJCL 865 211ms
DJSON 489 156ms
JOSE 162 53ms
Encrypted AJAX 14 7ms
Facebook Login Wrapper 135 42ms
ConfiChair Crypto API 80 31ms

Table 2: Evaluation of our DJS codebasebase64_encode, base64_decode:

(input:string) -> string

encryptKeypurse:

(keypurse:json string) -> json string

Compared to the original design, when the
keypurse is decrypted, all of its keys are
wrapped with the sessionKey set by the script
server. When a decryption operation is re-
quested, the defensive API will transparently
unwrap the key, but never directly expose it to
the page. In addition, when the keypurse is re-
encrypted using the master key derived from
the passphrase at login, this master key is also
wrapped under the sessionKey before being writ-
ten to localStorage. We use authenticated encryp-
tion, combining AES-256-CBC with HMAC-
SHA256, to prevent tampering of the keypurse
data.

The only way for an attacker to get access to
the sessionKey (besides breaking defensiveness) is
to recover the secure HTTP-only cookie set by
the secure script server to track the sessionKey.
Additional components loaded from different
script servers may also store data in localStorage

wrapped under their own sessionKey without ex-
posing the stored content to other scripts run-
ning on the page.

Our modifications to the ConfiChair website
amount to replacing its Java applet with our de-
fensive API and rewriting two lines of code on
the Login page. The rest of the website works
without any modification while enjoying a sig-
nificanly improved level of security. An XSS
attack on the conference page may be able to
read articles by calling the defensive API, but
can no longer steal keys or passwords.

8 Security Evaluation

We have presented several applications written
in DJS that use our defensive cryptographic li-

brary to program security functionalities within
untrusted origins. How do we know that these
applications achieve their security goals?

Defensiveness only guarantees that the func-
tionality of defensive scripts cannot be tam-
pered with, it does not say that the script will
not leak its secrets to the hosting webpage, by
exposing them in its exported API, for exam-
ple. Similarly, defensiveness does not guarantee
that our cryptographic library is implemented
correctly or that our applications use crypto-
graphic functions correctly.

For our libraries, we rely on careful inspec-
tion and extensive interoperability testing to
convince ourselves of their correctness. For
our applications, we try to use standard cryp-
tographic constructions such as authenticated
encryption for local storage, authenticated and
encrypted RPCs for secure AJAX, and HMAC
for bookmarklet authentication. Our only se-
crets are encryption keys injected into our
scripts by the secure script server, and by in-
spection we can show that these keys are only
used for cryptography.

Still, for more complex applications and
cryptographic protocols, we advocate that the
design of the security component be verified
against a realistic model of browser security
mechanisms and web-based attackers. We used
the WebSpi model of [6] to model and verify the
original designs and our modifications to Face-
book login and the ConfiChair website. By an-
alyzing our models using the protocol verifier
ProVerif, we were able to find many of the at-
tacks of Section 3. Conversely, we analyzed our
modified designs and did not find any attacks
among the set of attacks modelled in WebSpi.
This positive result should not be taken as a for-
mal theorem, since the browser model of Web-
Spi is incomplete and may miss many attacks.
Instead, we treat this verification as providing
additional confidence in our application design.

9 Conclusions

Client-side security components have come into
popular use because in many multi-party web
interactions, such as single sign-on, there is no
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single server that can be trusted to enforce all
the necessary security checks. Instead, we have
come to rely on the browser to tie these inter-
actions together using cookies, HTTP redirec-
tions, frames, and JavaScript.

Several emerging web security standards aim
to give the browser more fine-grained control
on what web compositions it should allow. The
Web Cryptography API (WebCrypto) provides
a standard interface to browser-based cryptog-
raphy and key storage. Content Security Pol-
icy (CSP), the Origin header, and Cross-Origin
Request Sharing (CORS) tell the browser what
external content is allowed to be loaded onto a
webpage. ECMAScript Version 5 Strict Mode
defines a safer subset of JavaScript meant to be
enforced by the browser.

Our approach is complementary to these new
standards, since their guarantees only extend
to trusted websites and not to tampered envi-
ronments, which will still need to be defended
against. When their implementations are sta-
ble and widespread, we may be able to allow
more programming constructs in DJS while re-
taining its strong security guarantees. Mean-
while, DJS can already be used with current
web applications and can significantly improve
their security.

〈djs-program〉 ::= ‘(function(){’
‘ var _ = ’ 〈function〉 ‘;’
‘ return function(x){’
‘ if(typeof x == "string") return _(x);’
‘}})();’

〈function〉 ::=
| ‘function(’ (@identifier ‘,’)*‘){’

(‘var’ (@identifier (‘=’ 〈expression〉)? ‘,’)+)?
(〈statement〉 ‘;’)*
(‘return’ 〈expression〉)? ‘}’

〈statement〉 ::= ε
| ‘with(’ 〈lhs expression〉 ‘)’ 〈statement〉
| ‘if(’ 〈expression〉 ‘)’ 〈statement〉

(‘else’ 〈statement〉)?
| ‘while(’ 〈expression〉 ‘)’ 〈statement〉
| ‘{’ (〈statement〉 ‘;’)* ‘}’
| 〈expression〉

〈expression〉 ::= 〈literal〉
| 〈lhs expression〉 ‘(’ (〈expression〉 ‘,’)* ‘)’
| 〈expression〉 〈binop〉 〈expression〉
| 〈unop〉 〈expression〉
| 〈lhs expression〉 ‘=’ 〈expression〉
| 〈dyn accessor〉
| 〈lhs expression〉

〈lhs expression〉 ::=
| @identifier | ‘this.’ @identifier
| 〈lhs expression〉 ‘[’ @number‘]’
| 〈lhs expression〉 ‘.’ @identifier

〈dyn accessor〉 ::=
| (〈x〉 = @identifier) ‘[(’ 〈expression〉

‘>>> 0) %’ 〈x〉 ‘.length ]’
| ‘(’ (〈y〉 = @identifier) ‘>>>=0)<’ (〈x〉 = @identi-

fier)
‘.length ? x[y] : ’ @string

| @identifier ‘[’ 〈expression〉 ‘&’ (n=@number) ‘]’
n ∈ J1, 230 − 1K

〈literal〉 ::= 〈function〉
| ‘{’ ( @identifier ‘:’ 〈expression〉 ‘,’)* ‘}’
| ‘[’ (〈expression〉 ‘,’)* ‘]’
| @number | @string | @boolean

〈binop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
| ‘&’ | ‘|’ | ‘^’ | ‘>>’ | ‘<<’ | ‘>>>’
| ‘&&’ | ‘||’ | ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’

〈unop〉 ::= ‘+’ | ‘-’ | ‘!’ | ‘{~}’

Figure 2: DJS Syntax.
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Types.

〈τ〉 ::= number | boolean | string | undefinedBase types
| τ̃ → τ Function
| τ̃ [ρ]→ τ Method operating on properties ρ
| σ Indexed type
| σ∗ Fixed index type

〈σ〉 ::= ρ | [τ ]n, n ∈ N Array of length n

〈ρ〉 ::= {x1 : τ1, . . . , xn : τn} Object with fields
x1 · · ·xn

Subtyping.

τ <: τ ∀τ
σ∗<: τ when σ<: τ

[τ ]n<: [τ ′]m when m ≤ n ∧ τ <: τ ′

{xi : τi}i∈I <: {xj : τ ′j}j∈J when J ⊆ I ∧ ∀i ∈ J, τi<: τ ′i

µ̃1 → ν1<: µ̃2 → ν2 when ν1<: ν2 ∧ µ̃2<: µ̃1

µ̃1[ρ1]→ ν1<: µ̃2[ρ2]→ ν2 when ρ2<: ρ1 ∧ µ̃1 → ν1<: µ̃2 → ν2

Environments.

〈κ〉 ::= s | o Scope kind

〈Φ〉 ::= ε | Φ, x: τ Scope frame

〈Γ〉 ::= ε | Γ, [Φ]κ Typing environment

Figure 3: DJS types, subtyping and environ-
ments.

Figure 5: Screenshot of the type checker out-
put: first an informative error, then the inferred
type.

Semantics.
H,L, P −→H′, r,Σ

Executing program P in heap H with scope L yields
the final heap H′, the result r and a trace Σ of function
calls.

Heaps, scope chains, programs and traces.

〈H〉 ::= emp Empty heap
| H ∗ (l, x) 7→ v Heap cell, (l, x) 6∈ dom(H)

〈L〉 ::= [] Empty scope chain
| l : L Scope frame l on top of L

〈P 〉 ::= . . . Arbitrary JavaScript program

〈Σ〉 ::= ε Empty trace
| l(ṽ)→ v : Σ Call to l with parameters ṽ returned v

Heap domain and codomain, trace projection.

dom(emp) = ∅ cod(emp) = ∅

dom(H1∗H2) = dom(H1)∪dom(H2) dom((l, x) 7→ v) = {(l, x)}
cod(H1∗H2) = cod(H1)∪cod(H2) cod((l, x) 7→ v) = locations(v)

(l(ṽ)→ v : Σ)|l = l(ṽ)→ v : Σ|l ∅|l = ∅

(l′(ṽ)→ v : Σ)|l = Σ|l if l 6= l′

Notation.

H1 ∗=H2 , H1 ∗H2 where cod(H1) ∩ dom(H2) = ∅

l 7→ {x1: v1, . . . , xn: vn} , (l, x1) 7→ v1∗. . .∗(l, xn) 7→ vn

Expression contexts.

E[−] , production of the JavaScript syntax of expression that uses

once the symbol “-”.

E[E′] , expression obtained by replacing − with E′ in E.

El , evaluation of E will result in an object allocated at l.

Well-formedness of user memory.

H,L |= ∅

H,L |= Γ ∅ ` H(vi):Ti i ∈ I
κ = s⇒ (∃j, xj = @proto ∧ vj = null)

H ∗ l 7→ {xj : vj}j∈I]J , l:L |= Γ, [xi:Ti]κ,i∈I

Figure 6: Semantics notation.
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NumLit
Γ ` @number : number

StringLit
Γ ` @string : string

BoolLit
Γ ` @boolean : boolean

ObjLit
Γ ` ei : τi i ∈ [1..n]

Γ ` {x1 : e1, . . . , xn : en} : {xi : τi}∗i∈[1..n]
PropA

Γ ` e : σ σ<: {x : τ}
Γ ` e.x : τ

ArrLit
Γ ` ei : τ i ∈ [1..n]

Γ ` [e1, . . . , en] : [τ ]∗n
ArrA

Γ ` e : σ σ<: [τ ]n+1

Γ ` e[n] : τ

Γ ` x : [τ ]m Γ ` e : number m ≥ n
Γ ` x[e&n] : τ

Γ ` x : string Γ ` y : number

Γ ` ((y ≫= 0) < x.length?x[y] : @string) : string

Γ ` x : [τ ]n Γ ` e : number n > 0

Γ ` x[(e≫ 0)%x.length] : τ

Scope
Φ(x) = τ

Γ, [Φ]κ ` x : τ
RecScope

x 6∈ dom(Φ) Γ ` x : τ

Γ, [Φ]s ` x : τ
With

Γ ` e : {x̃ : τ̃} Γ, [x̃ : τ̃ ]o ` s : undefined

Γ ` with(e)s : undefined

If
Γ ` e : boolean Γ ` s, t : undefined

Γ ` if(e) s else t : undefined
While Γ ` e : boolean Γ ` s : undefined

Γ ` while(e) s : undefined

Block
Γ ` si : undefined i ∈ [1..n]

Γ ` [{]s1; . . . ; sn[; ][}] : undefined
Arit

Γ ` e1 : number Γ ` e2 : number
◦ ∈ {+,−, ∗, /,%,&, |,̂ }

Γ ` e1 ◦ e2 : number

Assign
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 = e2 : τ
Concat

Γ ` e1 : string Γ ` e2 : string

Γ ` e1 + e2 : string

RelOp

Γ ` e : τ1 Γ ` f : τ2
τ1, τ2 ∈ {number, string} ◦ ∈ {==, <,>,>=, < =}

Γ ` e ◦ f : boolean
BoolOp

Γ ` e : boolean
Γ ` f : boolean ◦ ∈ {&&, ||}

Γ ` e ◦ f : boolean

UnOp
Γ ` e : number ◦ ∈ {−, ~}

Γ ` ◦e : number
BoolCast Γ ` e : τ

Γ `!e : boolean

NumCast
Γ ` e : string

Γ ` +e : number
StrCast Γ ` e : number

Γ ` e+ ”” : string

FunDef

body = (var y1 = e1, . . . , ym = em; s; return r)
Γ, [x̃ : α̃, (yi : µi)i<j ]s ` ej : µj j ∈ [1..m]

Γ, [x̃ : α̃, ỹ : µ̃]s ` s : undefined Γ, [x̃ : α̃, ỹ : µ̃]s ` r : τr

Γ ` function (x̃){body} : α̃→ τr
MetDef

Γ ` function (this, x̃){body} : (ρ, α̃)→ τr

Γ ` function (x̃){body} : α̃[ρ]→ τr

FunCall
Γ ` e : σ Γ ` ẽ : α̃ σ <: α̃→ τ

Γ ` e(ẽ) : τ
MetCall

Γ ` e : σ Γ ` ẽ : α̃ σ <: {x : α̃[ρ]→ τ}
Γ ` e.x(ẽ) : τ

Figure 4: Typing rules.
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NumLit
H ` @number : number

BoolLit
H ` @boolean : boolean

StringLit
H ` @string : string

Dereference
(`, x) ∈ H H ` H(`, x) : T

H ` ` · x : T

Object

(`,@body), (`,@scope) 6∈ H
∀i, (`, xi) ∈ H ∀i,H ` H(`, xi) : τi

H ` ` : {x̃ : τ̃}

Function

(`,@body), (`,@scope) ∈ H
H(`,@scope) = `′ 7→ (x̃, ṽ)

∀i,H ` vi : βi
[x̃ : β̃]s ` @body : (α̃)→ τ

H ` ` : (α̃)→ τ

Figure 7: Typing rules for memory values

A Proofs

Well-typed memory values. For concise-
ness, in the definition of a well-formed user
memory (Figure 6), we use the notation ∅ `
H(v):T for a heap H typing a value v with type
T . In Figure 7 we give the formal definition of
this relation, and we use the more explicit no-
tation H ` v:T . We omit arrays and methods,
because they do not differ in memory from ob-
jects and functions.

Since functions are stored in memory as ob-
jects, in order to respect the difference in our
type system between function and object types,
we must be careful to distinguish the shape of
memory object corresponding to functions from
that of proper objects. To define the type of a
function object in memory, we recover the body
and scope from the function object and assign it
the type of the body, using the typing rules for
concrete DJS syntax, in an environment that
reflects the scope of the function.

When we evaluate DJS code, we start from
well-typed syntactic code and translate it to
memory operations, where the values of the
computations remain well-typed in the heap. In
most cases, we will use the same notation for
typing evaluated (memory) and non-evaluated
(syntactic) expressions.

Proof of Theorem 1 Let s be a DJS state-
ment such that Γ ` s : T . The execution of

Scope resolution: σ(H, l, x).

σ(H, [ ], x) , null

π(H, l, x) 6= null

σ(H, l:L, x) , l

π(H, l, x) = null

σ(H, l:L, x) , σ(H,L, x)

Prototype resolution: π(H, l, x).

π(H, null, x) , null

(l, x) ∈ dom(H)

π(H, l, x) , l

(l, x) 6∈ dom(H)
H(l,@proto) = l′

π(H, l, x) , π(H, l′, x)

Operational rules

(Variable )
σ(H,L, x) = l′

H,L, x−→H, l′·x

(Member Access)

H,L, e
γ−→H ′, l′

l′ 6= null

H,L, e.x−→H ′, l′·x

(Function Call)
H,L, e1−→H1, r1 This(H1, r1) = l2
γ(H1, r1) = l1 H1(l1,@scope) = L′

l1 6= le H1(l1,@body) = λx.e3

H1, L, e2
γ−→H2, v

H3 = H2 ∗ act(l, x, v, e3, l2) H3, l:L
′, e3

γ−→H ′, v′

H,L, e1(e2)−→H ′, v′

(With)

H,L, e
γ−→H1, l l 6= null

H1, l:L, s−→H ′, r

H,L, with(e){s}−→H ′, r

Figure 8: Select semantics rules from [17].

s in a user memory compatible with Γ and ex-
tended with an attacker memory yields a final
user memory still compatible with Γ and ex-
tended with the same attacker memory, and a
result of type T .

∀Γ, T. Γ ` s:T ⇒ ∀H1, L.(H1, L) |= Γ⇒
∃r,HF .∀HA.HA ∗=H1, L, s

DJS−→ HF , r∧
∃H2.(HF = HA ∗=H2 ∧ (H2, L) |= Γ ∧ Γ `
H2(r):T ).

Proof. We proceed by induction on the typing
derivation Γ ` e : τ , only for the most signifi-
cant rules.
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� Scope lookup: Γ ` x : τ can follow either
from the Scope or RecScope rule from Fig-
ure 8. In the first case, we can decom-
pose Γ = Γ0, [Φ]κ with Φ(x) = τ . Fol-
lowing the well-formedness hypothesis of
(H1, L) |= Γ defined in Figure 6, we can
decompose the memory H1 = H ′ ∗ l 7→
{. . . , x : r, . . . } and scope chain L = l : L′,
knowing that Γ ` H1(r) : τ . Because
(l, x) ∈ dom(H1), π(HA ∗=H1, L, x) =
l and σ(HA ∗=H1, L, x) = l. Applying
the Variable rule yields HA ∗=H1, L, x →
HA ∗=H1, l · x. This proves the induction
goal with H2 = H1 and r = l · x.

We now assume Γ ` x : τ was derived from
the RecScope rule. By unfolding the recur-
sion, we can decompose Γ into:

Γ = Γ0, [Φ0]κ, [Φ1]s, · · · , [Φn]s

with Φ0(x) = τ . The well-formedness hy-
pothesis now yields L = ln : · · · : l1 : l : L′

and:

H1 = H ′ ∗ l 7→ {. . . , x : r, . . . }
∗ l1 7→ {X1} ∗ · · · ∗ ln 7→ {Xn}

Since ∀i ∈ [1, n], Xi(@proto) = null,

π(HA ∗=H1, li : li+1 : · · · : ln : L′, x) = null

using the second scope lookup rule, it fol-
lows that

σ(HA ∗=H1, L, x) = σ(HA ∗=H1, l : L′, x)

= l · x = r

� Method call We now assume that Γ `
o.x(ẽ) : τ . Our hypotheses are: Γ ` o : σ,
Γ ` ẽ : α̃ and σ <: {x : α̃[ρ] → τ}.
We first use the induction hypothesis on
Γ ` o.x : β̃[ρ′]→ τ ′:

HA ∗=H1, L, o.x→ HA ∗=H2, l · x

with (H2, L) |= Γ and Γ ` H2(l · x) :
β̃[ρ′] → τ ′. At this point, we claim that
if a memory location can be assigned a
function type, then it must contain a func-
tion object. We use this claim on lf =

H2(l · x) to get b = H2(lf ,@body) and
L′ = H2(lf ,@scope). Thus, from the type

of lf , function(x̃){b} is of type β̃[ρ′]→ τ ′

in Γ. Let ỹ be the set of local variables
declared in b and s the rest of the body b.
We have for some δ̃:

Γ, [this : ρ′, x̃ : β̃, ỹ : δ̃]s ` s : τ ′

We also use the induction hypothesis on
Γ ` ẽ : α̃ to run HA ∗=Hi

2, L, ei →
HA ∗=Hi+1

2 , vi where H0
2 = H2 and H3 is

the final heap after evaluating all the ar-
guments. We are now ready to apply the
function call rule using This(l · x) = l and
H4 = H3 ∗ act(l, x̃, ṽ, b, l), for which we
claim:

(H4, l : L′) |= Γ, [this : ρ, x̃ : α̃, ỹ : δ̃]s

Let Γ′ be the extended typing environ-
ment. Notice that we use ρ and α̃ instead
of ρ′ and β̃ in Γ′. Indeed, the crux of our
claim is that the well-formedness relation
for a given environment is presereved by
subtyping within this environment. We
can now use the induction hypothesis on
b:

HA ∗=H4, l : L′, b→ HA ∗=H5, r
′

Becuse H5(r′) is of type τ ′ in Γ′, v′ =
γ(HA ∗=H4, r

′) is well defined and also of
type τ ′ in Γ′. We can conclude with a sub-
typing lemma that

HA ∗=H1, L, o.x(ẽ)→ HA ∗=H5, v
′

with Γ ` H5(v′) : τ .

� With The semantic rule of with simply
puts its parameter object on top of the
scope chain. Starting from Γ ` with(e)s :
undefined, it follows that Γ ` e : {x̃ : τ̃},
and from the induction hypothesis applied
in some well formed heap (H,L) |= Γ with
an arbitrary attacker memory HA:

H1 ∗=H1, L, e→ HA ∗=H2, r

with Γ ` H2(r) : {(xi : τi)i∈I}. Let
` = H2(r), since ` has an object type and
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(H2, L) |= Γ, ` is not null and we can write
H2 = H3 ∗ ` 7→ {(xj : vj)j∈J} for some
J ⊇ I with Γ ` H(vi) : τi for all i ∈ I.

From the definition of well-formed memory
for a given typing environment, this means
that:

(H2, ` : L) |= Γ, [x̃ : τ̃ ]o

We can thus apply the induction hypothe-
sis on Γ, [x̃ : τ̃ ]o ` s : undefined:

HA ∗=H2, ` : L, s→ HA ∗=H4, v

Proof of Theorem 2. Let F be the DJS
function expression function(y){body}, for an
arbitrary body. If ∅ ` F : string → string
then the wrapper <djs−program> (where
<function> is interpreted as “-”) maintains
the behavioural secrecy and preserves the inde-
pendence of F .

Proof. Follows directly by Lemma 1 and
Lemma 2.

Lemma 1 (Behavioural secrecy). Let F be a
function expression function(y){body}, for an
arbitrary body. The wrapper <djs−program>
(where <function> is interpreted as “-”)
maintains the behavioural secrecy of F .

Proof sketch. Let E[−] be the
<djs−program> context with the hole
“-”:

(function(){var _ = -;

return function(x){

if(typeof x == "string") return _(x);

}})();

and let FID = function(y){return y}. By Defi-
nition 1, we need to show that, for any trace Σ
without calls to the function at l, any attacker
memory H and any L,H ′, r (1) ∃HF .H, L, x =
(E[F ]l);P −→H ′ ∗=HF , r,Σ⇔
(2) ∃HFID

.H, L, x =
(E[FID]l);P −→H ′ ∗=HFID

, r,Σ
)
.

We begin by simulating the execution of the
code installing the wrapper function. By

definition of E[F ]l and
DJS−→ ,

H,L, x = (E[F ]l);
DJS−→ HE ∗=HF , l,Σ1

where HF is newly allocated memory defining
the function objectat location lF returned by
evaluating the function definition expression F .
The execution of line 2 of the code of E[F ]l

returns the function pointer l (part of the at-
tacker memory HE) that is then saved in vari-
able x in HF (in a cell (lL, x) 7→ l, where
L = lL:L0). The lexical scope of the wrapper l
includes a pointer lD to the activation record of
the installer code, which contains the binding of
“ ” to the defensive function lF . We consider
also the activation record at lD as part of the
defensive memory HF . In particular, lD is the
only location in HF pointed to by the lexical
scope of a function in HE .

We now execute the arbitrary attacker code
P in the memory that resulted from executing
E[F ]l:

HE ∗=HF , L, P −→H1, r,Σ2

Comparing with (1), by definition of sequen-
tial composition, it must be the case that Σ =
Σ1::Σ2 and therefore we are under the assump-
tion that Σ2 does not contain calls to l. Since
l is the only function containing a pointer to
HF in its lexical scope, we are under the hy-
pothesis of Assumption 1, and it must be the
case that H1 = H ′ ∗=HF . Again by definition
of sequential composition, we can derive

H,L, x = (E[F ]l);P
DJS−→ H ′ ∗=HF , r,Σ

By our assumption on the deterministic al-
location of E[FID]l, and again by inspection of
the wrapper, we use the same exact argument
to conclude the proof, deriving

H,L, x = (E[FID]l);
DJS−→ H ′ ∗=HFID

, r,Σ

where HFID
is the analogous of HF where the

function object resulting from the evaluation of
FID is loaded in lF .

Lemma 2 (Independence). Let F be the DJS
function expression function(y){body}, for an
arbitrary body. If ∅ ` F : string → string
then the wrapper <djs−program> (where
<function> is interpreted as “-”) preserves
the independence of F .
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Proof sketch. Let E[−] be the
<djs−program> context with the hole
“-”:

(function(){var _ = -;

return function(x){

if(typeof x == "string") return _(x);

}})();

By Definition 2, we need to show that for ar-
bitrary H,L, P1, P2 and for Σ1,Σ2 such that
Σ1 ∼cl Σ2,
(1)

(
H,L, x = E[F ]l;P1−→H1, r1,Σ1 ∧

(2) H,L, x = E[F ]l;P2−→H2, r2,Σ2

)
⇒

(3) Σ1 ∼l Σ2.
Following the reasoning for Lemma 1, if we

have (1) and (2) then we also have that

H,L, x = E[F ]l; −→HE ∗=HF , l,Σ0

HE is the new attacker memory containing in
the lexical scope of l a pointer to the activa-
tion record lD (allocated in HF ) of the wrapper
function, and Σ0 did not contain any call to l.
HF is a user memory containing in lF the

function object corresponding to F . By the
hypothesis ∅ ` F : string → string and by type
safety, we have HF ` lF : string→ string.

Let us consider the rest of the reductions
(4) HE ∗=HF , L, P1−→H1, r1,Σ3

(5) HE ∗=HF , L, P2−→H2, r2,Σ4

By definition of sequential composition, it must
be the case that
(6) Σ1 = Σ0::Σ3 and
(7) Σ2 = Σ0::Σ4.
Since we assumed initially that Σ1 ∼cl Σ2, we
need to argue that Σ1 ∼l Σ2. Without loss
of generality we can assume that P1 has the
form P1,1;x(y)1; ...;x(y)i;P1,n+1 and Σ3 has
the form

Σ1,1::l(v1,1)→ r1,1 : ... ::l(v1,n)→ r1,n:Σ1,n+1

where for all i, (ΣP1,i)|l = ∅. Similarly, P2

has the form P2,1;x(y)1; ...;x(y)i;P2,n+1 and
Σ4 has the form

Σ2,1::l(v2,1)→ r2,1 : ... ::l(v2,n)→ r2,n:Σ1,n+1

and for all i, (Σ2,i)|l = ∅. Each Pj,i performs ar-
bitrary computations that do not call function

l, and then loads in a variable y the parameter
vj,i for the invocation. Each x(y)i is the invo-
cation of function l with vj,i obtaining result
rj,i, recorded in the trace Σi as l(vj,i) → rj,i.
Because of the Σ1 ∼cl Σ2 hypothesis, we can
assume that v1,i = v2,i for all i, so from here
on we drop the indices j from each vj,i.

Let H1,1
E = H2,1

E = HE and H1,1
F = H2,1

F =
HF , and let P j,i be the suffix of Pj defined
as P j,i = Pj,i;x(y)i; ...;x(y)n;Pj,n+1 and
similarly for Σj,i. By inductive hypothesis,
assume
(8) H1,i

F = H2,i
F

(9) H1,i
F ` lF : string→ string

(10Hj,i+1
E ∗=Hj,i+1

F , L, P j,i+1−→Hj,n+1
E ∗=Hj,n+1

F , r,Σj,i+1

(11) Σ1,i+1 ∼l Σ2,i+1

At step i, by Assumption 1, Pj,i trans-

forms Hj,i
E ∗=Hj,i

F in Hj,i+1
E ∗=Hj,i

F , where the

(defensive) user memory Hj,i
F does not change.

By (9) and type safety, since x evaluates to l
and y evaluates to vi, we have both

H1,i+1
E ∗=H1,i

F , L, x(y)i−→H1,i+1
E ∗=H1,i+1

F , r1,i, l(vi)→ r1,i

H2,i+1
E ∗=H2,i

F , L, x(y)i−→H2,i+1
E ∗=H2,i+1

F , r2,i, l(vi)→ r2,i

where in particular r1,i = r2,i because in the
type safety statement the result r is determined
before the attacker memory HA (here H2,i+1

E ).
Moreover, by (8) and type safety we also have
H1,i+1
F = H1,i+1

F .
Composing with the inductive hypothesis, we

have

Hj,i
E ∗=Hj,i

F , L, P j,i−→Hj,n+1
E ∗=Hj,n+1

F , r,Σj,i

and combining with (11), we have Σ1,i ∼l Σ2,i.
Hence,

HE ∗=HF , L, P1−→H1,n+1
E ∗=H1,n+1

F , r,Σ3

HE ∗=HF , L, P2−→H2,n+1
E ∗=H2,n+1

F , r,Σ4

and Σ3 ∼l Σ4. This gives us (3) and (4), where
Hj = Hj,n+1

E ∗=Hj,n+1
F . By composing with the

wrapper execution and by (6) and (7), we ob-
tain both (1),(2) and (3), concluding the proof.
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