
HAL Id: hal-00816468
https://hal.archives-ouvertes.fr/hal-00816468

Submitted on 22 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component reconfiguration in the presence of conflicts.
Technical report of the Aeolus project

Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Zavattaro

To cite this version:
Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Zavattaro. Component reconfigura-
tion in the presence of conflicts. Technical report of the Aeolus project. 2013. �hal-00816468�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49794401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00816468
https://hal.archives-ouvertes.fr

Component reconfiguration in the presence of conflicts?

Technical report of the Aeolus project

Roberto Di Cosmo1, Jacopo Mauro2, Stefano Zacchiroli1, and Gianluigi Zavattaro2

1 Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France
roberto@dicosmo.org, zack@pps.univ-paris-diderot.fr

2 Focus Team, Univ of Bologna/INRIA, Italy, Mura A. Zamboni, 7, Bologna
jmauro@cs.unibo.it, zavattar@cs.unibo.it

Abstract. Components are traditionally modeled as black-boxes equipped with
interfaces that indicate provided/required ports and, often, also conflicts with
other components that cannot coexist with them. In modern tools for automatic
system management, components become grey-boxes that show relevant internal
states and the possible actions that can be acted on the components to change
such state during the deployment and reconfiguration phases. However, state-of-
the-art tools in this field do not support a systematic management of conflicts. In
this paper we investigate the impact of conflicts by precisely characterizing the
increment of complexity on the reconfiguration problem.

1 Introduction

Modern software systems are more and more based on interconnected software compo-
nents (e.g. packages or services) deployed on clusters of heterogeneous machines that
can be created, connected and reconfigured on-the-fly. Traditional component models
represent components as black-boxes with interfaces indicating their provide and re-
quire ports. In many cases also conflicts are considered in order to deal with frequent
situations in which components cannot be co-installed.

In software systems where components are frequently reconfigured (e.g. “cloud”
based applications that elastically reacts to client demands) more expressive compo-
nent models are considered: a component becomes a grey-box showing relevant internal
states and the actions that can be acted on the component to change state during deploy-
ment and reconfiguration. For instance, in the popular system configuration tool Pup-
pet [11] or the novel deployment management system Engage [9], components can be
in the absent, present, running or stopped states, and the actions install, uninstall, start,
stop and restart can be executed upon them. Rather expressive dependencies among
components can be declared. The aim of these tools is to allow the system administrator
to declaratively express the desired component configuration and automatically execute
a correct sequence of low-level actions that bring the current configuration to a new one

? Work partially supported by Aeolus project, ANR-2010-SEGI-013-01, and performed at IR-
ILL, center for Free Software Research and Innovation in Paris, France, www.irill.org. This
is an extended version of [4].

www.irill.org

satisfying the administrator requests respecting dependencies. We call reconfigurability
the problem of checking the existence of such sequence of low-level actions.

Despite the importance of conflicts in many component models, see e.g. package-
based software distributions used for Free and Open Source Software (FOSS) [5], the
Eclipse plugin model [3], or the OSGi component framework [13], state-of-the-arts
management systems like the above do not take conflicts into account. This is likely
ascribable to the increased complexity of the reconfigurability problem in the presence
of conflicts. In this paper we precisely characterize this increment of complexity.

In a related paper [6] we have proposed the Aeolus component model that, despite
its simplicity, is expressive enough to capture the main features of tools like Puppet
and Engage. We have proved that the reconfigurability problem is Polynomial-Time
for Aeolus−, the fragment without numerical constraints. In this paper we consider
Aeolus core, the extension of this fragment with conflicts, and we prove that even if
the reconfigurability problem remains decidable, it turns out to be Exponential-Space
hard. We consider this result a fundamental step towards the realization of tools that
manage conflicts systematically. In fact, we shed some light on the specific sources of
the increment of complexity of the reconfigurability problem.

The technical contribution of the paper and its structure is as follows. In Section 2
we formalize the reconfigurability problem in the presence of conflicts. In Section 3
we prove its decidability by resorting to the theory of Well-Structured Transition Sys-
tems [2,8]. We consider this decidability result interesting also from a foundational
viewpoint: despite our component model has many commonalities with concurrent
models like Petri nets, in our case the addition of conflicts (corresponding to inhibitor
arcs in Petri nets) does not make the analysis of reachability problems undecidable.
The closed relationship between our model and Petri nets is used in Section 4 where
we prove the Exponential-Space hardness of the reconfigurability problem by reduction
from the coverability problem in Petri nets. In Sections 5 and 6 we discuss related work
and report concluding remarks.

2 The Aeolus core model

The Aeolus core model represents relevant internal states of components by means
of a finite state automaton (see Fig. 1): depending on its state components activate
provide and require functionalities (called ports), and get in conflict with ports provided
by others (in Fig. 1 active ports are black while inactive ones are grey). Each port
is identified by an interface name. Bindings can be established between provide and
require ports with the same interface. Fig. 1 shows the graphical representation of a
typical deployment of the popular WordPress blog. According to the Debian packages
metadata, WordPress requires a Web server providing httpd in order to be installed, and
an active MySQL database server in order to be in production. The chosen Web server
is Apache2 which is broken into various packages (e.g. apache2, apache2-bin) that
shall be simultaneously installed. Notice that Apache2 is not co-installable with other
Web servers, such as lighttpd.

We now move to the formal definition of Aeolus core. We assume given a set I of
interface names.

Fig. 1: Typical Wordpress/Apache/MySQL deployment, modeled in Aeolus core.

Definition 1 (Component type). The set Γ of component types of the Aeolus core
model, ranged over by T ,T1,T2, . . . contains 4-ples 〈Q,q0,T,D〉 where:

– Q is a finite set of states containing the initial state q0;
– T ⊆ Q×Q is the set of transitions;
– D is a function from Q to a 3-ple 〈P,R,C〉 of interface names (i.e. P,R,C⊆I) in-

dicating the provide, require, and conflict ports that each state activates. We assume
that the initial state q0 has no requirements and conflicts (i.e. D(q0) = 〈P, /0, /0〉).

We now define configurations that describe systems composed by components and
their bindings. Each component has a unique identifier taken from the set Z . A con-
figuration, ranged over by C1,C2, . . ., is given by a set of component types, a set of
components in some state, and a set of bindings.

Definition 2 (Configuration). A configuration C is a 4-ple 〈U,Z,S,B〉 where:

– U ⊆ Γ is the finite universe of the available component types;
– Z ⊆Z is the set of the currently deployed components;
– S is the component state description, i.e. a function that associates to components

in Z a pair 〈T ,q〉 where T ∈U is a component type 〈Q,q0,T,D〉, and q ∈Q is the
current component state;

– B ⊆ I × Z × Z is the set of bindings, namely 3-ple composed by an interface,
the component that requires that interface, and the component that provides it; we
assume that the two components are different.

Configuration are equivalent if they have the same instances up to instance renaming.

Definition 3 (Configuration equivalence). Two configurations 〈U,Z,S,B〉 and
〈U,Z′,S′,B′〉 are equivalent (〈U,Z,S,B〉≡ 〈U,Z′,S′,B′〉) iff there exists a bijective func-
tion ρ from Z to Z′ s.t.

– S(z) = S′(ρ(z)) for every z ∈ Z;
– 〈r,z1,z2〉 ∈ B iff 〈r,ρ(z1),ρ(z2)〉 ∈ B′.

Notation. We write C [z] as a lookup operation that retrieves the pair 〈T ,q〉 = S(z), where
C = 〈U,Z,S,B〉. On such a pair we then use the postfix projection operators .type and .state

to retrieve T and q, respectively. Similarly, given a component type 〈Q,q0,T,D〉, we use projec-
tions to decompose it: .states, .init, and .trans return the first three elements; .P(q), .R(q),

and .C(q) return the three elements of the D(q) tuple. Moreover, we use .prov (resp. .req) to
denote the union of all the provide ports (resp. require ports) of the states in Q. When there is no
ambiguity we take the liberty to apply the component type projections to 〈T ,q〉 pairs. Example:
C [z].R(q) stands for the require ports of component z in configuration C when it is in state q.

We can now formalize the notion of configuration correctness.

Definition 4 (Correctness). Let us consider the configuration C = 〈U,Z,S,B〉.
We write C |=req (z,r) to indicate that the require port of component z, with interface

r, is bound to an active port providing r, i.e. there exists a component z′ ∈ Z \{z} such
that 〈r,z,z′〉 ∈ B, C [z′] = 〈T ′,q′〉 and r is in T ′.P(q′). Similarly, for conflicts, we write
C |=cn f (z,c) to indicate that the conflict port c of component z is satisfied because
no other component has an active port providing c, i.e. for every z′ ∈ Z \ {z} with
C [z′] = 〈T ′,q′〉 we have that c 6∈T ′.P(q′).

The configuration C is correct if for every component z ∈ Z with S(z) = 〈T ,q〉 we
have that C |=req (z,r) for every r ∈T .R(q) and C |=cn f (z,c) for every c ∈T .C(q).

Configurations evolve at the granularity of actions.

Definition 5 (Actions). The set A contains the following actions:

– stateChange(〈z1,q1,q′1〉, . . . ,〈zn,qn,q′n〉) where zi ∈Z and ∀i 6= j . zi 6= z j;
– bind(r,z1,z2) where z1,z2 ∈Z and r ∈I ;
– unbind(r,z1,z2) where z1,z2 ∈Z and r ∈I ;
– newRsrc(z : T) where z ∈Z and T ∈U is the component type of z;
– delRsrc(z) where z ∈Z .

Notice that we consider a set of state changes in order to deal with simultaneous instal-
lations like the one needed for Apache2 and Apache2-bin in Fig. 1. The execution of
actions is formalized as configuration transitions.

Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions C
α−→C ′

meaning that the execution of α ∈A on the configuration C produces a new configu-
ration C ′. The transitions from a configuration C = 〈U,Z,S,B〉 are defined as follows:

C
stateChange(〈z1,q1,q′1〉,...,〈zn,qn,q′n〉)−−−−−−−−−−−−−−−−−−−−→ 〈U,Z,S′,B〉
if ∀i . C [zi].state= qi
and ∀i . (qi,q′i) ∈ C [zi].trans

and S′(z′) =
{
〈C [zi].type,q′i〉 if ∃i . z′ = zi
C [z′] otherwise

C
bind(r,z1,z2)−−−−−−−→ 〈U,Z,S,B∪〈r,z1,z2〉〉
if 〈r,z1,z2〉 6∈ B
and r ∈ C [z1].req∩C [z2].prov

C
unbind(r,z1,z2)−−−−−−−−→ 〈U,Z,S,B\ 〈r,z1,z2〉〉 if 〈r,z1,z2〉 ∈ B

C
newRsrc(z:T)−−−−−−−−→ 〈U,Z∪{z},S′,B〉
if z 6∈ Z, T ∈U

and S′(z′) =
{
〈T ,T .init〉 if z′ = z
C [z′] otherwise

C
delRsrc(z)−−−−−→ 〈U,Z \{z},S′,B′〉

if S′(z′) =
{
⊥ if z′ = z
C [z′] otherwise

and B′ = {〈r,z1,z2〉 ∈ B | z 6∈ {z1,z2}}

We can now define a reconfiguration run as the effect of the execution of a sequence of
actions (atomic or multiple state changes).

Definition 7 (Reconfiguration run). A reconfiguration run is a sequence of reconfigu-
rations C0

α1−→ C1
α2−→ ·· · αm−→ Cm such that Ci is correct, for every 0≤ i≤ m.

As an example, a reconfiguration run to reach the scenario depicted in Fig. 1 starting
from a configuration where only apache2 and mysql are running and apache2-bin is
installed is the one involving in sequence the creation of wordpress, the bindings of
wordpress with mysql and apache2, and finally the installation of wordpress.

We now have all the ingredients to define the reconfigurability problem: given a
universe of component types and an initial configuration, we want to know whether
there exists a reconfiguration run leading to a configuration that includes at least one
component of a given type T in a given state q.

Definition 8 (Reconfigurability problem). The reconfigurability problem has as input
a universe U of component types, an initial configuration C , a component type T , and
a state q. It returns as output true if there exists a reconfiguration run C

α1−→ C1
α2−→

·· · αm−→Cm and Cm[z] = 〈T ,q〉, for some component z∈Cm. Otherwise, it returns false.

The restriction to only one component in a given state is not limiting: we can encode
any given combination of component types and states by adding dummy provide ports
enabled only by the final states of interest, and a target dummy component with require-
ments on all such provide ports.

3 Reconfigurability is decidable in Aeolus core

We demonstrate decidability of the reconfigurability problem by resorting to the theory
of Well-Structured Transition Systems (WSTS) [2,8].

A reflexive and transitive relation is called quasi-ordering. A well-quasi-ordering
(wqo) is a quasi-ordering (X ,≤) such that, for every infinite sequence x1,x2,x3, · · · ,
there exist i < j with xi ≤ x j. Given a quasi-order ≤ over X , an upward-closed set is a
subset I ⊆ X such that the following holds: ∀x,y ∈ X : (x ∈ I ∧ x ≤ y)⇒ y ∈ I. Given
x ∈ X , its upward closure is ↑ x = {y ∈ X | x ≤ y}. This notion can be extended to sets
in the obvious way: given a set Y ⊆ X we define its upward closure as ↑ Y =

⋃
y∈Y ↑ y.

A finite basis of an upward-closed set I is a finite set B such that I =
⋃

x∈B ↑ x.

Definition 9. A WSTS is a transition system (S ,→,�) where � is a wqo on S which
is compatible with →, i.e., for every s1 � s′1 such that s1 → s2, there exists s′1 →∗ s′2
such that s2 � s′2 (→∗ is the reflexive and transitive closure of→). Given a state s ∈S ,
Pred(s) is the set {s′ ∈S | s′ → s} of immediate predecessors of s. Pred is extended
to sets in the obvious way: Pred(S) =

⋃
s∈S Pred(s). A WSTS has effective pred-basis if

there exists an algorithm that, given s ∈S , returns a finite basis of ↑ Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in [8].

Proposition 1. Let (S ,→,�) be a finitely branching WSTS with decidable � and ef-
fective pred-basis. Let I be any upward-closed subset of S and let Pred∗(I) be the set
{s′ ∈ S | s′→∗ s} of predecessors of states in I. A finite basis of Pred∗(I) is computable.

In the remainder of the section, we assume a given universe U of component types;
so we can consider that the sets of possible component types T and of possible internal
states q are both finite. We will resort to the theory of WSTS by considering an abstract
model of configurations in which bindings are not taken into account.

Definition 10 (Abstract Configuration). An abstract configuration B is a finite mul-
tiset of pairs 〈T ,q〉 where T is a component type and q is a corresponding state. We
use Con f to denote the set of abstract configurations.

A concretization of an abstract configuration is simply a correct configuration that
for every component-type and state pair 〈T ,q〉 has as many instances of component T
in state q as pairs 〈T ,q〉 in the abstract configuration.

Definition 11 (Concretization). Given an abstract configuration B we say that a cor-
rect configuration C = 〈U,Z,S,B〉 is one concretization of B if there exists a bijection
f from the multiset B to Z s.t. ∀〈T ,q〉 ∈B we have that S(f (〈T ,q〉)) = 〈T ,q〉. We
denote with γ(B) the set of concretizations of B. We say that an abstract configuration
B is correct if it has at least one concretization (formally γ(B) 6= /0).

An interesting property of an abstract configuration is that from one of its con-
cretizations it is possible to reach via bind and unbind actions all the other concretiza-
tions up to instance renaming. This is because it is always possible to switch one bind-
ing from one provide port to another one by adding a binding to the new port and then
removing the old binding.

Property 1. Given an abstract configuration B and configurations C1,C2 ∈ γ(B) there
exists α1, . . . ,αn sequence of binding and unbinding actions s.t. C1

α1−→ . . .
αn−→ C ≡ C2.

We now move to the definition of our quasi-ordering on abstract configurations. In
order to be compatible with the notion of correctness we cannot adopt the usual multiset
inclusion ordering. In fact, the addition of one component to a correct configuration
could introduce a conflict. If the type-state pair of the added component was absent in
the configuration, the conflict might be with a component of a different type-state. If the
type-state pair was present in a single copy, the conflict might be with that component
if the considered type-state pair activates one provide and one conflict port on the same
interface. This sort of self-conflict is revealed when there are at least two instances,
as one component cannot be in conflict with itself. If the type-state pair was already
present in at least two copies, no new conflicts can be added otherwise such conflicts
were already present in the configuration (thus contradicting its correctness).

In the light of the above observation, we define an ordering on configurations that
corresponds to the product of three orderings: the identity on the set of type-state pairs
that are absent, the identity on the pairs that occurs in one instance, and the multiset
inclusion for the projections on the remaining type-state pairs.

Definition 12 (≤). Given a pair 〈T ,q〉 and an abstract configuration B, let #B(〈T ,q〉)
be the number of occurrences in B of the pair 〈T ,q〉. Given two abstract configura-
tions B1,B2 we write B1 ≤B2 if for every component type T and state q we have
that #B1(〈T ,q〉) = #B2(〈T ,q〉) when #B1(〈T ,q〉) ∈ {0,1} or #B2(〈T ,q〉) ∈ {0,1},
and #B1(〈T ,q〉)≤ #B2(〈T ,q〉) otherwise.

As discussed above, this ordering is compatible with correctness.

Property 2. If an abstract configuration B is correct than all the configurations B′ such
that B ≤B′ are also correct.

Another interesting property of the ≤ quasi-ordering is that from one concretiza-
tion of an abstract configuration, it is always possible to reconfigure it to reach a con-
cretization of a smaller abstract configuration. In this case it is possible to first add from
the starting configuration the bindings that are present in the final configuration. Then
the extra components present in the starting configuration can be deleted because not
needed to guarantee correctness (they are instances of components that remain available
in at least two copies). Finally the remaining extra bindings can be removed.

Property 3. Given two abstract configurations B1,B2 s.t. B1 ≤B2, C1 ∈ γ(B1), and
C2 ∈ γ(B2) we have that there exists a reconfiguration run C2

α1−→ . . .
αn−→ C ≡ C1.

We have that ≤ is a wqo on Conf because, as we consider finitely many component
type-state pairs, the three distinct orderings that compose ≤ are themselves wqo.

Lemma 1. ≤ is a wqo over Conf .

Proof. The proof is based on a representation of abstract configurations as 3-ples of
tuples: namely, given B ∈ Conf we represent it as the triple 〈a,b,c〉 where a is used
to represent the component type-state pairs with cardinality 0 in B, b represents those
with cardinality 1, and c describes all the other pairs. Formally, let k be the possible
component type-state pairs and assume a total ordering on them. The three elements a,
b and c are vectors of arity k such that a[i] = 1 (resp. b[i] = 1) if the i-th component
type-state pair has cardinality 0 (resp. 1) in B and a[i] = 0 (resp. b[i] = 0) otherwise,
while c[i] contains the cardinality of the i-th pair in B if it is greater or equal to 2 and
c[i] = 0 otherwise. Consider now two abstract configurations B1,B2 ∈ Conf and the
corresponding triple representations 〈a1,b1,c1〉 and 〈a2,b2,c2〉. We have that B1 ≤B2
iff a1 = a2, b1 = b2 and c1 ≤k c2 (where≤k is the extension of the standard ordering on
natural numbers to vectors of length k).

The equality on bit vectors of length k (a and b are indeed of length k) is a wqo as
there are only finitely many such vectors (namely, 2k). Dickson’s lemma [7] states that
a product of wqo is a wqo, thus ≤k is a wqo too. We can conclude that the ordering on
the triples is a wqo by applying again Dickson’s lemma.

We now define a transition system on abstract reconfigurations and prove it is a
WSTS with respect to the ordering defined above.

Definition 13 (Abstract reconfigurations). We write B −→B′ if there exists C
α−→ C ′

for some C ∈ γ(B) and C ′ ∈ γ(B′).

By Property 3 and Lemma 1 we have the following.

Lemma 2. The transition system (Conf ,−→,≤) is a WSTS.

Proof. The ≤ is a wqo for Conf by Lemma 1. To prove the thesis we need to prove
that ≤ is compatible with −→ (i.e. if B1 ≤B2 and B1 −→B′1 then B2 −→∗ B′2 for some
B′2 s.t. B′1 ≤B′2). This is straightforward since we have B2 −→∗ B1 (by Property 3),
B1 −→B′1 (by hypothesis), and B′1 ≤B′1 (by reflexivity of ≤). ut

The following lemma is rather technical and it will be used to prove that (Conf ,−→
,≤) has effective pred-basis. Intuitively it will allow us to consider, in the computation
of the predecessors, only finitely many different state change actions.

Lemma 3. Let k be the number of distinct component type-state pairs. If B1 −→ B2
then there exists B′1 −→B′2 such that B′1 ≤B1, B′2 ≤B2 and |B′2| ≤ 3k+2k2.

Proof. If |B2| ≤ 3k+2k2 the thesis trivially holds. Consider now |B2|> 3k+2k2 and
a transition C1

α−→ C2 such that C1 ∈ γ(B1) and C2 ∈ γ(B2). Since |B2|> 3k there are
three components z1, z2 and z3 having the same component type and internal state. We
consider two subcases.
Case 1. z1, z2 and z3 do not perform a state change in the action α . W.l.o.g we can as-
sume that z3 does not appear in α (this is not restrictive because at most two components
that do not perform a state change can occur in an action). We can now consider the con-
figuration C ′1 obtained by C1 after removing z3 (if there are bindings connected to pro-
vide ports of z3, these can be rebound to ports of z1 or z2). Consider now C ′1

α−→ C ′2 and
the corresponding abstract configurations B′1 and B′2. It is easy to see that B′1 −→B′2,
B′1 ≤B1, B′2 ≤B2 and |B′2|< |B2|. If |B′2| ≤ 3k+2k2 the thesis is proved, otherwise
we repeat this deletion of components.
Case 2. There are no three components of the same type-state that do not perform a
state change. Since |B2| > 2k2 + 2 we have that α is a state change involving strictly
more than 2k2 components. This ensures the existence of three components z′1, z′2 and
z′3 of the same type that perform the same state change from q to q′. As in the previous
case we consider the configuration C ′1 obtained by C1 after removing z′3 and α ′ the state

change similar to α but without the state change of z′3. Consider now C ′1
α ′−→ C ′2 and the

corresponding abstract configurations B′1 and B′2. As above, B′1 ≤B1, B′2 ≤B2 and
|B′2| < |B2|. If |B′2| ≤ 3k+ 2k2 the thesis is proved, otherwise we repeat the deletion
of components. ut

We are now in place to prove that (Conf ,−→,≤) has effective pred-basis.

Lemma 4. The transition system (Conf ,−→,≤) has effective pred-basis.

Proof. We first observe that given an abstract configuration the set of its concretizations
up to configuration equivalence is finite, and that given a configuration C the set of pre-
ceding configurations C ′ such that C ′

α−→ C is also finite (and effectively computable).
Consider now an abstract configuration B. We now show how to compute a finite ba-
sis for ↑ Pred(↑ B). First of all we consider the configuration B if |B| > 3k + 2k2,

the (finite) set of configurations B′ such that B ≤B′ and |B′| ≤ 3k+ 2k2 otherwise.
Then we consider the (finite) set of concretizations of all such abstract configurations.
And finally we compute the (finite) set of the preceding configurations of all such con-
cretizations. The set of abstract configuration corresponding to the latter is a finite basis
for ↑ Pred(↑B) as a consequence of Lemma 3. ut

We are finally ready to prove our decidability result.

Theorem 1. The reconfigurability problem in Aeolus core is decidable.

Proof. Let k be the number of distinct component type-state pairs according to the
considered universe of component types. We first observe that if there exists a correct
configuration containing a component of type T in state q then it is possible to obtain
via some binding, unbinding, and delete actions another correct configuration with k or
less components. Hence, given a component type T and a state q, the number of target
configurations that need to be considered is finite. Moreover, given a configuration C ′ ∈
γ(B′) there exists a reconfiguration run from C ∈ γ(B) to C ′ iff B ∈ Pred∗(↑B′).

To solve the reconfigurability problem it is therefore possible to consider only the
(finite set of) abstractions of the target configurations. For each of them, say B′, by
Proposition 1, Lemma 2 and Lemma 4 we know that a finite basis for Pred∗(↑B′) can
be computed. It is sufficient to check whether at least one of the abstract configurations
in such basis is ≤ w.r.t. the abstraction of the initial configuration. ut

4 Reconfigurability is ExpSpace-hard in Aeolus core

We prove that the reconfigurability problem in Aeolus core is ExpSpace-hard by reduc-
tion from the coverability problem in Petri nets, a problem which is indeed known to be
ExpSpace-complete [12,14]. We start with some background on Petri nets.

A Petri net is a tuple N = (P,T,m0), where P and T are finite sets of places and
transitions, respectively. A finite multiset over the set P of places is called a marking,
and m0 is the initial marking. Given a marking m and a place p, we say that the place
p contains a number of tokens equal to the number of instances of p in m. A transition
t ∈ T is a pair of markings denoted with •t and t•. A transition t can fire in the marking m
if •t ⊆ m (where ⊆ is multiset inclusion); upon transition firing the new marking of the
net becomes n= (m\m′)]m′′ (where \ and] are the difference and union operators for
multisets, respectively). This is written as m⇒ n. We use⇒∗ to denote the reflexive and
transitive closure of⇒. We say that m′ is reachable from m if m⇒∗ m′. The coverability
problem for marking m consists of checking whether m0⇒∗ m′ for some m⊆ m′.

We now discuss how to encode Petri nets in Aeolus core component types. Before
entering into the details we observe that given a component type T it is always possible
to modify it in such a way that its instances are persistent and unique. The uniqueness
constraint can be enforced by allowing all the states of the component type to provide
a new port with which they are in conflict. To avoid the component deletion it is suf-
ficient to impose its reciprocal dependence with a new type of component. When this
dependence is established the components be deleted without violating it. In Fig. 2 we
show an example of how a component type having two states can be modified in order

q0

f

eq q0
q0

q'0

q

f

e

e

η

Fig. 2: Example of a component type transformation η()

off

ontoken(p)

ap

bp

dp

cp

ap cp

(a) Token in place p

reset counteri

counteri(1)

reset' counteri

up counteri+1

counteri(0)

up' counteri+1

up counteri

up' counteri

1

0Ci

(b) i-th bit counter

Fig. 3: Token and counter component types.

to reach our goal. A new auxiliary initial state q′0 is created. The new port e ensures
that the instances of type T in a state different from q′0 are unique. The require port f
provided by a new component type Taux forbids the deletion of the instances of type
T , if they are not in state q′0. We assume that the ports e and f are fresh.

In the following we can therefore consider w.l.o.g. components that, when deployed,
are unique and persistent. Given a component type T we denote this component type
transformation with η(T).

We now describe how to encode a Petri net in the Aeolus core model. We will
use three types of components: one modeling the tokens, one for transitions and one
for defining a counter. The components for transitions and the counter are unique and
persistent, while those for the tokens cannot be unique because the number of tokens in
a Petri net can be unbounded.

The simplest component is the one used to model a token in a given place. Intuitively
one token in a place is encoded as one instance of a corresponding component type in an
on state. There could be more than one of these components deployed simultaneously
representing multiple tokens in a place. In Fig. 3a we represent the component type for
the tokens in the place p of the Petri net. The initial state is the off state. The token could
be created following a protocol consisting of requiring the port ap and then providing
the port bp to signal the change of status. Similarly a token can be deleted requiring
the port cp and then providing the port dp. Even if multiple instances of the token
component can be deployed simultaneously, the conflict ports ap and cp guarantee that
only one at a time can initiate the protocol to change its state. We denote with token(p)
the component type representing the tokens in the place p.

transition(t)

∀ i . reset' counteri

∀ i . reset counteri

counter1(¬h1)

up counter1

up' counter1

cp dp ∀ i . counteri(hi)

...

...

counterk(¬hk)

...

counteri(¬hi)

...

Fig. 4: Consumption phase of n tokens from place p for a transition t (k = dlog(n)e and
hi is the i-th least significative bit of the binary representation of n)

In order to model the transitions with component types without having an exponen-
tial blow up of the size of the encoding we need a mechanism to count up to a fixed
number. Indeed a transition can consume and produce up to a given number of tokens.
To count a number up to n we will use C1, . . . ,Cdlog(n)e components; every Ci will rep-
resent the i-th less significant bit of the binary representation of the counter that, for
our purposes, needs just to support the increment and reset operations. In Fig. 3b we
represent one of the bits implementing the counter. The initial state is 0. To reset the
bit it is possible to provide the reset counteri port while to increment it the up counteri
should be provided. If the bit is in state 1 the increment will trigger the increment of the
next bit except for the component representing the most significant bit that will never
need to do that. We transform all the component types representing the counter using
the η transformation to ensure uniqueness and persistence of its instances. The instance
of η(Ci) can be used to count how many tokens are consumed or produced checking if
the right number is reached via the ports counteri(1) and counteri(0).

A transition can be represented with a single component interacting with token and
counter components. The state changes of the transition component can be intuitively
divided in phases. In each of those phases a fixed number of tokens from a given place
is consumed or produced. The counter is first reset providing the reset counteri and re-
quiring the reset′ counteri ports for all the counter bits. Then a cycle starts incrementing
the counter providing and requiring the ports up counter1 and up′ counter1 and consum-
ing or producing a token. The production of a token in place p is obtained providing
and requiring ports ap and bp while the consumption providing and requiring the ports
cp and dp. The phase ends when all the bits of the counter represent in binary the right
number of tokens that need to be consumed or produced. If instead at least one bit is
wrong the cycle restarts. In Fig. 4 we depict the phase of a consumption of n tokens.

Starting from the initial state of the component representing the transition, the con-
sumption phases need to be performed first. When the final token has been produced
the transition component can restart from the initial state. Given a transition t we will
denote with transition(t) the component type explained above.

Definition 14 (Petri net encoding in Aeolus core). Given a Petri net N = (P,T,m0) if
n is the largest number of tokens that can be consumed or produced by a transition in
T , the encoding of N in Aeolus core is the set of component types ΓN = {token(p) | p ∈
P}∪{η(Ci) | i ∈ [1..dlog(n)e]}∪{η(transition(t)) | t ∈ T}.

An important property of the previous encoding is that it is polynomial w.r.t. the
size of the Petri net. This is due to the fact that the counter and place components have
a constant amount of states and ports while the transition components have a number of
states that grows linearly w.r.t. the number of places involved in a transition.

The proof that the reconfiguration problem for Aeolus core is ExpSpace-hard thus
follows from the following correspondence between a Petri net N and its set of compo-
nent types ΓN : every computation in N can be faithfully reproduced by a correspond-
ing reconfiguration run on the components types ΓN ; every reconfiguration run on ΓN
corresponds to a computation in N excluding the possibility for components of kind
token(p) to be deleted (because η is not applied to those components) and of compo-
nents transition(t) to execute only partially the consumption of the tokens (because e.g.
some token needed by the transition is absent). In both cases, the effect is to reach a
configuration in which some of the token was lost during the reconfiguration run, but
this is not problematic as we deal with coverability. In fact, if a configuration is reached
with at least some tokens, then also the corresponding Petri nets will be able to reach a
marking with at least those tokens (possibly more).

Theorem 2. The reconfiguration problem for Aeolus core is ExpSpace-hard.

Proof. Consider a Petri net N and a marking m. We first construct a new Petri net N′

with a place p′ such that m can be covered in N iff a token can be introduced in p′.
The net N′ is the same as N but with an additional place p′ and a transition t ′ such that
•t ′ = m and t ′• = {p′}. Note that this transformation increases the size of the Petri net
by a constant. We now consider the set of component types ΓN′ , i.e. the encoding of N′.
As observed above the size of this set is polynomial in the size of N′.

Let us consider an extension M of Petri nets defined in the same way, with the
unique difference that tokens can be deleted in a non-deterministic manner. It is easy to
see that coverability in M is equivalent to coverability in Petri nets. Indeed if a marking
is reachable in a Petri net then the same marking can be reached considering the M
model and assuming that no token is lost. Hence, if a marking can be covered by a Petri
net it can be covered also when the M model is considered. Also the vice versa holds.
In fact if tokens are deleted in the M model, the only effect is that a “smaller” marking
is reached with respect to the marking reached by the Petri net that executes the same
firing sequence.

The thesis follows from the observation that, considering the M model, given a net
N′ and the corresponding component types ΓN′ , a token can be produced in a place
p′ iff one component of type place(p′) can be deployed in its state on starting from
a configuration containing only the token components representing the initial marking
m0.

Consider a firing sequence of the net. The execution of a transition t can be repro-
duced in the corresponding reconfiguration run by considering the transition component
η(transition(t)) that simulates the production and consumption of tokens by changing

the state of token components from off to on and from on to off . In case no sufficient
instances of the token components in state off are available, new ones are deployed.
Note that, on the contrary, the presence of a sufficient number of token components in
state on is guaranteed otherwise the transition could not be fired in the net. The non-
deterministic deletion of one token from place p is reproduced in the reconfiguration
run as the deletion of one instance of the component type token(p) in state on (such
components can be deleted because non persistent and not needed to satisfy require-
ments of other components in the configuration).

Consider now a reconfiguration run. A corresponding firing sequence can be ob-
tained in the net as follows. A full cycle of a transition component is reproduced by
the firing of the corresponding net transition. Deletion of token components (the unique
non persistent component type) is reproduced by a non-deterministic deletion of the
corresponding net token. Non completed cycles of transition components can be of two
kinds: those that do not complete the deletion phase, and those that complete the dele-
tion but not the production phase. In the first case, the net simulates the same behaviour
by considering non-deterministic deletion of the corresponding tokens. In the second
case, the net can fire the transition and immediately after lose those tokens that were
not produced by the transition component in the reconfiguration run.

5 Related work

Engage [9] is very close to Aeolus purposes: it provides a declarative language to de-
fine resource configurations and a deployment engine. However, it lacks conflicts. This
might make a huge computational differences, as it is precisely the introduction of con-
flicts that makes reconfigurability ExpSpace-hard in Aeolus core (the problem is poly-
nomial in Aeolus− [6]). ConfSolve [10] is a DSL used to specify system configurations
with constraints suitable for modern Constraint Satisfaction Problems solvers. Conf-
Solve allocates virtual machines to physical ones considering constraints like CPU,
RAM, This differs from reconfigurability in Aeolus. Package-based software man-
agement [1,5] is a degenerate case of Aeolus reconfigurability. Package managers are
used to compute a new configuration, but they use simple heuristics to reach it, ignoring
transitive incoherences met during deployment.

6 Conclusions

The need to reconfigure software systems has become increasingly important with the
generalization of distributed and dynamic architectures popularized by modern “cloud”
infrastructures. At the same time, the need to mark the incompatibilities among the
growing number of available components makes it necessary to handle conflicts in com-
ponent models. Existing tools for the management of distributed applications are not yet
satisfactory from this perspective.

In this work we have studied the impact of adding conflicts to a realistic component
model, onto the complexity of reconfigurability: the problem remains decidable—while
in other models, like Petri nets, the addition of tests-for-absence makes the model Tur-
ing powerful—but becomes ExpSpace-hard.

We consider our decidability and hardness proofs useful for at least two future in-
tertwined research directions. On the one hand, we plan to extend existing tools with
techniques inspired by our decidability proof in order to also deal with conflicts and
produce a reconfiguration run. On the other hand, the hardness proof sheds some light
on the specific combination of component model features that make the reconfigurabil-
ity problem ExpSpace-hard. We plan to investigate realistic restrictions on the Aeolus
component model for which efficient reconfigurability algorithms could be devised.

References

1. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Dependency solving: a separate concern
in component evolution management. J. Syst. Software 85, 2228–2240 (2012)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS. pp. 313–321. IEEE (1996)

3. Clayberg, E., Rubel, D.: Eclipse Plug-ins (3rd Edition). Addison-Wesley, 3 edn. (2008)
4. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Component reconfiguration in the

presence of conflicts. In: ICALP 2013: 40th International Colloquium on Automate, Lan-
guages and Programming. LNCS, Springer (2013), to appear

5. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distributions: Details
and challenges. In: HotSWup’08 (2008)

6. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model for the
cloud. In: SEFM 2012. LNCS, vol. 7504, pp. 156–171. Springer (2012)

7. Dickson, L.E.: Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Dis-
tinct Prime Factors. American Journal of Mathematics 35(4), 413–422 (1913)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science 256, 63–92 (2001)

9. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management system. In:
PLDI’12: Programming Language Design and Implementation. pp. 263–274. ACM (2012)

10. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated configura-
tion. In: LISA ’12: Large Installation System Administration Conference. pp. 51–66 (2012)

11. Kanies, L.: Puppet: Next-generation configuration management. ;login: the USENIX mag-
azine 31(1), 19–25 (2006)

12. Lipton, R.J.: The Reachability Problem Requires Exponential Space. Research report 62,
Department of Computer Science, Yale University (1976)

13. OSGi Alliance: OSGi Service Platform, Release 3. IOS Press, Inc. (2003)
14. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theoret.

Comp. Sci. 6, 223–231 (1978)

	Component reconfiguration in the presence of conflicts

