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From Projective to Euclidean Reconstruction

Fr�d�ric Devernay Olivier Faugeras

INRIA Sophia Antipolis� ���� route des Lucioles

BP ��� �	��� Sophia Antipolis Cedex

Abstract

To make a Euclidean reconstruction of the world
seen through a stereo rig� we can either use a cal�
ibration grid� and the results will rely on the preci�
sion of the grid and the extracted points of interest�
or use self�calibration� Past work on self�calibration
is focussed on the use of only one camera� and gives
sometimes very unstable results�

In this paper� we use a stereo rig which is supposed
to be weakly calibrated using a method such as the one
described in ���� Then� by matching two sets of points
of the same scene reconstructed from di	erent points
of view� we try to 
nd both the homography that maps
the projective reconstruction ��� to the Euclidean space
and the displacement from the 
rst set of points to the
second set of points�

We present results of the Euclidean reconstruction
of a whole object from uncalibrated cameras using the
method proposed here�

� Introduction

This article is concerned with the following prob�
lem� Given a weakly calibrated stereo rig� i�e� a pair of
camera with known epipolar geometry� we know that
we can obtain ��D reconstructions of the environment
up to an unknown projective transformation ��� 	
�
We call such a reconstruction a projective reconstruc�
tion� In particular� no a�ne or euclidean information
can a priori be extracted from it unless some further
information is available ��
� The problem is then to
determine what is the information that is missing and
how can it be recovered� We provide a very simple an�
swer to both questions with one rigid displacement
of the stereo rig� the three�dimensional structure of
the scene can be in general uniquely recovered up to a
similitude transformation using some elementary ma�
trix algebra� assuming that reliable correspondences
between the two projective reconstructions obtained
from the two viewpoints can be established� We call
such a reconstruction a euclidean reconstruction� A
similar result was obtained ��
 but the resulting scheme
was a closed form solution computed from two views of

the scene� whereas this method can be used with many
more views� giving more stability on the solution�

This result does not contradict previous results� for
example ��� �
 which showed that the intrinsic param�
eters of a camera could be in general recovered from
two displacements of the camera because we are using
simultaneously two cameras� The method developed
here avoids any reference to the intrinsic parameters of
the cameras and does not require solving the nonlinear
Kruppa equations which are de�ned in the previous
references�

� Goal of the method

Our acquisition system consists of a pair of cam�
eras� This system can be calibrated using a weak cali�
bration method ��
� so that we can make a projective
reconstruction ��
 of the scene in front of the stereo�
scopic system� by matching features �points� curves�
or surfaces� between the two images�

Projective reconstruction roughly consists of chos�
ing �ve point matches between the two views and chos�
ing these �ve points as a projective basis to reconstruct
the scene� The �ve point matches can be either real
points �i�e� points that are physically present in the
scene� or virtual points� The virtual point matches
are calculated by choosing a point in the �rst cam�
era� and then choosing any point on its epipolar line
in the second camera as its correspondant� thus these
points satisfy the epipolar constraint but are not the
images of a physical point� Let us call P the resulting
projective basis which is thus attached to the stereo
rig�

Let us now consider a real correspondence �m�� m
�
��

between the two images� We can reconstruct the ��D
point M� in the projective basis P � Let us now sup�
pose that after moving the rig to another place� the
correspondence has become �m��m

�
��� yielding a ��D

reconstructed point M� in the projective basis P � We
know from the results of ��� 	
 that the two recon�
structions are related by a collineation of P� which is
represented by a full rank � � � matrix H�� de�ned
up to a scale factor� We denote by the symbol �� the



equality up to a scale factor� Thus we have

M�
�� H��M�

where M� and M� are homogeneous coordinate vec�
tors of M� and M� in P �

Let us now imagine for a moment that an orthonor�
mal frame of reference E is attached to the stereo rig�
The change of coordinates from P to E is described
by a full rank � � � matrix H��� also de�ned up to
a scale factor� In the coordinate frame E the two
��D reconstructions obtained from the two viewpoints
are related by a rigid displacement� not a general
collineation� This rigid displacement is represented
by the following �� � matrix D��

D��
��
�
R�� t��
� �

�

where R�� is a rotation matrix� It is well known and
fairly obvious that the displacement matrixes form a
subgroup of SL��� which we denote by E����

We can now relate the three matrixes H���H� and
D�� �see �gure ��

H��
��H��D��H ���

Since the choice of E is clearly arbitrary� the matrix H
is de�ned up to an arbitrary displacement� More pre�
cisely� we make no di�erence between matrix H and
matrix DH for an arbitrary element D of E���� In
mathematical terms� this means that we are interested
only in the quotient SL����E��� of the group SL��� by
its subgroup E���� Therefore� instead of talking about
the matrix H we talk about its equivalence class H�
The basic idea of our method is to select in the equiva�
lence class a canonical element �D �H� which is the same
as selecting a special euclidean frame �E among all pos�
sible ones and show that equation ��� can be solved in
general uniquely for �H and D� �� D��D��D�

� Colineations modulo a displacement
��� First method

Finding a unique representative of the equivalence
classes of the group SL��� modulo a displacement in
E��� is equivalent to �nding a unique decomposition
of a collineation �which depends upon �	 parameters�
into the product of a displacement �which depends
upon � parameters� and a member of a subgroup of
dimension ���	 � 
� In fact� we are looking for some�
thing similar to the well�known QR or QL decompo�
sitions of a matrix into an orthogonal matrix and an
upper or lower triangular matrix� where �orthogonal�
would be replaced by �displacement��

E
D��

E

H

P

H��

P

H

Figure � Given the collineation H�� we want to �nd
the collineationH that maps the projective reconstruc�
tion to the euclidean reconstruction and the displace�
ment D���

Let us thus consider an element H of SL��� and
assume that the element h�� is non zero� We de�ne
the �� � vector t by

t � �h���h��� h���h��� h���h���
T � ���

and write H as

H � h��

�
I� t

�T �

� �
A �

lT �

�
���

Note that since detH � h�� detA �� � this implies
that detA �� � Then there is a unique QL decompo�
sition of A� so that

H � h��

�
Q t

�T �

� �
ccL �

lT �

�
���

where Q is orthogonal and L is lower triangular with
strictly positive diagonal elements� Thus the group
SL���modulo the displacements E��� is isomorphic to
the group of the lower triangular matrices with strictly
positive diagonal elements� Q is a rotation if detH �
� or a plane symetry if detH �  �remember that
the sign of detH cannot be changed because H is of
dimension ��

If we want to decompose H into a rotation and a
translation� we have to remove the constraint on the
sign of one the elements of the diagonal of L� e�g� there
is no constraint on the sign of the �rst element of L� In
practice� the decomposition will be done using a stan�
dard QL decomposition� and then if Q is a plane sym�
metry rather than a rotation we just have to change
the sign of the �rst element of L and of the �rst col�
umn of Q� so that the multiplication of both matrices
gives the same result and Q becomes a rotation�



��� Second method

Another way to �nd a unique representative of the
equivalence classes of the group of collineations mod�
ulo a displacement is to build these representatives
by applying constraints on the group of collineations
corresponding to the degrees of freedom of a displace�
ment� A simple representative is the one such that the
image of the origin is the origin �i�e� the translational
term of the collineation is zero�� the z axis is globally
invariant �i�e� the axis of the rotational term is the z
axis�� and the image of the y axis is in the yz plane
the sign of the y coordinate being invariant �i�e� the
angle of the rotation is zero��

These constraints correspond to constraints on the
form of matrix H� The image of the origin by H is
the origin itself i�

H �� � � �� � �� � � a� �	�

The z axis is globally invariant i�

H �� � �� � � �� � b� c� ���

And the last constraint �the angle of the rotation is
zero� corresponds to

H �� �� � � � �� d� e� f � ���

and a� d� and f have the same sign� Consequently� H
being de�ned up to a scale factor and non�singular� it
can be written as

H �

�
���
g   
h d  
j e b 
k f c �

�
��� ���

with d �  and f � � Thus equation � becomes

H��
�� L��D�� L ���

where L is a lower triangular matrix with the second
and third coordinates of the diagonal positive and the
last set to ��

� Back to the Euclidean world
In this section we show how to recover partly the

Euclidean geometry from two projective reconstruc�
tion of the same scene� The only thing we have to do
is to solve equation � for a lower triangular H � Let
us �rst establish some properties of the colineation be�
tween the two reconstructions�

Proposition � Let A and B be two projective recon�
structions in P�� the projective space of dimension ��
of the same scene using the same projection matrices

from di	erent points of view� Let H�� be the projective
transformation �or colineation from B to A� Then
The eigenvalues of H�� are � �with order of multiplic�
ity �� �ei�� and �e�i�� with � � �

p
detH��� and the

last coordinate of H��� h��� is not zero�

Equation � yields that H�� and D�� are conjugate
�up to a scale factor�� then H���

�
p
detH�� and D��

have the same eigenvalues� which are � with order of
multiplicity two� ei�� and e�i��

Before continuing� we have to prove the following
lemma

Lemma � for each ��� real matrix A whose eigenval�
ues are ��� ei�� e�i��� there exists a ��� lower triangu�
lar matrix L �lik �  for k � i with lii � � i � �� �� �
de
ned up to a scale factor� and a rotation R� satisfy�
ing A � L��RL�

Since its eigenvalues are either real or conjugate
of each other� a real matrix whose eigenvalues are
of module one can be decomposed in the form A �
PD��P

��� where D�� is a quasi�diagonal matrix of
the form

D�� �

�
��
B� 

� � �

 Bk

�
�� ����

with Bi � ���� or

�
cos �i � sin �i
sin �i cos �i

�

We can then compute the QL decomposition of
P��� P�� � QL which gives

A � L��QTD��QL � L��RL

where L is a lower triangular matrix with positive di�
agonal elements� andR is an orthogonal matrix� Since
detA � detR � �� then R is a rotation��

We now have all the tools needed to prove the fol�
lowing theorem�

Theorem � Let A and B be two projective reconstruc�
tions of the same scene using the same projection ma�
trices from di	erent points of view� Let H�� be the pro�
jective transformation �or colineation from B to A�
H�� can be decomposed in the form H�� � �L��D��L�
where L is lower triangular and D is a displacement�
The set of solutions is a two�dimensional manifold�
one dimension being the scale factor on the Euclidean
space�

If we take three reconstructions taken from generic
points of view� the full Euclidean geometry can be re�
covered� up to a scale factor�



Let us suppose that detH�� � � to eliminate the

scale factor onH��� Let

	
l
�



be an eigenvector ofHT

��

corresponding to the eigenvalue �� This implies

�
I �

lT �

�
H�� �

�
A b

� �

� �
I �

lT �

�
����

so that H can be decomposed in the form

H�� �

�
I �

�lT �

��
A b

� �

��
I �

lT �

�
����

H�� �

�
A� blT b

lT
��
�� lTb� I�A� �� lTb

�
����

Using the lemma �� A can be decomposed into

A � L��RL ����

and we can write b as

b � L��t ��	�

Thus�

H�� �

�
L��RL� L��tlT L��t

lT
��
�� lTL��t

�
I� L��RL

�
�� lTL��t

�

����

which can be factorized as

H�� �

�
L�� �

�lTL�� �

� �
R t

� �

� �
L �

lT �

�
����

We showed that this decomposition exists� but it
is certainly not unique� If we count the parameters
on each side� H�� has �� parameters minus � because
� eigenvalues must be � and the two others have one
degree of freedom �the angle of the rotation� ��� which
makes �� parameters on the left side of equation ��
and on the right side we have � parameters for the dis�
placement and � for the lower triangular matrix which
makes �	 parameters� Then the solution to this equa�
tion is not unique and the set of soloutions must be
a manifold of dimension �� One of the two remaining
parameters is the scale factor on the Euclidean space�
which can not be recovered because we have no length
reference� We can eliminate it by setting one of the
parameters of the diagonal of L to � �they can never
be zero because L is non singular��

It was shown clearly in ��� �
 that the other parame�
ter represents the incertitude on the choice of the abso�
lute conic from H� because one displacement does not
de�ne that conic uniquely� so that we cannot recover

the complete Euclidean structure from one displace�
ment �i�e� two projective reconstructions�� One way
to deal with it would be to �x one of the intrinsinc
parameters of the cameras��
� e�g� by saying that the
x and y axis of the cameras are orthogonal� but since
in our scheme the intrinsinc parameters do not appear
clearly we could not use this� Another one is to simply
use more than one displacement� as we demonstrate it
in the next section�

� Euclidean reconstruction of a whole

object using stereo by correlation
To test this method� we took several stereoscopic

pairs of images of an object using a stereo rig �Fig�
ure ��� In this experiment� we used a mathematical
object �called �cyclid�� which equation is known� but
the fact that we know its geometry was not used in
the recovery of its Euclidean geometry� We performed

Figure � One of the ten stereoscopic pairs used for
the example

weak calibration��
 on these stereo pairs and computed
disparity maps using stereo by correlation� We can
show that a disparity map computed from a pair of
recti�ed images can be considered as a ��D projective
reconstruction

Proposition � Let d�x� y� be a disparity map� where
x and y are recti
ed image coordinates� The projective
points formed using by the recti
ed image coordinates
as the two 
rst coordinates� the disparity as the third
coordinate� and � as the last coordinate� form a projec�
tive reconstruction� i�e� the ��D Euclidean coordinates
can be recovered by applying a ��D collineation H to
the points �x� y� d�x� y�� ���

LetP andP� be the projection matrices correspond�
ing respectively to the recti�ed reference image and
the other recti�ed image� Since the projection of a
��D projective point M has the same y coordinate in
both images� then only the �rst line of P and P� di�er

P �

�
�p�p�
p�

�
� and P� �

�
�p

�
�

p�
p�

�
� ����



consequently

PM �� �x� y� �� and P�M �� �x � d�x� y�� y� �� ����

so that �nally

M �� H�x� y� d�x� y�� ��T ����

with

H ��

�
���

p�
p�

p�� � p�
p�

�
���
��

����

Thus the disparity map �x� y� d�x� y�� �� is a projective
reconstruction��

As we have seen before� we have � unknowns for
the matrix L and � unknowns for each displacement�
which makes 	 � ��n� �� unknowns� if n is the num�
ber of stereo pairs� We compute these parameters us�
ing a least�squares minimization technique We match
points between the recti�ed reference images of over�
laping stereo pairs�� and the error to be minimized is
the squared distance between the points of reconstruc�
tion i transformed by the matrix L��DijL and the
matched points of reconstruction j� This error mea�
surement is done in �image�disparity� space� which
is not the real ��D Euclidean space� but since image
space is almost Euclidean and disparity is bounded�
it should work �ne� This minimization is done in two
steps First� only the matches between rectonstruc�
tions i and i � � are considered� and the minimiza�
tion is done over L and the Di�i��� � � i � n� which
are represented as a rotation vector and a translation
vector� In practice the error function associated with
this minimization is well�conditioned� so that we get
rather good estimates� whatever the initial point� Sec�
ond� all the matches between di�erent reconstructions
are considered �especially the one between n and ��
which forces the surface to �fold over itself��� and the
minimization is done once again�

In fact we recovered the complete Euclidean geom�
etry of our object� Figure � shows the reconstruction
from the �rst stereo pair� as seen when transformed
by matrix L� and Figures � and 	 show the complete
reconstruction of the object from �� stereo pairs� with
lighting or with texture mapping�

� Conclusion
In this paper we presented a method to recover

partly or completely the Euclidean geometry using an

�This process was done manually in our experiment but

could be automated�

Figure � The Euclidean reconstruction from the �rst
stereo pair

Figure � The complete reconstruction of the object�
rendered with lighting



Figure 	 The complete reconstruction of the object�
rendered with lighting and texture mapping from the
original images

uncalibrated stereo rig� All we need to do this is the
fundamental matrix of the stereo rig� which can be cal�
culated by a robust method like ��
� and point matches
between the di�erent stereo pairs� which could be com�
puted automatically� Using multiple stereo pairs� we
increase the stability of the algorithm by adding more
equations than unknowns� We presented results on a
real object� which was fully reconstructed in Euclidean
space using a few stereo pairs�

The possible applications of this method include the
possibility to acquire easily ��D objects using any set
of uncalibrated stereo cameras� for example to mod�
elize an object to be used in virtual reality� or au�
tonomous robot navigation�

In the near future we plan to enhance the system in
order to make it completely automatic we must have
a way to match points automatically �feature tracking
would be a good starting point� a to perform fusion
and simpli�cation of the ��D reconstruction once the
registration is done� Furthermore� in order to test the
accuracy of the Euclidean reconstruction� we can ei�
ther compare the intrinsic and extrinsic parameters of
the cameras computing a classical camera calibration
method with those recovered using this method� or
compare the ��D reconstruction with a mathematical
model of the object �which is known in the example
presented here��
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