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Abstract— Sparse approximation using redundant dictionaries
is an efficient tool for many applications in the field of signal
processing. The performances largely depend on the adaptation
of the dictionary to the signal to decompose. As the statistical
dependencies are most of the time not obvious in natural high-
dimensional data, learning fundamental patterns is an alternative
to analytical design of bases and has become a field of acute
research. Most of the time, the underlying patterns of a class
of signals can be found at any time, and in the design of a
dictionary, this translation invariance property should be present.
We present a new algorithm for learning short generating
functions, each of them building a set of atoms corresponding to
all its translations. The resulting dictionary is highly redundant
and translation invariant.

I. I NTRODUCTION AND MOTIVATION

Due to its potential for many tasks in signal processing,
such as analysis, denoising, compression or source separation,
sparse decomposition using redundant dictionaries is a very
active domain [3], [7], [9]. The central problem of sparse
approximation is the following: given a discrete signals
of support of sizeS, pick up N basic elementsφk in a
huge collection of signalsD, referred to as a dictionary, and
combine them to build a good approximation:

s̃N =
N−1∑

k=0

ckφk, φk ∈ D , ‖s− s̃N‖2 ≤ ε . (1)

The approximant̃sN is said sparse whenN ¿ S. Finding the
best approximation given a dictionaryD is a largely covered
subject [7], [4], [3]. In this article, we focus on the design
of dictionaries able to give a satisfying solution to the above
problem for a class of signals. A dictionary will be efficient if
it closely matches the underlying processes of the signals, and
many work has been done to taylor adapted dictionaries [1],
[2], [4], [5], [6].

The properties of the signal, dictionary and algorithm, are
tightly linked. Often, natural signals have highly complex
underlying structures which makes it difficult to explicitly
define the link between a class of signals and a dictionary.
The rest of the paper presents a learning algorithm that tries
to capture the underlying structures under the hypothesis of

translation invariance in order to maximize the approximation
capabilities.

Learning short generating functions that define a dictionary
by applying translations is notably motivated by the fact that
natural signals often exhibit statistical properties invariant
to translation, and it allows to generate huge dictionaries
while using only few parameters. In addition, fast convolution
algorithms can be used to compute the scalar products when
using pursuit algorithms.

The first section formalizes the learning problem and
presents the principle of the algorithm. The next section
presents the kind of generating functions obtained when using
the proposed algorithm on real data. The last section concludes
and discusses the benefits and drawbacks of this new algorithm
and proposes some extensions.

II. PRINCIPLES AND ALGORITHMS

Formally, the aim is to learn a collectionG = {gi}Ki=1 of
generating functionsgi such that a highly redundant dictionary
D can be created by applying all possible translations to the
generating functions ofG.

In this paper, we denote the infinite size signals by low-
case letters, e.g.s. If the signal has a support of sizeS, the
restriction to its support is denoted bys ∈ RS . More generally
vectors and matrices are written in bold letters. LetTp be the
operator that translates a signal byp ∈ Z samples.

Let the set{Tpgi, p ∈ Z} contain all possible atoms gen-
erated by translatinggi. The dictionary obtained from all the
generating functions ofG is D = {Tpgi, i = 1 . . . K, p ∈ Z}.

The learning is done on a training set ofQ signals{fq}Qq=1

having a support of sizeSf . Similarly, the generating functions
gi have a support of sizeSg ≤ Sf .

The proposed algorithm learns the generating functions
iteratively. The first one is intended to generate the dictionary
{Tpg1, p ∈ Z} that is the most correlated to the learning
signals. Hence, it is equivalent to the following optimization
problem:

UP: g1 = argmax
‖g‖2=1

Q∑
q=1

max
p
| 〈fq, Tpg〉 |2 . (2)
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In order not to recover several times the same generating
function, a constraint forcing all the generating functions to
be as decorrelated possible is added. Assuming thatk − 1
functions have been learnt,gk is the solution of the following
constrained optimization problem:

CP: g= argmax
‖g‖2=1

∑Q
q=1 maxp | 〈fq, Tpg〉 |2∑k−1
l=0

∑
p | 〈gl, Tpg〉 |2

. (3)

Finding the best solution to the unconstrained (UP) or
constrained problem (CP) is difficult. It is decomposed into
two tractable steps :

• for a given generating functiong(i)
k , find the best trans-

lationsp
(i)
q on each training signalfq,

• updateg
(i+1)
k by solving UP or CP, where the optimal

translationspq are replaced by using the previously found
translationsp(i)

q .

The first step only consists in finding the location of the
maximal correlation betweeng(i)

k and each training signalfq.
Let now consider the second step. As the translation admits

a well defined adjoint operator,〈fq, Tpg〉 can be replaced
by 〈T−pfq, g〉. Let F(i) be the matrix whoseqth column is
f
q,−p

(i)
q

, the restriction of the signalT−p
(i)
q

fq to the support of
the generating functiongk, of sizeSg. Denotingg the restric-
tion of g to its support, the second step of the unconstrained
problem can be written:

g(i+1)
k = argmax

‖g‖2=1

gT A(i)g, (4)

whereA(i) = F(i)F(i)T

, and.T denotes the transposition. The
best generating functiong(i+1)

k is the eigenvector associated
with the biggest eigenvalue ofA(i).

For the second step of the constrained problem, denoting:

Bk =
k−1∑

l=1

∑
p

gl,−pgT
l,−p, (5)

the decorrelation constraint consists in minimizinggT Bkg,
and the second step becomes:

g(i+1)
k = argmax

‖g‖2=1

gT A(i)g
gT Bkg

. (6)

The best generating functiong(i+1)
k is the eigenvector

associated with the biggest eigenvalueλ of the generalized
eigenvalue problem:

A(i)g = λBkg. (7)

In order to use the constrained problem formulation for all the
iterations, we defineB1 = Id for learning the first generating
function.

The algorithm, which we call MoTIF, for Matching of Time
Invariant Filters, is summarized inAlgorithm 1 .

Algorithm 1 Principle of the learning algorithm (called Mo-
TIF)

1: k = 0, training signals set{fq}
2: while not enough generating functionsdo
3: k ← k + 1, i← 0, initialize g

(0)
k (e.g. randomly)

4: Bk ←
∑k−1

l=1

∑
p gl,−pgT

l,−p

5: while no convergence reacheddo
6: i← i + 1
7: for each training signal fq, find

p
(i)
q = argmaxp | 〈fq, Tpg

(i)〉 |, corresponding
to the location of the maximal correlation between
fq andg(i),

8: A(i) ←∑Q
q=1 f

q,−p
(i)
q

fT

q,−p
(i)
q

9: find g
(i+1)
k = argmax‖g‖2=1

gT A(i)g
gT Bkg

, correspond-
ing to the eigenvector associated to the biggest
eigenvalue of the generalized eigenvalue problem
A(i)g = λBkg.

10: end while
11: end while

Fig. 1. 19 generating functions learnt on natural images

III. E XPERIMENTAL RESULTS

The first experiment is done on the set of natural images
used by Olshausen et al. in [8] (the same pre-conditioning
was applied). The size of the patchesfq is 31x31 pixels,
whereas the generating functions are 16x16 images. For the
computation of eigenvectors, the two-dimensional patches are
reshaped into vectors. The search of the optimal positions
is done directly on the patches. Figure 1 shows the 19 first
generating functions that have been learnt by MoTIF. They
are spatially localized and oriented. They are oscillating in
a direction different from the orientation and at different
frequencies. The first generating functions are Gabor atoms,
the second series contains line edge detectors, and the last are
curved edge detectors. The two first categories were already
observed in [2] and the third completes the range of natural
features. Figure 2 presents a closer view to a learnt generating
function behaving as a curved edge detector.

The second experiment deals with EEG (electroencephalo-
graph) signals. Finding fundamental time-invariant patterns
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Fig. 2. Learnt curved edge detector generating function.

0 20 40 60 80 100 120 140 160 180
−0.2

−0.1

0

0.1

0.2

Time [s]

F
re

q
u

e
n

cy
 [

H
z]

0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

Fig. 3. Learnt generating function on EEG signals having the same frequency
as a standard Alpha wave (8-12 Hz).

in EEG is nowadays of big interest as the research in the
field of brain computer interfaces is becoming more and more
popular. The constituting elements of EEG signals are often
described in terms of characteristic frequency bands. We are
interested in knowing if MoTIF is able to recover generating
functions corresponding to some of these frequencies. Figure 3
presents the first generating function learnt by MoTIF and the
corresponding time-frequency representation. The dominant
frequency is centered at 11.5 Hz, which makes this function a
highly probable candidate to represent the Alpha waves present
in the signal. Figure 4 presents another generating function
learnt whose frequencies are typical from the Beta waves.

IV. CONCLUSIONS

We have presented a new method for learning a set of
translation-invariant functions adapted to a class of signals. At
every iteration, the algorithm produces the waveform that is
the most present in the signals and adds all its shifted versions
to the dictionary. A constraint in the objective function forces
the learnt waveforms to have low correlation, such that no
atom is picked several times. The main drawback of this
method is that the generating functions found just after the
first one may exhibit features not necessarily present in the
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Fig. 4. Learnt generating function on EEG signals having the same frequency
as a standard Beta wave (13-30 Hz).

signal. It is due to the decorrelation constraint that is too
strong if the underlying generating functions are all similar.
However, the constrained algorithm seems to capture the
underlying processes quite well, notably when they are really
decorrelated. On real data like images, the learnt generating
functions are edge detectors (spatially local and oriented)
as previously found by Bell and Sejnowski. On EEG, the
algorithm recovers the classical waves present in the signal.

In the future, some possible extensions of this algorithm will
be studied as learning multichannel generating fuctions from
multichannel training signals. The potential of the proposed
algorithm for applications as source separation will also be
explored. Using the properties of the scalar product, we also
plan to explore invariance for different transformations that
admit a well defined adjoint (e.g. translations + rotations for
images).
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