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Executive Summary

Ontologies and other resources on the web are always designed in a particular context that is not often

explicit in the resource itself. This renders resources ambiguous and can lead their exploitation to provide

incomplete, or worse incorrect, results. This problem is even more acute when resources from heterogeneous

provenance are linked.

In the NeOn project, context can be expressed within a network of ontologies through relationships between

ontologies. Such relationships would provide the missing axioms that specify the meaning of knowledge

further and help considering them in their context.

These relations must be established from the initial resources which will be linked to contextual resourcs.

This can be achieved through the use of ontology matching techniques. Moreover, this knowledge of context

can help matching ontologies.

The present deliverable aims at (1) explaining these notions, and (2) providing an account of the tools devel-

oped within the project in order to deal with these functions. There are two specific tools presented here: the

Alignment Server dedicated to storing and sharing alignment information between ontologies which can be

used as a source of contextualisation and a specific context-based matching algorithm that takes advantage

of ontologies available on the web.

We thus introduce the operation of contextualisation (and decontextualisation) as expressing (or dropping)

the context as relationships between ontologies. It can also be seen as part of introducing ontologies within

a particular networked ontology. We present the available ontology alignment format as an instantiation of

the Mapping metamodel developed as part of the NeOn networked ontology model.

The Alignment Server is a component based on the existing Alignment API that provides matching services

to clients. It is reachable through human users, agents and web services. The Alignment Server provides

support for storing and sharing alignments in standard formats. It can thus be used by context-based match-

ers in order to compute an alignment between some ontology and a general purpose resource. It is also

designed for sheltering new matching tools as the ones developed in NeOn, but not exclusively. In the future,

it will be integrated within the NeOn toolkit.

Finally, we present a new context-based matching tool that takes advantage of multiple recontextualisations

from the resources to the many ontologies available on the web. The basic idea is to automatically discover

the common context of these ontologies under the form of a third ontology containing the relevant background

knowledge. This technique has been implemented using Swoogle to find ontologies relating the entity to be

matched. This ontology will then provide the relations between these entities. This promising technology

has been experimented with FAO resources (AGROVOC) and we plan to use it for providing relationships

between the many FAO resources.
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Chapter 1

Contextualising ontologies through

matching

Domain ontologies are designed to be applied in a particular context and use terms in a sense that is relevant

to this domain, e.g., Ontology in computer science, and which is not related to similar concepts in other

domains. They do not fully specify concepts because part of their specification is implicit from the context.

We will use here the word “constraint” for this specification in a broad sense: any axiom constrains the

meaning of the terms it uses.

NeOn has in its core the ambitious scenario that ontologies are developed in an open environment in a

distributed fashion. This means that ontologies will be used in settings that are not those that have led to

their design. In order to use them properly, it is necessary to be able to identify this context so that appropriate

actions can be taken: either not using them or adapting them to the new context.

The context of some knowledge or ontology is given by additional knowledge in which or in the perspective of

which this knowledge has been elaborated. This knowledge can vary in nature and expression. For instance,

in work package 2, the context of elaboration of ontologies is expressed a argumentative structures about

ontology design rationale. In work package 3 [Haase et al., 2006a], the context of ontologies is prominently

placed in the framework of networked ontologies: the context of an ontology is given by the network of other

ontologies with which it is related.

From this definition, a pair of dual operation can be associated with context (see Figure 1.1): contextualisation

and decontextualisation. Contextualisation or recontextualisation is the action of finding the relations of an

ontology with other ontologies which express its context. Decontextualisation, as the opposite, extracts one

particular ontology from its context. These operation can be combined, for instance, if someone wants to

transfer one ontology from a domain to another one, by first decontextualising it and recontextualising it to

another domain.

As can be considered from this brief description, contextualising an ontology is a matter of matching it to other

o′

o′′
o′′′

o′′′′

o

o′

o′′
o′′′

o′′′′

o

decontextualising

(re)contextualising

Figure 1.1: Contextualising/Decontextualising ontologies in the framework of networked ontologies
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ontologies which will provide its context. For that purpose ontology matching technologies can be used.

So we would like to provide support for contextualising ontologies through ontology matching. Moreover,

recontextualising ontologies can be succesfully used for helping the process of matching an ontology into

another one. Thus, we also aim at taking into account the contextualisation operation for matching.

The present deliverable is a prototype report that describes the work that has been carried out for devel-

opping technologies achieving these operation of contextualising and using it for matching. After briefly

introducing the expression of contextual relation within networked ontologies (Chapter 2) and matching tech-

nology (Chapter 3), it describes the technology that has been developed as an Alignment Server in order

to provide applications with the ontology matching support enabling contextualising ontologies (Chapter 4).

It also describes the work and experiments carried on for matching ontologies by recontextualising them

(Chapter 5).

This work takes advantage of the previous work in work packages 1 and 3. It shows a practical instantiation

of the NeOn networked ontology model using the ontology and alignment (a.k.a. mapping) components. It is

also partially experimented on NeOn use cases resources: the AGROVOC thesaurus.



Page 8 of 40 NeOn Integrated Project EU-IST-027595

Chapter 2

Expressing context through alignments

within networked ontologies

In this chapter, we recast the intuition presented before in the context of networked ontologies. In particular

we explain in what sense context are networks of ontologies (§2.1), what are networked ontologies (§2.2)

and how they can be represented within NeOn’s model of networked ontologies (§2.3).

2.1 Context as network

NeOn has in its core the ambitious scenario that ontologies are developed in an open environment in a

distributed fashion. This means that ontologies will be used out of their initial definition context.

Context is traditionaly supplemental knowledge that allows interpreting, or interpreting better, some other

pieces of knowledge. For an ontology, this is knowledge that helps using it. In our first deliverable [Haase et

al., 2006a], the network of ontologies with which an ontology is related is its primary form of context. Indeed,

this network provides additional knowledge, usually related to the knowledge within the ontology. According

to our generic definition of context, this should allow modifying the interpretation of the ontology.

2.2 Models of networked ontologies

In the present deliverable, we are concerned with the representation of context as a networked ontology.

We must thus start from the definition of networked ontologies given by Work package 1 (and most notably

Deliverable D1.1.1 [Haase et al., 2006b]).

There are roughly two constructions from the NeOn model for networked ontologies that we will use for

expressing context in this deliverable: Ontologies and mappings (or alignments). The NeOn model already

offers the metamodel for these two kinds of entities. We will thus take advantage of these for representing

context.

The metamodel also provides a specific instantiation of the Ontology metamodel into OWL. It however does

not provide such a concrete instantiation for the Mapping metamodel. We will use here a very general

definition of alignment that will be used in this deliverable and associated software.

2.3 Alignments within networked ontologies

The so-called Mapping metamodel is reproduced in Figure 2.1. It covers the basic elements found in an align-

ment as defined in [Bouquet et al., 2004b; Euzenat and Shvaiko, 2007]: an alignment between two ontologies

is a set of correspondences, e.g., equivalence, subsumption, relating the elements of these ontologies, e.g.,

concepts, properties, formulas.
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Mapping

−uri:URI

−uniqueNameAssumption :Boolean

−inconsistencyPropagation :Boolean

−domainAssumption :String ={overlap, soundContainment, 

completeContainment, equivalence}

Ontology

MappingAssertion

SemanticRelation

−interpretation:String ={intensional, extensional}

−negated :Boolean

Equivalence Containment

−direction:String ={sound. complete}

Overlap

MappableElement

OntologyElement

* sourceOntology

* targetOntology

*
targetElement

* sourceElement

Query

hasSemanticRelation

1

1

1

1

1

Figure 2.1: Mapping metamodel for NeOn

We give here a precise definition of alignment as it is generally accepted:

Definition 1 (Alignment) Given two ontologies o and o′ over ontology languages L and L′, a set of align-

ment relations Θ and a confidence structure Ξ, an alignment is made up of a set of correspondences

〈id, e, e′, r, n〉,

such that

– id is a unique identifier of the given correspondence;

– e ∈ QL(o) and e′ ∈ Q′
L′(o′) are ontology entities;

– r ∈ Θ is the relation between these entities; and

– n ∈ Ξ is the confidence in the correspondence.

This definition clearly matches what is modelled in the mapping meta model and is the basis for the Alignment

format and its implementation as the Alignment API. We will thus take the structure of the Alignment API as

an instantiation of the mapping metamodel (in fact this format is already very generic and can apply to many

kinds of ontologies).

The Alignment API [Euzenat, 2004] has been designed to help developing applications based on alignments.

It has been developed in the aim of manipulating a standard alignment format for sharing among matching

systems, but it provides the features required for sharing them more widely. The API is a JAVA description of

tools for accessing alignments in the format presented above.

The Alignment API can be used in conjunction with an ontology language API (the OWL-API is currently

available, but other instantiation could be based on totally different languages). This implementation offers

the following services:

– Computing and representing alignments;

– Piping alignments algorithms (for improving an existing alignment);

– Manipulating (trimming and hardening) and combining (merging, composing) alignments;

– Generating “mediators” (transformations, axioms, rules in format such as XSLT, SWRL, OWL, C-OWL,

WSML);
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– Comparing alignments (like computing precision and recall or a symmetric distance with regard to a

particular reference alignment).

The API also provides the ability to compose matching algorithms and manipulating alignments through

programming. Part of the interface of the API is presented in Table 4.1. The API can be used for producing

transformations, rules or bridge axioms independently from the algorithm that produced the alignment. Since

its definition, several matching systems have been developed within this API (OLA, oMap) and more of them

are able to generate its format (FOAM, Prompt, Falcon, etc.).

This will allow us to consider OWL ontologies and alignments as networked ontologies and to offer software

for dealing with contexts in the framework of networked ontologies.

Before turning to the software that are goal of the present deliverable, we will recall some basics about

matching algorithms.

2.4 Summary

Contexts as described in Deliverable D1.1.1 can be expressed within the actual networked ontology model.

We currently consider implementing this notion through the existing Alignment API and an ontology API.

We propose, in Chapter 4, an architecture for taking advantage of this.
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Chapter 3

Techniques for matching networked

ontologies

Matching two (or more) ontologies consists of finding an alignment between these ontologies. Hence, match-

ing is the basic operation for (re)contextualising ontologies and more generally integrating an ontology within

a network of ontologies.

This a very important task because it helps restoring interoperability, but a difficult one because it is very

hard to find these correspondences in the general case: independently built ontologies can vary a lot on the

terminology they use and the way they model the same entities.

There have been many techniques for ontology matching [Euzenat and Shvaiko, 2007]. We give a very

brief overview of these techniques and their justifications within the NeOn project and contrast them with the

technique that is presented in Chapter 5 which is specifically related to context.

3.1 Matching needs for context

In the framework of NeOn, many resources are not ontologies per se and have been designed for specific

purposes. In particular the resources developed by FAO (like AGROVOC or other databases) are relatively

self-contained resources which have been designed for being used in the FAO context. Linking these re-

sources together in a network of ontology is appealing but not straightforward. The design context of these

resources which is implicit should be rendered explicit before linking theses resources together.

It is part of the NeOn ambition to provide tools that facilitate this recontextualisation of resources.

The task of creating a network of ontologies from FAO resources thus requires:

– (re)contextualising these resources;

– using the context for relating these resources.

Both tasks can be achieved through matching:

– by matching the resources to external, generaly well established, resources, and

– by matching the resources together through the result of the previous operation.

The process is depicted in Figure 3.1: the two initial resources are matched to existing ontologies in order

to link them to ontological axioms which are then considered as context. Then the resulting networked

ontologies can be matched by using the so provided context. The results of this second phase will provide

an alignment within the networked ontologies. The first phase is usually carried out with traditional matching

algorithms. This is especially true when the resources are database entries or loosely formalised thesauri:

in this case, the matching operation will be based on the names of entries and their textual annotations.

Once the links with ontologies have been provided, more sophisticated strategies can be considered. This is

especially true when the contextualising phase has linked the resources to the same ontology.

2007 c© Copyright lies with the respective authors and their institutions.



12 CHAPTER 3. TECHNIQUES FOR MATCHING NETWORKED ONTOLOGIES

o′
1

o′′
1

o1

o′
2

o2

(re)contextualising (re)contextualising
matching

Figure 3.1: Matching ontologies through contextualisation

We consider below these two sort of matching techniques.

Matching each of the ontologies to a common third ontology put these two ontologies in the same context.

This should be easier than the direct matching because: (i) upper level ontologies having a broad coverage

are more prone to provide matching super concepts of these ontologies, (ii) there are more chances that

these alignments already exists due to the availability of these ontologies. Such alignments, are typically

those that could be expected to be found in an Alignment Server.

Once the alignments between the two ontologies and the upper-level one are obtained, it is easier to partition

the ontology matching task in smaller matching problems because the matching will identify the concepts

having common super-concepts and can take advantage of the exclusion assertions typically found in the

upper-level ontologies.

3.2 General matching systems

There have already been many reviews of ontology matching algorithms [Rahm and Bernstein, 2001; Wache

et al., 2001; Kalfoglou and Schorlemmer, 2003; Euzenat et al., 2004; Euzenat and Shvaiko, 2007] so we

will be brief and refer the reader to these other presentations. Ontology matching consists of generating an

alignment from two (or more) ontologies. There are many different features of ontologies that are usually

used for providing matching:

terminological techniques are based on the text found within ontologies for identifying ontology entities

(labels), documenting them (comments) or other surrounding textual sources (related element labels).

These techniques come from natural language processing and information retrieval. They can use the

string structure themselves (string distances), the ontology as corpus (statistical measures based on

the frequency of occurence of a term) or external resources (such as dictionaries).

structural techniques are based on the relations between ontology entities. These can be relations be-

tween entities and their attributes, including constraints on their values, or relations with other entities.

These relation take advantage of type comparison techniques or more elaborate graph techniques

(tree distances, path matching, graph matching).

extensional techniques compare the extension of entities. These extensions can be made of other entities

(instances) as well as related resources (indexed documents). They differ depending on if the two

ontologies share resources (e.g., they index the same set of documents) or not (in which case a

similarity between the extensions may be established). These techniques can come from data analysis

and statistics.

semantic techniques are based on the semantic definition of ontologies. They use theorem provers for

finding consequences of a particular alignment. This can be used for expanding the alignment or, on

the contrary, for detecting conflicting correspondences.

Of course, most of the systems combine several techniques in order to improve their results. The techniques

can be combined by aggregating distance results [van Hage et al., 2005], by using selection functions for
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choosing which one to use in the present case [Jian et al., 2005; Tang et al., 2006], or by deeply involving

them all in global distance computation [Euzenat and Valtchev, 2004; Melnik et al., 2002].

Moreover, there is a difference when training sets are available or not (this is most often useful when a

matching algorithm is needed for recognising instances). In this case, one can apply classical techniques

such as Bayes learning, vector support machines or decision trees.

Some toolboxes developed by NeOn partners already offer a number of these techniques like FOAM [Ehrig,

2007] or the Alignment API [Euzenat, 2004]. Other have experience on matching ontologies in specific

contexts [Gangemi et al., 2003; Lopez et al., 2006].

In the context of NeOn, the goal is really to find the relationship between the resources. Moreover these

resources are not always ontologies: they can be thesauri or databases. In this case, the structure and the

semantics of resources are not the most usable features of these resources. So the main techniques to be

used are terminological techniques and extension based techniques.

3.3 Context-based matching

Context-based matching is a specific kind of operation that take advantage of the ontology context in order

to provide a more accurate match. We pretend that it can only occur in networked ontologies. While the

idea of using context for matching is relatively recent, we can distinguish between several ways to achieve

this depending on the kind of resources that express (or are used to express) context and their degree of

specialisation. This is illustrated in Figure 3.2.

Figure 3.2 displays two resources that are contextualised against two other resources. We will see below that

most of the time this hypothesis is simplified by contextualising the resources against one common resource.

Example of non formal specialised resources include the ASFA thesaurus1, non formal general purpose

resources include WordNet2, formal specific resources include the Foundational Model of Anatomy3, and

formal general purpose resources include DOLCE4.

By using specialised resources (e.g., the Formal Model of Anatomy or the Unified MLS in medicine), one can

be sure that the concepts in the contextualised resources can be matched accurately to their corresponding

concepts in the ontology. However, by using more general resources there are more probability that an

alignment already exists and can be exploited right away.

By using formal resources (e.g., DOLCE or the Formal Model of Anatomy) it is possible to reason within or

across these formal models in order to deduce the relation between two terms. By using informal resources

(e.g., UMLS or WordNet), it is possible to extend the set of senses that are covered by a term and to increase

the number of terms that can express these concepts. There is thus more opportunity to find the match

between two terms.

The work on context-based matching is at its beginning. We describe here the first attempts at achieving it.

We can bet that there will be many further developments. Such an experiment has been carried out in the

context of NeOn and is reported in Chapter 5.

3.3.1 Context-based matching with informal resources

An interesting use of contextualisation is in semantic matchers as presented in [Giunchiglia and Shvaiko,

2003]. Such matchers apply only to formalised ontologies with explicit axioms. However, they are bootstraped

by a contextualisation phase that uses informal resources (typically WordNet). WordNet is used for finding

initial relationships between terms in both ontologies based on their corresponding WordNet synsets. For

instance, WordNet will find that prawn and shrimp are synonyms in one of the WordNet senses of prawn.

1Aquatic Sciences and Fisheries Abstracts, http://www.fao.org/fi/asfa/asfa.asp
2http://wordnet.princeton.edu
3http://sig.biostr.washington.edu/projects/fm/AboutFM.html
4http://www.loa-cnr.it/DOLCE.html
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Figure 3.2: Classification of matching with contexts (dashed lines represent the infered correspondences).
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The matcher then “amplifies” these initial alignments by using the formal knowledge in the ontologies. A

semantic matcher will consider the set of axioms of both ontologies combined with those relevant axioms

provided by WordNet (e.g., Prawn = Shrimp). Then it will use some theorem prover for amplifying this

correspondence. For instance, if Shrimp ≤ Sea food it will deduce that Prawn ≤ Sea food.

This amplification can also be used in order to check the consistency of the merged ontology.

3.3.2 Context-based matching with formal resources

Recontextualising ontologies can typically be achieved by finding a mapping between these ontologies and

a common upper-level ontology (e.g., Cyc [Lenat and Guha, 1990], Suggested Upper Merged Ontology

(SUMO) [Niles and Pease, 2001] or Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)

[Gangemi et al., 2003]) that is used as external source of common knowledge.

An experiment has been carried out within the WonderWeb project by expressing Fishery resources (such

as AGROVOC, AFSA and FIGIS) within the DOLCE upper level ontology [Gangemi, 2004]. The goal was not

at that time to provide networked ontologies, but to merge these resources into a common Core Ontology

of Fisheries. It has involved transforming manually the resources into lightweight ontologies expressed with

respect to DOLCE and then using reasoning facilities for detecting relations and inconsistency between

entities of this ontology.

Other work involved matching with a more specialised ontology that is known to cover the ontologies to

match. Suppose we want to match the anatomy part of the CRISP5 database to the anatomy part of the

MeSH6 thesaurus. In this case, [Aleksovski et al., 2006] uses the FMA ontology7 as background knowledge

which gives the context to the matching task. This approach works in two steps as follows:

Contextualising (also called Anchoring) is matching ontologies CRISP and MeSH to the background on-

tology FMA. This can be done by using any available method, such as string-based techniques or

structure-based techniques.

Deriving relations is the process of (indirect) matching of CRISP and MeSH by using the correspondences

discovered during the anchoring step. Since concepts of CRISP and MeSH become a part of the back-

ground ontology FMA via anchors, checking if these concepts are related, can be therefore performed

by using a reasoning service (in the same fashion as discussed in §3.3.1) in the background ontology.

Intuitively, combining the anchor relations with the relations between the concepts of the reference ontology

is used to derive the relations between concepts of CRISP and MeSH.

For example, the concept of brain from CRISP, denoted by BrainCRISP , could be easily anchored to the con-

cept brain of FMA, denoted by BrainFMA. Similarly, the concept of head from MeSH, denoted by HeadMeSH ,

could be anchored to a background knowledge concept HeadFMA. In the reference ontology FMA there is a

part of relation between BrainFMA and HeadFMA. Therefore, we can derive that BrainCRISP is less general

than HeadMeSH .

Since the domain specific ontology provides the context for the matching task, the concept of Head was

correctly interpreted, meaning the upper part of the human body, instead of, for example, meaning a chief

person. Note this is not so straightforward as can be shown by replacing FMA by WordNet: in WordNet

the concept of Head has 33 senses (as a noun). Finally, once the context of the matching task has been

established, as our example shows, a number of heuristics, such as string-based techniques, can perform

well in the recontextualising step.

5http://crisp.cit.nih.gov/
6http://www.nlm.nih.gov/mesh/
7http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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Figure 3.3: Matching ontologies after contextualising them in a common upper level ontology.

3.3.3 Hybrid approach

Of course, the four approaches that we presented in Figure 3.2 can be freely mixed in order to achieve better

accuracy or to find more correspondences between the ontologies. For instance, using the OntoWordNet

resource8 which is based on DOLCE allows to benefit from both formal and informal resources.

3.4 Summary

We have seen the particularly interesting use of ontology matching for contextualising ontologies and the role

of context in matching. There are many different matching techniques which can be used for contextualising

ontologies. We do not commit to one particular technique but leave this open to future experiments in the

context of NeOn use cases. If we want to deal with contextualisation in NeOn in a open and extensible

way, we need to offer a framework in which contextualisation can occur naturally both for matching purposes

and for other purposes. Thus we need to provide a a generic architecture for computing and sharing these

alignments.

For that purpose, we propose to use an Alignment Server based on the already developed Alignment API.

This server will provide the opportunity to take advantage of existing relations between ontologies and to

integrate matching systems for contextualising ontologies. This is illustrated by Figure 3.3.

Moreover, a new research trend, uses recontextualisation as understood here in order to improve matching

performances. We go further in that direction in Chapter 5 by providing results of a new such matcher

implemented for NeOn.

We will present in the next chapter the proposed architecture for this alignment server. The last chapter will

present a new approach for using context in matching by taking advantage of the many ontologies available

on the semantic web.

8http://www.loa-cnr.it/ontologies/OWN/OWN.owl
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Chapter 4

Architecture for alignment discovery and

exploitation

In order to support networked ontology users in dealing with contexts and, in particular, recontextualising,

we propose the use of an Alignment Server which is able to both store alignment resources to be used for

contextualising and matching techniques for generating these alignments.

The goal of the Alignment Server is that different actors can share the available alignments and methods

for finding alignments. Such a server will enable to match ontologies, store the resulting alignment, store

manually provided alignments, extract merger, transformer, mediators from those alignments.

We present here the architecture of the Alignment Server and its integration within the NeOn toolkit (§4.1).

We then present its first functions (§4.2) and finally display the working of the Alignment Server on some

available resources (§4.3).

4.1 Architecture

The Alignment server is built around the Alignment API developed by INRIA (see Figure 4.1). It will thus

provide access to all the features of this API. The server ensures the persistence of the alignments through

the storage of these in a relational database (we currently use MySQL, but any JDBC compliant database

management system should work). The access to the API is achieved through a protocol which extends the

one designed in [Euzenat et al., 2005b]. Plug-ins allow the remote invocation of the alignment server. At the

time of writting, three plug-ins are available for the server:

– HTTP/HTML plug-in for interacting through a browser;

– JADE/FIPA ACL for interacting with agents;

– HTTP/SOAP plug-in for interacting as a web service.

In the context of NeOn, our goal is that the server is available:

at design time through a plug-in to the NeOn toolkit: It can be integrated either as an Eclipse plug-in that

embarks the Alignment API or as an Eclipse plug-in that connects through web services to some

alignment server.

at run time through the web service access of the server (or any other available plug-in). It can also be

used for generating alignments in the format used in the KAONp2p software.

So, the Alignment Server is clearly an "infrastructure component" (as of D6.2.1) which can be available

directly for applications or through the NeOn toolkit (with the help of a plug-in providing GUI and engineering

level capabilities).

2007 c© Copyright lies with the respective authors and their institutions.
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Figure 4.1: The Alignment Server is built on the Alignment API that is seated on top of a relational database

repository for alignment and is wrapped around a simple protocol. Each access method is a plug-in that

interacts with the server through the protocol. Currently, HTML, agent and web service plug-in are available.
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Figure 4.2: Distribution of the components using the Alignment Server: all can run on different machines.

There is no constraint that the alignments are computed online or off-line (i.e., they are stored in the alignment

store) or that they are processed by hand or automatically. This kind of information can however be stored

together with the alignment in order for the client to be able to discriminate among them.

The components of the Alignment Server as well as the connected clients can be distributed in different

machines as presented in Figure 4.2. Several servers can share the same databases (the server works in

write once mode: it never modifies an alignment but always creates new ones; not all the created alignments

being stored in the database in fine). Applications can reach the Alignment Server by any way they want

(e.g., starting by using Jade and then turning to web service interface).

Alignment services must be found on the semantic web. For that purpose they can be registered by service

directories (e.g., UDDI for web services). In this first version the Alignment Server is called in a wired mode.

However, we plan to develop protocols for the server to be registered by directories (this is already possible for

Jade directories) and that servers can communicate in order to help each others (see Figure 4.3). Services

or other agents should also be able to subscribe some particular results of interest by these services.

These directories are useful for other web services, agents, peers to find the alignment services. They are

even more useful for alignment services to basically outsource some of their tasks. In particular, it may

happen that:

– they cannot render an alignment in a particular format;

– they cannot process a particular matching method;

– they cannot access a particular ontology;

– a particular alignment is already stored by another service.
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Figure 4.3: Protocol extension for registering and cooperating. It can work as a subscribe/notify protocol or

as a direct invocation.

In these events, the concerned alignment service will be able to call other alignment services. This is es-

pecially useful when the client is not happy with the alignments provided by the current service, it is then

possible to either deliver alignments provided by other services or to redirect the client to these services.

Moreover, this opens the door to value-added alignment services which use the results of other services as

a pre-processing for their own treatments or which aggregate the results of other services in order to deliver

a better alignment.

4.2 Functions

This infrastructure is able to store and retrieve alignments as well as providing them on the fly. We call it an

infrastructure because it will be shared by the applications using ontologies on the semantic web. However,

it may be seen as a directory or a service by web services, as an agent by agents, as a library in ambient

computing applications, etc.

Services that are necessary in such an infrastructure are:

– storing alignments, whether they are provided by automatic means or by hand;

– storing annotations in order for the clients to evaluate them and to decide to use one of them or

to start from it (this starts with the information about the matching algorithms, the justifications for

correspondences that can be used in agent argumentation, as well as properties of the alignment);

– producing alignments on the fly through various algorithms that can be extended and parametrised;

– manipulating alignments by inverting them, applying thresholds;

– generating knowledge processors such as mediators, transformations, translators, rules as well as to

process these processors if necessary;

– finding similar ontologies and contacting other such services in order to ask them for operations that

the current service cannot provide by itself.

These tasks are summarised in Table 4.1.

Most of these services correspond to what is provided by any implementation of the Alignment API. The

main principle of the Alignment API is that it can always be extended. In particular, it is possible to add

new matching algorithms and mediator generators that will be accessible through the API. They will also be

accessible through the alignment services. Services can thus be extended to new needs without breaking

the infrastructure.

Moreover, the kind of annotations put on alignments is also extensible. So far, alignments contain information

about:

– the kind of alignment it is (1:1 or n:m for instance);
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Service Syntax

Finding a similar ontology O′ ⇐ Match(O, t)
Align two ontologies A′ ⇐ Align(O,O′, A, p)

Thresholding A′ ⇐ Threshold(A, V )
Generating code P ⇐ Render(A, language)

Translating a message m′ ⇐ Translate(m,A)
Storing alignment n ⇐ Store(A,O,O′)

Suppressing alignment Delete(n)
Finding (stored) alignments {n} ⇐ Find(O,O′)

Retrieving alignment 〈O,O′, A〉 ⇐ Retrieve(n)

Table 4.1: Services provided by the alignment service and corresponding API primitives (O denotes an ontol-

ogy, A an alignment, p parameters, n an index denoting an alignment, P a program realising the alignment

and t and m some expressions, namely, terms to be matched and messages to be translated).

– the algorithm that provided it (or if it has been provided by hand);

– the language level used in the alignment (level 0 for the first example, level 2Horn for the second one);

– the confidence value in each correspondence.

Other valuable information that may be added to the alignment format are:

– the parameters passed to the generating algorithm;

– the properties satisfied by the correspondences (and their proof if necessary);

– the certificate from an issuing source;

– the limitations of the use of the alignment;

– the arguments in favour or against a correspondence [Euzenat et al., 2005b].

The Alignment API has been opened so that it is now possible to store more annotations to alignments and

correspondences.

4.3 Alignment Server HTML interaction

We display here screendumps of the HTML interface of the current alignment server. This illustrates the

features offered by the Alignment Server better than a long descriptive text. The goal, however, is not that

NeOn uses this interface but rather that it takes advantage of the web service interface.

4.4 Summary

We have presented a structure for finding and sharing alignments between ontologies. It will be used for

integrating some NeOn developments and will be integrated within the NeOn toolkit. It is working (and an

experimental server is available) but is still under heavy developments.

This architecture can be used for recontextualising ontologies and providing suport for building networked

ontologies. The next chapter is dedicated to the development of specific techniques for matching ontologies

based on recontextialisation.
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Figure 4.4: System menu providing access to management primitives.

Figure 4.5: List of available alignments in the server.

Figure 4.6: List of available methods in the server.



22 CHAPTER 4. ARCHITECTURE FOR ALIGNMENT SERVER

Figure 4.7: List of available renderers in the server.

Figure 4.8: List of available services in the server.

Figure 4.9: Information about the server.
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Figure 4.10: User menu providing access to alignment computation and manipulation operations.

Figure 4.11: Looking for alignments between two specific ontologies. This returns alignments available from

the server.

Figure 4.12: Found alignments between the ontologies.
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Figure 4.13: Invoking a matching algorithm for matching two ontologies. The interface allows the selection of

the method and the input of additional parameters. It can force the alignment to be recomputed if a similar

one already exists.

Figure 4.14: Applying thresholds to existing alignments. Various methods for applying these thresholds are

available.

Figure 4.15: Uploading an alignment on the server (here from the OAEI web site).
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Figure 4.16: Rendering an alignment of the server in a particular format (here HTML, but all renderers are

accessible).

Figure 4.17: Displaying an alignment in HTML as the result of the previous command. This is between

AGROVOC and NAL and has been generated by the COMA system (note the side bar).
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Figure 4.18: Displaying another alignment as a set of OWL axioms.

Figure 4.19: Storing an alignment permanently in the database.
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Chapter 5

Contextual matching

In Chapter 3 a distinction has been made between generic matching systems on one hand and context-

based matching on the other hand. In this chapter we present a context-based matching system that re-

contextualises the mapped ontologies by relying on dynamically selected background knowledge from online

ontologies. We start this chapter by a closer look to the advantages of context-based matchers with respect to

generic matching systems, and conclude on the major limitation of existing context-based matchers, namely

their domain dependence (Section 5.1). Then we describe our technique which, while it inherits all the

desirable features of context-based matching is domain independent (Section 5.2). We also report on the

evaluation of this technique on a large scale, real life data set involving the AGROVOC thesaurus which is

of core interest to NeOn (see WP 7). The experimental setup and the obtained results are presented in

Sections 5.3 and 5.4 and discussed in Section 5.5.

5.1 A closer look to context-based matchers

Methods that rely on a context ontology overcome two major limitations of traditional techniques. First, as

observed by [Aleksovski et al., 2006], traditional methods fail when there is little lexical overlap between the

labels of the ontology entities, or when the ontologies have weak or dissimilar structures. Indeed, these

techniques are based on the hypothesis that syntactic correspondences imply semantic relations. While in

many cases meaningful mappings can be derived from string and structural similarities, this hypothesis is

far from being always verified. For instance, the relation between the concepts Beef and Food may not be

discovered on the basis of syntactic considerations, but becomes obvious when considering the meaning of

these concepts (their semantics). By ignoring such semantics, syntactic techniques fail to identify several

important mappings. Relying on a context ontology allows deriving mappings in cases when the compared

ontologies are dissimilar in their labels and structure. Indeed many alignments between dissimilar structures

that cannot be found with traditional techniques are likely to already exist in the context ontology. Such

alignments, are typically those that could be expected to be found in an Alignment Server.

A second advantage of using a context ontology is that its richly axiomatised nature guarantees the semantic

nature of the derived mappings. In contrast to this, the majority of existing systems generally derive cor-

respondences between terms, eventually associated with a confidence that aggregates different similarity

values. For example, during the 2005 Ontology Alignment Contest (OAC) [Euzenat et al., 2005a] only one

algorithm (CtxMatch [Bouquet et al., 2005]) was able to go beyond equivalences and also produce partial

relations in the form of subconcept relations. In this year, all the tools produced only weighted correspon-

dences [Euzenat et al., 2006], thus failing to provide semantic mappings that would be directly exploitable in

dynamic scenarios as machine interpretable relations.

A major disadvantage of the above mentioned approaches that rely on contextualisation is that the appropri-

ate context ontology needs to be manually selected prior to matching. In many scenarios this approach is

unfeasible as we might not know in advance which terms from which ontologies need to be matched. Even

in the cases where a reference ontology can be manually selected prior to performing the matching, there is

2007 c© Copyright lies with the respective authors and their institutions.
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(a) (b) (c)

Figure 5.1: Using ontologies as background knowledge for semantic matching: (a) using a manually selected

reference ontology (e.g., [Aleksovski et al., 2006]); (b) using Swoogle to find the appropriate ontologies (S1)

(c) recursively exploiting multiple ontologies (S2).

no guarantee that such an ontology actually exists. Indeed, unlike medicine, many domains lack large, richly

formalised domain ontologies that would cover the ontologies to be matched.

In the next section we describe an approach which relies on dynamic selection of context ontologies from

the Web thus avoiding dependence on a single, large, manually pre-selected ontology (Section 5.2). This

technique complies with the Semantic Web vision: it derives semantic mappings by exploring multiple and

heterogeneous online ontologies that are dynamically selected and exploited through Swoogle [Ding et al.,

2005]. As such, while enjoying all the advantages derived from the use of context ontologies, the technique

remains completely domain independent.

5.2 Matching by dynamically exploring online knowledge

Our hypothesis is that the growing amount of online available semantic data which makes up the Semantic

Web can be used as a source of contextual knowledge. Indeed, this large-scale, heterogeneous semantic

data collection provides formally specified knowledge which allows deriving high quality semantic mappings.

Moreover, the size and heterogeneity of the collection makes it possible to dynamically select and combine

the appropriate knowledge and to avoid the manual selection of a single, domain specific knowledge source.

In the following we describe two increasingly sophisticated strategies to discover and exploit online available

ontologies for matching. Each strategy is presented as a procedure that takes two candidate concept names

(A and B) as an input and returns the discovered mapping between them. We use the letters A and B to

refer to these candidate concept names. The corresponding concepts in the selected ontology are A’ and

B’ (“anchor terms"). We rely on description logic syntax for semantic relations occurring between concepts

in an ontology, e.g., A’ ⊑ B’ means that A’ is a sub-concept of B’ in a selected ontology and A’⊥ B’

means that A’ and B’ are disjoint. The returned mappings are expressed using C-OWL [Bouquet et al.,

2004a] like notations, e.g., such as A
⊑

−→ B or A
⊥

−→ B.

5.2.1 S1: Mappings Within One Ontology

Our simplest strategy consists of using Swoogle to find ontologies containing concepts with the same names

as the candidate concepts and to derive mappings from their relationship in the selected ontologies. This

ontology provides the context in which the matching operation is performed. Figure 5.1(b) illustrates this

strategy with an example where three ontologies are discovered containing the concepts A’ and B’ with

the same names as A and B. The first ontology contains no relation between the anchor concepts, while the

other two ontologies contain a subsumption relation. The concrete steps of this strategy are:

1. Select ontologies containing concepts A’ and B’ corresponding to A and B;
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2. For each resulting ontology:

– if A’ ≡ B’ then derive A
≡

−→ B;

– if A’ ⊑ B’ then derive A
⊑

−→ B;

– if A’ ⊒ B’ then derive A
⊒

−→ B;

– if A’⊥ B’ then derive A
⊥

−→ B;

3. If no ontology is found, no mapping is derived;

In [Sabou et al., 2006], we have discussed a range of implementation choices for this strategy. In particular,

we have distinguished two variants depending on the number of ontologies that are inspected to derive a

mapping. The first and simplest variant stops as soon as a mapping is discovered. This is the easiest way to

deal with the multiple returned ontologies but it assumes that the first discovered relation can be trusted and

there is no need to inspect the other ontologies. The second variant, prefers accuracy to time performance

and consists of deriving all possible mappings from all the ontologies that contain the terms to be mapped

and then combining them in various ways. This is a more difficult variant because mappings resulting from

different sources can be different (e.g., A
⊑

−→ B and A
⊒

−→ B), or, in the worst case, inconsistent (e.g.,

A
⊑

−→ B and A
⊥

−→ B). Several ways of dealing with these contradictions can be considered: we can

keep all the mappings (favoring recall), only keep mappings without contradiction (favoring precision), keep

the mappings that are derived from most of the ontologies, or try to combine the results (e.g., by deriving

A
≡

−→ B from A
⊑

−→ B and A
⊒

−→ B).

5.2.2 S2: Cross-Ontology Mapping Discovery

The previous strategy assumes that a semantic relation between the candidate concepts can be discovered

in a single ontology. However, some relations could be distributed over several ontologies. Therefore, if no

ontology is found that relates both candidate concepts, then the mappings should be derived from two (or

more) ontologies. Note that in this case the context for the mapping would not anymore be provided by a

single ontology, but rather a collection (a network) of ontologies. In this strategy, matching is a recursive task

where two concepts can be mapped because the concepts they relate in some ontologies are themselves

mapped (Figure 5.1(c)). Concretely:

1. If no ontologies are found that contain both A’ and B’ then select all ontologies containing a concept

A’ corresponding to A;

2. For each of the resulting ontologies:

(a) for each P such that A’ ⊑ P, search for mappings between P and B’;

(b) for each C such that A’ ⊒ C, search for mappings between C and B’;

(c) derive mappings using the following rules:

– (r1) if A’ ⊑ P and P
⊑

−→ B’ then A
⊑

−→ B

– (r2) if A’ ⊑ P and P
≡

−→ B’ then A
⊑

−→ B

– (r3) if A’ ⊑ P and P
⊥

−→ B’ then A
⊥

−→ B

– (r4) if A’ ⊒ C and C
⊒

−→ B’ then A
⊒

−→ B

– (r5) if A’ ⊒ C and C
≡

−→ B’ then A
⊒

−→ B

In this strategy, steps (a) and (b) can be run in parallel and stopped when one of them is able to establish

a mapping. These two steps correspond to the recursive part of the algorithm. The task of searching for

mappings between C (P) and B’ can be realised using either strategy S1 or S2.
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5.3 Experimental setup

In this section we describe the concrete implementations of S1 and S2 that were used (Section 5.3.1) as well

as the particularities of the data sets (Section 5.3.2).

5.3.1 Implementation details

The anchoring mechanism in the case of both strategies (i.e., finding A’, B’) is based on strict string

matching. For simple terms (made up of one word) we find anchors that match this word as well as its

lemma (i.e., base form): a term Persons will be anchored to concepts labeled either Persons or Person. For

compound terms (containing multiple words) we discover concept labels containing the same words, in the

same order, but possibly written according to different naming conventions: WindMill = Wind_Mill = wind mill.

We implemented both strategies by using data extracted from Swoogle’051. For S1 we implemented both

the variant that returns the first derived mapping and the one that returns all the possible mappings between

two terms. While S2 is much more time consuming than S1, its complexity can be reduced by taking some

simplifying assumptions. To reduce the time of our experiments, we implemented S2 in such a way that only

the first direct parent of the discovered A’ concepts is considered (instead of exploring all parents). Then, we

did not consider more specific concepts of A’ both to simplify the algorithm, but also because this information

cannot be queried from Swoogle (i.e., for any given concept we can only get its parents). Therefore rules r4
and r5 are not applied.

5.3.2 Data sets

The mapping was performed between two very large, real life thesauri. The United Nations Food and Agri-

culture Organization (FAO)’s AGROVOC thesaurus, version May 2006, consists of 28 174 descriptor terms

(i.e., preferred terms) and 10 028 non-descriptor terms (i.e., alternative terms). The United States National

Agricultural Library (NAL) Agricultural thesaurus, version 2006, NALT consists of 41 577 descriptor terms

and 24 525 non-descriptor terms.

It is important to note that these thesauri describe a broad range of domains ranging from animal species,

to chemical substances and information technology. Also, they use several technical terms (e.g., from chem-

istry) and a considerable amount of Latin terms (e.g., to describe animal species). Since our algorithm

depends on the thesauri terms being represented in online ontologies, we filtered out those that are covered

according to the anchoring mechanism described above. We found that 2 046 (1 594 simple, 452 com-

pound) AGROVOC descriptor terms were mentioned in at least one ontology and 2 595 (1908 simple, 687

compound) NALT terms were also covered. Only 7,2% AGROVOC and 6,2% NALT terms are covered due to

the fact that online ontologies are mostly concerned with generic knowledge instead of specialised, domain

terms. Another explanation is that compound terms are much harder to anchor than simple ones. In fact, we

found 16% (10%) of the simple and only 2,4% (2,8%) of the compound terms of AGROVOC (NALT respec-

tively). We use these two sets of terms as input to our experiment and try to determine mappings between

them.

5.4 Experimental results

We describe the results of applying both variants of S1 (Sections 5.4.1 and 5.4.2), S2 (Section 5.4.3) and

compare these results to those of other tools (Section 5.4.4).

1Swoogle’06 is too unstable to allow performing extensive experiments.
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Nr. Examples

Subclass 1477 Lamb
⊑

−→ Sheep, Soap
⊑

−→ Detergent, Asbestos
⊑

−→ Pollutant

(
⊑

−→) Oasis
⊑

−→ Ecosystem, RAM
⊑

−→ ComputerEquipment

SuperClass 1857 Shop
⊒

−→ Supermarket, Spice
⊒

−→ BlackPepper, V alley
⊒

−→ Canyon

(
⊒

−→) Infrastructure
⊒

−→ Highway, Storm
⊒

−→ Tornado, Rock
⊒

−→ Crystal

Disjoint 229 Fluid
⊥

−→ Solid, F luid
⊥

−→ Gas, Pond
⊥

−→ River, Plant
⊥

−→ Animal

(
⊥

−→) Newspaper
⊥

−→ Journal, Fruit
⊥

−→ V egetable, Female
⊥

−→ Male
Total 3563

Table 5.1: Discovered mappings between AGROVOC and NALT.

First Round Second Round

Correct 1173 1144

False 218 421

Not-Evaluated 259 85

Precision 71% 69%

Average Precision 70%

Table 5.2: Mapping evaluation.

5.4.1 Results for strategy S1, first variant

The first variant of S1 discovered 3 563 distinct mappings: 229 disjoint, 1 477 subclass and 1 857 superclass

relations (see Table 5.1).

Given the high number of discovered mappings as well as the lack of a Gold Standard against which to

compare them, we performed a manual assessment on a statistically significant subset of the results (1650

mappings, i.e., 46%) in order to get an indication of the precision. In a first round, we asked seven subjects

(all working in the field of the Semantic Web) to mark their 200+ mappings as correct, false or “I don’t know"

in cases when they were unable to judge the correctness of the mapping. In a second round, the sample

was split in half between two of the authors. While in the first round we asked our subjects to rank only those

mappings that they were sure about without any investigation, in the second round we have investigated

some mappings that require specialised knowledge (e.g., by querying Google). In the first round we obtained

a precision of 71% (we counted the unevaluated items as false) and in the second a very close value of 69%

(Table 5.2). Therefore, we can conclude that an indicative value for the precision of our technique is around

70%.

This two stage evaluation process provided interesting information on the “ambiguity" of the derived map-

pings. We found that, evaluators agreed on 1 045 assessments (two ratings of correct or false) and disagreed

on 293 (one rating of correct and one of false). The rest of 312 assessments were rated at least once with

I don’t know, and therefore they do not really represent disagreements (either one or both of the evaluators

did not know enough about the terms to judge the mapping). Therefore, strictly speaking, the evaluators

disagreed on 18% of the mappings. This shows that many mappings are straightforward to evaluate, but at

the same time, a certain dependence on the perspective of the evaluator exists.

An analysis of the false mappings led us to distinguish two sets of common causes for deriving such erro-

neous mappings. These were:

Errors introduced by exploring low quality ontologies. Some of the low quality online ontologies in-

correctly use inheritance to express a range of relations. First, roles are often modelled as subclass re-

lations, for example, that Aubergine, Leek ⊑ Ingredient (in fact, Leek is a V egetable but in some

contexts it plays the role of an ingredient) or Wool ⊑ Product (however, Wool is a Fabric, but it can

also play the role of a Product). Second, inheritance is often used to model a part-whole relation (e.g.,

Branch ⊑ Tree). Third, more broadly, inheritance is used as a way to model the fact that there exists

some type of relation between two concepts, e.g., Survey ⊑ Marketing, Irrigation ⊑ Agriculture,
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Biographies ⊑ People. When explored, all these types of mistakes lead to erroneous mappings. Finally,

there are a set of correct inheritance relations which introduce errors due to the inaccurate labeling of their

concepts. For example, in Oil ⊑ Industry, Oil refers to OilIndustry rather than the concept of Oil itself.

Or, in Enzyme ⊑ Database, Enzyme refers to an EnzymeDatabase rather than describing the class of

all enzymes. This last type of errors could be detected if the context of the anchor terms would be considered

during matching. However, our technique does not explore the context of the used ontologies yet. This leads

to another set of errors.

Errors introduced by ignoring ontological context. The current implementation of our technique works

at the level of concept labels (i.e., strings) rather than concepts as defined in the context of each particular

ontology. Because of their heterogeneity, online ontologies model different perspectives, different views of

the world. As a result, relations between concepts are highly dependent on the context of the ontology.

For example, University ⊑ Building is a valid relation if the first concept refers to the edifice in which

courses are held, while University ⊑ Organisation is valid when we consider the first term in its sense

of the group of people (faculty and students) involved in the educational process. A prerequisite for correct

mappings is that the anchoring process is semantic rather than syntactic (i.e., sense(A) = sense(A’) and

sense(B) = sense(B’)). Unfortunately, such semantic anchoring is rather time consuming and non trivial (as

the contexts, i.e., their places in the ontologies, of all four concepts need to be considered). By ignoring the

contextual senses of the considered terms, concepts having the same label but different meaning may be

mapped, leading to common errors in the matching procedure. For example, Squash can be mapped both

as a V egetable or as a Sport. The correct mapping is the one that is in concordance with the sense of

Squash in the source ontology.

Finally, it is interesting to observe that these mappings were derived by exploiting more than 60 individual

ontologies ranging from richly axiomatised, upper level ontologies such as SUMO (140 mappings) or TAP

(303 mappings) to smaller ontologies developed for a well-defined application (e.g., a demo ontology in

the domain of pizza which was used 6 times). These figures show that our technique exploits a pool of

heterogeneous resources.

5.4.2 Results for strategy S1, second variant

The second variant of S1 derives all mappings by inspecting all ontologies in which the terms appear. To

our surprise no contradicting mapping relations were derived. We observed, however, that some of the

explored ontologies lead to no relations. It is interesting to note that a mapping is more likely to be correct

when the proportion of ontologies leading to it is greater than the one of ontologies containing no relation

(e.g., V ertebrate ⊑ Animal 3 yes/1 no, Cat ⊑ Animal 10 yes/1 no). Otherwise, the mapping is likely to

be either incorrect or to be valid only in a particular context (e.g., Restaurant ⊑ Dimension 1 yes/9 no,

Fish ⊑ Ingredient 1 yes/29 no). This information could be exploited to automatically detect suspicious

mappings and therefore increase precision.

5.4.3 Results for strategy S2

Strategy S2 leads to 2 033 new mappings (1 018 disjoint and 1 015 subclass relations) each derived by

combining information from two ontologies (A ⊑ P in one ontology and then P ′ rel
−→ B in another). While this

strategy truly embodies the Semantic Web paradigm of combining knowledge from heterogeneous sources,

the fact that it explores more ontologies also increases the chance of introducing errors. We identified three

common types of errors (as exemplified in Table 5.3):

Error 1. In these cases the sense of the parent is different than that of its anchor. This type of error is a

direct consequence of our technique ignoring the context of the mapped concepts.

Error 2. Some errors are introduced by ontology modelling mistakes appearing in the used ontologies (as

explained in Section 5.4.1).
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Type A ⊑ P/ P’ Rel B
Helicopter Aircraft ⊑ V ehicle

FarmBuildings Building ⊑ Infrastructure
Correct RAM ⊑ ComputerMemory ⊑ ComputerHardware

Lobster Crustacean ⊑ Arthropod
RyeF lour F lour ⊑ Powder
University Complex ⊥ Protein

Error 1 Family ⊑ Group ⊑ Shape
Tree P lant ⊥ ResearchAndDevelopment

Radar Equipment ⊑ ChemicalEngineering
Error 2 WaterManagement ⊑ Management ⊑ Industry

Survey Marketing ⊥ Consultant
Wine Liquid ⊥ Gas

Error 3 Cat ⊑ Animal ⊥ Environment
Respiration Process ⊥ Mineral

Table 5.3: Examples of typical compound mappings.

Error 3. When the semantic gap between the term to be mapped and its parent is large (e.g., Wall ⊑
Object), then the derived mappings, while not necessarily incorrect, are usually at a too high level of

abstraction to be interesting (e.g., Wall ⊥ Energy).

While this strategy leads to a lot of interesting mappings, it also introduces a substantial amount of unin-

teresting (Error 3) or wrong mappings. Due to time constraints, we did not evaluate this set of mappings.

Nevertheless, these experiments highlighted some common errors that need to be addressed by the next

versions of our algorithm. For example, to avoid Error 3, mappings between semantically distant parents

(i.e., high in the hierarchy) should not be used.

5.4.4 Comparison with other techniques

Comparing ontology matching techniques is a difficult task because the lack of an appropriate Gold Standard

(since the OAEI’06 evaluation was geared towards comparing systems that only produced equality mappings,

the part of the Gold Standard developed for measuring precision consisted of only 200 mappings with 70%

exact and 30% subsumption relations). Therefore, a thorough comparison of the techniques, taking into

account recall as well as precision, is not possible. However, looking at the results, it seems that our approach

is complementary to classical, string based techniques since it returns mappings relating dissimilar terms,

which are unlikely to be discovered by them. Moreover, none of the five competitors discovered semantic

relations other than equivalence. Conversely, our approach does not concentrate on equivalence relations.

Many of the equivalence relations discovered by traditional techniques are based on string similarity. Because

the terminological overlap of AGROVOC and NALT is rather high, the techniques reached precision values

ranging from 61% to 83% (on the 200 mapping Gold Standard). Note, however, that in another task of this

contest, where the label similarity redundancy was more reduced (i.e., the directory task), the precision of

the best system was only 40.5%. These figures reinforce the hypothesis that the performance of general

matching systems is dependent on the label overlap between the source and target ontology. This factor

does not influence our approach (nor context based matchers in general).

We also wished to compare the performance of our approach to that of other context-based techniques.

The precision values we found in the literature were reported on different data sets, therefore we consider

them only as indicative. Unfortunately, S-Match only reports on recall values [Giunchiglia et al., 2006]. The

technique of Aleksovski et al. was evaluated on a Gold Standard of mappings for 200 concepts and pro-

duced a precision of 76% (compared to 30% and 33% achieved by two traditional techniques on the same

dataset) [Aleksovski et al., 2006]. The matching techniques proposed by van Hage et al. yield a range of

precision values for a manually constructed Gold Standard: 17% - 30% when relying only on Google, 38% -

50% when taking into account the context given by the Google snippets, 53% - 75% when exploring a domain

specific textual resource and finally 94% when validating the results of the domain specific extraction with

the Google based techniques [van Hage et al., 2005]. We conclude that the 70% precision of our technique
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correlates with the precision results obtained by the other two techniques (76% - 75%). It is important to

understand, however, that the other techniques reached these high precision values only when exploring a

single, high-quality, domain specific resource (i.e., DICE [Aleksovski et al., 2006], CooksRecipes.com Cook-

ing Dictionary [van Hage et al., 2005]). However, because such resources need to be selected in advance,

these techniques do not satisfy the requirements associated with the latest generation of Semantic Web ap-

plications. Compared to them, our technique achieves comparable results when dealing with the much more

demanding scenario specific to these applications: i.e., dynamically combining multiple, heterogeneous and

generic ontologies.

5.5 Discussion

The goal of our experiments was to better understand the strengths and the weaknesses of our method.

Indeed, the proposed approach exhibits all the advantages of context-based techniques over traditional syn-

tactic techniques: it derives semantic mapping relations and it is capable of dealing with dissimilar ontologies.

Even more, compared to other context-based techniques, our approach is able to discover disjoint relations

(only achieved by SMatch so far). Also, a differentiating feature of our technique is its domain independence:

we do not require a manual pre selection of any context-giving knowledge source (these are discovered dy-

namically at run-time) and our extraction rules are generally valid for any ontology instead of being biased by

the type of background knowledge resource (e.g., WordNet or a particular ontology). Finally, despite the fact

that we rely on the modern paradigm of combining multiple, heterogeneous knowledge sources, our preci-

sion values (70%) correlate with those obtained by techniques that exploit single, heterogeneous, carefully

preselected resources (76% [Aleksovski et al., 2006], 75% [van Hage et al., 2005]).

While the dynamic exploration of online knowledge is the novelty of our technique, it also leads to some of its

limitations. The results of the approach depend on the quality of online ontologies. In the ideal case, these

should cover all the concepts that need to be matched and should not exhibit any modelling defects. Our

experiments show that both conditions can be easily violated: only a small fraction of the two large thesauri

were covered and our precision suffers from common modelling mistakes exhibited by online ontologies

(e.g., the misuse of inheritance). We believe, however, that online coverage will improve as the Semantic

Web grows. Also, our experiments indicate that automatic methods could be devised to filter out potentially

erroneous relations (Section 5.4.2).

The use of multiple ontologies introduces the issue of multiple contextual mappings which does not appear

for techniques relying on a single resource. When a single resource is used as a context for matching, then all

the derived mappings share the same context. In our case however, the mappings derived for an alignment

can be drawn from different context-ontologies. Ontologies often conceptualise different views of the world.

As a result, some of the derived mappings, while valid in the context of their ontology, can be invalid from

the perspective of the source and target ontologies. Ignoring these contexts leads to erroneous mappings.

This issue became evident in this large scale matching exercise: we did not observe it in our small scale

experiments [Sabou et al., 2006]. The problem intensifies for more complex strategies (those that rely on a

chain of mappings).
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Chapter 6

Conclusions

This deliverable has introduced software developed in NeOn for dealing with contexts in the framework of

networked ontologies. It has first shown the use of alignments for expressing the context of an ontology with

regard to other related ontologies.

It has described a software system for maintaining and sharing these alignments within the NeOn environ-

ment. The Alignment Server presented in Chapter 4 provides access to various matching methods in order

to match ontologies and many alignment manipulation facilities. It is able to store alignments in a permanent

repository, to deliver them on demand in various useful formats. Interaction through the Alignment Server

can be achieved through agent communication, web service invocation or web browser interaction.

In Chapter 5, we presented an approach relying on contexts by automatically discovering the context in which

the relations between these entities are described, this context taking the form of a third ontology containing

the relevant background knowledge. This technique has been implemented using Swoogle to find ontologies

relating the candidate terms. An evaluation using two real-life, large scale ontologies (AGROVOC and NALT)

has shown particularly good results in terms of precision on a large number of generated mappings (around

1 650).

6.1 Current state of the prototypes

The developed prototypes are currently independent and functional. They offer all the functionalities that

have been described in this deliverable and are continuously evolving for meeting the needs of the NeOn

environements.

The Alignment Server is available within the Alignment API at http://alignapi.gforge.inria.fr starting with ver-

sion 2.5 (december 2006). It is packaged with the Alignment API releases. Instructions for its use are

available in Appendix A.

The context matcher prototype was developed in order to test the overall idea of using dynamically selected

background knowledge from online ontologies. Because it was used for testing by the development team, the

prototype has an API but not a user interface. In fact, this is all is needed for its integration in the Alignment

Server. Further, this prototype relies on Swoogle’2005. This version of Swoogle is not updated anymore

and probably will not be supported within a couple of months. Therefore our efforts are on rewritting it so

that it exploits Watson. Our current work focuses on integrating the existing code with the currently emerging

Watson API. We expect to have a new version within the next two months which can be made available

publicly either as 1) a stand alone software or 2) a service provided by Watson. It will, as well as other

matching systems, be integrated within the Alignment Server and will be available through it.

These prototypes will be demonstrated at the review meeting in a loosely coupled manner.

2007 c© Copyright lies with the respective authors and their institutions.
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6.2 Further developments

These prototypes are independent efforts for developing the technology adapted to networked ontologies as

considered in NeOn. As such they have shown the feasibility of the approaches that have been pursued.

However, they have now to be more tightly integrated in the wider context of NeOn. This is the role of the work

that we start carrying out now. One of the obvious next steps for the development of this technique concerns

its integration in the alignment server presented Chapter 4. Mappings from the reported experiment can

be stored and made available on the server, and the technique would benefit from relying on the proposed

alignment API. Also, the technique suffers from the limitation inherent to Swoogle. We are currently devel-

oping a Semantic Web Gateway called Watson, as an alternative to Swoogle, with the aim of overcoming

these limitations. The evolution of the presented technique should then rely on Watson and on the Alignment

Server for discovering relevant context to be used in matching.

This precisely involves:

– integrating the contextual matcher within the Alignment Server;

– integrating the prototype for extracting alignments from data (see Deliverable D3.2.1) within the Align-

ment Server;

– organising the cooperation between Watson and the Alignment Server for finding related ontologies;

– integrating the Alignment Server as a plug-in of the NeOn toolkit;

– using these tools in tasks directly related to the NeOn applications.
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Appendix A

Running the Alignment Server

We provide here the minimal instructions for obtaining and interacting with the Alignment Server. The most

recent information can be found on the Alignment API web site (http://alignapi.gforge.inria.fr).

A.1 Obtaining the Alignment Server

The Alignment Server can be downloaded with the Alignment API from

http://gforge.inria.fr/frs/?group_id=117. The server is included with the API starting with version 2.5.

A.2 Requirements

Java 1.5 The Alignment Server runs under Java 1.5 or higher.

DBMS Using the alignment server requires an SQL database server. We see here, how to use mysql

(http://dev.mysql.com/doc/refman). mysql drivers for jdbc are included in the package. If you want to use

another SQL database management system, you only have to put the jdbc drivers for this database in the lib

directory.

TCP ports The alignment server is a communicating system that communicates through TCP sockets which

are bound to ports on your machines. In order to access the server from an outside machine it is necessary

to have access to these ports. We provide here the list of default ports and options to change them as well

as the necessity for the firewalls to open these ports:

plug-in default option open?

HTTP 8089 -H Y

Jade 8888 -A

1099 ? (RMI)

7778 Y (MTP HTTP)

WSDL 8089 -W Y

JXTA 6666 -P Y

mysql 3306 –dbmsport No if on the same machine

Of course, the ports need only to be open if there is an access from the outside to the server with the

corresponding plug-in.

A.3 Initializing the database

In order to use the Alignment Server, it is necessary to create its database. This can simply be done by the

following shell instructions.

2007 c© Copyright lies with the respective authors and their institutions.
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$ sudo /usr/local/mysql/bin/mysqld_safe --user=mysql &
$ /usr/local/mysql/bin/mysqladmin -u root password <mysqlpassword>
$ /usr/local/mysql/bin/mysqladmin -u root -h localhost password <mysqlpassword>
$ /usr/local/mysql/bin/mysql -u root -p<mysqlpassword>
sql> CREATE DATABASE AServDB;
sql> GRANT ALL PRIVILEGES ON AServDB.* TO adminAServ@localhost IDENTIFIED BY ’aaa345’;
sql> quit

The database schema will be created upon the first launch of the server.

Of course, you are advised to use different user, password and database name. This can be achieved either:

– by changing values of DBMSBASE, DBMSUSER and DBMSPASS in AlignmentServer.java and re-

compiling;

– by passing parameters dbmsbase, dbmsuser and dbmspass to the AlignmentServer main.

If one wants to permanently, run an Alignment Server, here is a sample backup of the server content:

$ /usr/local/mysql/bin/mysqldump -u adminAServ -paaa345 AServDB > toto.sql

And restoring:

$ /usr/local/mysql/bin/mysql -u adminAServ -paaa345 AServDB
sql> source toto.sql;

NeOn will run such a permanent server so setting up the database will not be necessary.

A.4 Launching the Alignment Server

The Alignment Server requires that the corresponding database management system server be running. In
our case, this can be achieved through:

$ sudo /usr/local/mysql/bin/mysqld_safe --user=mysql &

Running the Alignment server is achieved through (use the corresponding options):

$ java -jar lib/alignsvc.jar -H

The alignment server is then available through HTTP through http://localhost:8089/html/.

Other options are:

$ java -jar lib/alignsvc.jar --help
usage: AlignmentService [options]
options are:

--html[=port] -H [port] Launch HTTP service
--jade[=port] -A [port] Launch Agent service
--wsdl[=port] -W [port] Launch Web service
--jxta[=port] -P [port] Launch P2P service
--serv=class -i class Launch service corresponding to fully qualified classname
--dbmshost=host -m host Use DBMS host
--dbmsport=port -s port Use DBMS port
--dbmsuser=name -u name Use DBMS user name
--dbmspass=pwd -p pwd Use DBMS password
--dbmsbase=name -b name Use Database name
--debug[=n] -d [n] Report debug info at level n
-Dparam=value Set parameter
--help -h Print this message
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