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ABSTRACT
We assume that a real square-free polynomial A has a degree
d, a maximum coefficient bitsize τ and a real root lying in
an isolating interval and having no nonreal roots nearby (we
quantify this assumption). Then, we combine the Double
Exponential Sieve algorithm (also called the Bisection of the
Exponents), the bisection, and Newton iteration to decrease
the width of this inclusion interval by a factor of t = 2−L.

The algorithm has Boolean complexity ÕB(d2τ + dL).

Categories and Subject Descriptors:
F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; I.1 [Computing Methodology]: Sym-
bolic and algebraic manipulation: Algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
real root refinement; polynomial; real root problem, Boolean
complexity

1. INTRODUCTION
Given a polynomial A, of degree d and maximum coeffi-

cient bitsize τ , and an interval with rational endpoints that
contains one of its real roots (isolating interval), we devise
an algorithm that refines this inclusion interval to decrease
its width by a factor t = 2−L, for some positive integer L.

The problem of real root refinement appears very often as
an important ingredient of various algorithms in computer
algebra and nonlinear computational geometry, for example
in algorithms for computing the topology of real plane alge-
braic curves [11, 22], solving systems of polynomial equations
[24, 14, 17], isolating the real roots of polynomials with co-
efficients in an extension field [38, 20], cylindrical algebraic
decomposition [2, 13], and many others.

For the complexity of approximating (all) the roots of a
polynomial we refer the reader to [29], see also [27], [25,

Chapter 15] where a Boolean complexity of ÕB(d3 + d2L)
is proved, which is “within polylogarithmic factors from the
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optimum”, provided τ = O(L).
The problem of refinement is also an important ingredient

for algorithms that tackle the real root problem, that is the
problem of isolating and approximating the real roots of a
polynomial that has only real roots. In this context we refer
to the work of Ben-Or and Tiwari [3] that introduced inter-
lacing polynomials and Double Exponential Sieve. Pan and
Linzer [30] and Bini and Pan [8] in a sequence of works, see
also [6, 7], modified the approach of [3] (they called it Bisec-
tion of the Exponents) to approximate the eigenvalues of a
real symmetric tridiagonal matrix by using Courant-Fischer
minimax characterization theorem. In [32] a variant of the
refinement algorithms in [30, 8] is used, for approximating
all the real roots of a polynomial.

Collins and Krandick [12] presented a variant of Newton’s
algorithm where all the evaluations involve only dyadic num-
bers, as well as a comparison with the case where operations
are performed with rationals of arbitrary size. Quadratic
convergence of Newton’s iterations is guaranteed by point
estimates and α-theory of Smale, e.g. [9]. For robust ap-
proximation of zeros based on bigfloats operations we refer
to [37]. A very interesting and efficient algorithm that com-
bines bisection and Newton iterations is the Quadratic In-
terval Refinement (qir) by Abbott [1]. For a detailed analy-
sis of the Boolean complexity of qir we refer the reader to
[21]. Kerber and Sagraloff [22] modify qir to use interval
arithmetic and approximations and they achieve a bound

of ÕB(d3τ2 + dL). A factor of τ could be saved if we use
fast algorithms for root isolation of univariate polynomials,
e.g. [35], [29, 36]. We should also mention [34] that is based
on Kantorovich point estimates which is efficient in practice
but of unknown complexity.

We revisit the approach of [3], [30, 8] to devise our Real
Root Refinement (R3) algorithm and present a detailed analy-
sis in the bit complexity model, based on exact operations
with rationals (Thm. 12). We also introduce an approximate
variant (αR3) based on interval arithmetic, Sec. 2.1, where
we use multi-precision floating point numbers for compu-
tations and to represent the endpoints of intervals, and we
estimate in advance the maximum precision needed. For this
we use tools from Kerber and Sagraloff [22] for evaluating a
polynomial at a rational number using interval arithmetic.
We also study the Newton operator both from an exact and
approximate point of view (Sec. 2.3). We provide Boolean
complexity bounds for approximate variants of Double Ex-
ponential Sieve (Lem. 4) and Newton iteration (Lem. 10).

The Boolean complexity of R3 and αR3 is ÕB(d2τ + dL)
(Theorem 12). The same algorithms support the bound
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ÕB(d2τ+d2L) and promise to support the bound ÕB(d2τ+
dL), respectively, for the refinement of up to d roots (Sec-
tion 2.4). We assume that there is no complex root of the
polynomial in the complex disc that has the isolating inter-
val as diameter. Such an interval could be the outcome of
root-finding algorithms. We detail this in Section 2.5.

The rest of the paper is structured as follows. First we
introduce our notation. Section 2 presents a high level de-
scription of the real root refinement algorithm. We detail its
three steps, in Sec. 2.1, Sec. 2.2, and Sec. 2.3. Section 3 es-
timates the expected number of steps of DES and αDES when
the input polynomial is random of type Weyl, Sec. 3.1, or
SO(2), Sec. 3.2. Finally, in Section 4 we conclude and sug-
gest directions for furhter study.
Notation. In what follows OB , resp. O, means bit, resp.

arithmetic, complexity and the ÕB , resp. Õ, notation means
that we are ignoring logarithmic factors. For a polynomial
A =

∑d
i=0 ai x

i ∈ ZZ[x], deg(A) = d denotes its degree and
L (A) = τ the maximum bitsize of its coefficients, including a
bit for the sign. For a ∈ (Q, L (a) ≥ 1 is the maximum bitsize
of the numerator and the denominator. M (τ) denotes the
bit complexity of multiplying two integers of size τ ; we have

M (τ) = ÕB(τ). 2Γ is an upper bound on the magnitude
of the roots of A. We write ∆α(A) or just ∆α to denote
the minimum distance between a root α of a polynomial A
and any other root, we call this quantity local separation
bound. If we are considering the i-th root, αi, then we also
write ∆i instead of ∆αi . ∆(A) = minα ∆α(A) or just ∆
denotes the separation bound, that is the minimum distance
between all the roots of A. The Mahler bound (or measure)
of A is M (A) = ad

∏
|α|≥1 |α|, where α runs through the

complex roots of A, e.g. [26, 40]. If A ∈ ZZ[x] and L (A) = τ ,
then M (A) ≤ ‖A‖2 ≤

√
d+ 1‖A‖∞ = 2τ

√
d+ 1. If we

evaluate a function F (e.g. F = A) at a number c using
interval arithmetic, then we denote the resulting interval by
[F (c)], provided that we fix the evaluation algorithm and the
precision of computing. Let D(c, r) = {x : |x− c| ≤ r}.

2. THE R3 AND αR3 ALGORITHMS
In what follows A =

∑d
i=0 aix

i ∈ ZZ[x] with L (A) = τ .
Let α1 be the real root of A that lies in an (isolating) interval
I = [a .. b]. The width of I, w = (b − a)/2, has bitsize
L (w) = O(lg ∆(A)) = O(dτ), in the worst case (see also
Prop. 1). We write |I| = b − a and m = (a + b)/2. We
wish to refine I to include α1 into a subinterval of the width
t = 2−Lw. We define the isolation ratio of a real isolating
interval I of a root α of A as ir(I) = 2 |m − αc|/|I|, where
αc is the root of A that is the closest to α.

The high-level description that we present follows [3] and
[30]. For details and various improvements we refer the
reader to [30, 6, 8, 32]. The algorithm for refining the isolat-
ing interval of a real root α1 consists of three steps: Double
Exponential Sieve (DES), Bisection (BIS) and Newton itera-
tion (NEWTON). We denote the approximate variants by αDES,
αBIS, and αNEWTON, respectively. The three procedures are
as follows:

(1) DES or αDES achieves an isolation ratio at least 3.

(2) Sufficiently many bisections (BIS or αBIS), but Õ(lg(d)),
increase the isolation ratio.

(3) Then Newton iteration, NEWTON or αNEWTON, converges

quadratically and yields an inclusion interval of the de-
sired width.

In the sequel we describe in detail and analyze the complex-
ity of the three sub-algorithms.

The following proposition estimates the separation bounds
for a univariate (integer) polynomial. For variants and proof
techniques we refer the reader to e.g. [13, 15, 26, 20]. We
use a variant from [23, Thm. 4].

Proposition 1. Suppose A ∈ ZZ[x] is a square-free univari-
ate polynomial of degree d, L (A) = τ , and α1, . . . , αd, are
the d distinct roots of A. Let SR0(A,A′) be the resultant
of A and its derivative, A′, w.r.t. x, and ∆i = ∆i(A) =
∆αi(A), where i = 1, . . . , d. Then it holds

|αi| ≤ 2Γ ≤ 2‖A‖∞ ≤ 2τ+1 , (1)

−
∑
i

lg ∆i(A) ≤ 30 d lgM (A) + 3L
(
SRo(A,A

′)
)

(2)

≤ 36 d τ + 42 d lg d .

Lemma 2. [22] Suppose we evaluate A at c, where |c| ≤
2Γ+2, and suppose we use a working precision (or fixed pre-
cision arithmetic) ρ. Then

width[A(c)] ≤ 2−ρ+1(d+ 1)22τ+d(Γ+2) .

The following lemma generalizes [22, Lemma 4].

Lemma 3. Let x0 be such that |x0−αi| ≥ ∆i/c for all real
αi such that i 6= 1 and c ≥ 2. Then

|A(x0)| > |ad| |x0 − α1| c1−dM (A)−1 2lg
∏

i ∆i−1 .

Proof: Let =(α) be the imaginary part of α ∈ (C. It holds
|x0 − αi| ≥ |=(αi)| ≥ ∆i/2 ≥ ∆i/c and so |x0 − αi| ≥ ∆i/c
is true for all the roots of A. Now

|A(x0)| = |ad|
d∏
i=1

|x0 − αi| = |ad||x0 − α1|
d∏
i=2

|x0 − αi|

≥ |ad||x0 − α1|
c

∆1

d∏
i=1

∆i

c

≥ |ad||x0 − α1|c1−dM (A)−1 2lg
∏

i ∆i−1 .

For the last inequality we use ∆1 ≤ 2M (A), that in turn
relies on ∆1 = |α1 − αc1 | ≤ |α1| + |αc1 | ≤ 2M (A), where
αc1 is a the root closest to α1. �

2.1 Double Exponential Sieve
In this subsection we follow [3], [8] and [32] to compute an

interval that contains the real root and has endpoints “far
away” from the endpoints of the initial interval. The difficult
case is when the real root is very close to one of the endpoints
of I. Next we outline this procedure referring the reader to
[32] for its detailed treatment and efficient implementation.

Initially let α1 ∈ I = [a .. b] for a < b. We compute a new
interval Ī = [ā .. b̄] containing α1 and such that either 0 ≤ b̄−
ā ≤ 2 t or ir(Ī) ≥ 3. In the first case the midpoint of Ī, m̄ =
(ā+b̄)/2, approximates α1 within a desired error bound t and
hence we return either [ā .. m̄] or [m̄ .. b̄], depending on the
sign of A(m̄). In the second case we can apply bisections to
increase the isolation ratio to the level supporting Newton’s
iteration. We present the analysis of the bisection iteration
in the next subsection.

During the first step of DES, we decide whether α1 lies in
[a .. a+b

2
] or [a+b

2
.. b]. W.l.o.g. assume that a = 0 and b = 2

because our claims are invariant in the shifts and scaling the



variable x. Furthermore assume that α1 ∈ [0 .. 1] for the
other case is treated similarly. Now the bound ir(Ī) ≥ 3
follows where

b̄ ≤ 2 ā . (3)

Next, we write a0 = 0, b0 = 1, I0 = [0 .. 1] and evaluate A

at the sequence of points ck = a0 + 2w0/2
2k

, k = 1, . . . , g1,
where 2w0 = b0 − a0 and g1 − 1 is the maximum index
such that α1 ∈ [0 .. cg1 ]. If g1 = 1, then we write a′ = cg1 ,
b′ = 1, obtain that α1 ∈ [a′ .. b′] and ir([a′ .. b′]) ≥ 5/3, and
yield an interval Ī with ir(Ī) ≥ 3 in at most two bisections.
Otherwise (if g1 > 1) we reapply the DES procedure to the
interval [cg1 .. 1], denote by g2 the number of evaluations
of A(x) with x < α1 in this process and ensure (3) unless
g2 < g1. Recursively we obtain a strictly decreasing sequence
of intervals Ii, each defined by means of gi evaluations of
A(x) where the sequence g1, g2, . . . strictly decreases. This
means that the overall number of evaluations of A(x) in the
DES procedure is at most 1 +

∑g
i=1 gi ≤ 1 + (g1 + 1)g1/2 for

u ≤ g1. Moreover, g1 = dlg(lg(w) + L− 1)e = O(lg(τ + L))
because otherwise we would have 0 ≤ b̄− ā ≤ 2 t.

The next lemma provides an approximate variant of the
algorithm where at each step of the procedure we use exactly
the number of bits needed. We call this variant αDES, from
approximate Double Exponential Sieve.

Lemma 4 (αDES). The procedure αDES compresses the iso-
lating interval I to an interval J such that |J | ≤ 1/2L or
ir(J) ≥ 3 using a working precision and time

O(−g1 lgw+ 2g1 + g1(lgM (A) + τ + dΓ + lg
∏
i

∆i)) bits,

ÕB(d2τg2
1−dg2

1 lgw+dg12g1+dg2
1(lgM (A)+τ+dΓ+lg

∏
i

∆i))

or Õ(dτ + L) and ÕB(d2τ + dL), respectively.

Proof: Initially α1 lies in the interval I = I0 = [a .. b]. Let
w = w0 = |b − a| be its width. We want to compute the

maximum integer g1 such that α1 ∈ (a .. a + w/22g1
). For

this we need to evaluate A on a + w/22k

, for k = 1, . . . , g1.
It might happen that the evaluation of A at one of these
numbers is zero. To avoid this, at each step, we evaluate
A at two points, instead of one. This multiple evaluation is
borrowed from [22].

For each step k we define m1 and m2 such that

a < m1 = a+ w/22k+1 < m2 = a+ w/22k

< b

and evaluate A over them. At least one of them is not a zero
of A. Let j ∈ {1, 2}, then for all i 6= 1 it holds |mj − αi| ≥
w/22k+1 ⇒ w ≤ 22k+1|mj − αi| and |α1 − mj | ≤ w/22k

.
Then

∆i ≤ |α1 − αi| ≤ |α1 −mj |+ |mj − αi|

≤ w/22k

+ |mj − αi| ≤ |mj − αi|22k+1/22k

+ |mj − αi|
≤ 3|mj − αi| .

Using Lemma 3 with c = 3 we get

|A(mj)| > |mj − α1||ad| 31−dM (A)−1 2lg
∏

i ∆i−1 .

For at least one of mj ’s it holds that |mj −α1| > w/22k+2

(actually this is the half the distance between m1 and m2)

and hence

|A(mj)| > |ad|
w

22k+2
31−dM (A)−1 2lg

∏
i ∆i−1

≥ w 31−d 2−2g1−3+lg
∏

i ∆i−lgM(A)+lg|ad| .

Using Lemma 2 the precision needed for this step, ρ1,
satisfies the equation

2−ρ1+1(d+ 1)22τ+d(Γ+2) <

w 31−d 2−2g1−3+lg
∏

i ∆i−lgM(A)+lg|ad| ,

and thus

ρ1 = Õ(− lgw + 2g1 + lgM (A) + τ + dΓ− lg
∏
i

∆i) .

To support our computation of the desired interval J we
double the precision of computing at every DES step. We
perform lg(ρ1) steps overall; each is essentially an evalua-
tion of A. By applying Horner’s rule we yield the cost bound

ÕB(d(dτ + ρ1)). Similarly, at the i-th step of αDES we per-

form gi lg(ρi) evaluations, each at the cost of ÕB(d(dτ+ρi)),
where

ρi = Õ(− lgwi−1 + 2gi + lgM (A) + τ + dΓ− lg
∏
i

∆i) .

Summarizing, the overall cost of performing v steps is
bounded by

ÕB

(
v∑
i=1

d(dτ + ρi)gi lg ρi

)
.

The sequence of gi’s is strictly decreasing, that is gi >
gi+1, and so v < g2

1 . The produced intervals Ii have widths

wi < w/22i

, and so

v−1∑
i=0

lgwi = g1 lgw − 2g1 + 1 ,

∑
i

ρi = O(−g1 lgw+2g1 +g1(lgM (A)+τ+dΓ−lg
∏
i

∆i)) ,

and the overall cost is bounded by

ÕB(d2τg2
1−dg2

1 lgw+dg12g1+dg2
1(lgM (A)+τ+dΓ−lg

∏
i

∆i)) .

By noticing that |ad| ≥ 1, lgw = O(dτ), Γ = O(τ),
O(lgM (A)) = O(τ + lg d) and using Prop. 1 to bound

lg
∏
i ∆i, we get that the maximum precision needed is Õ(dτ+

L). Finally, the complexity of αDES is ÕB(d2τ + dL). �

Remark 5 (DES). We call this procedure DES if it uses only
exact arithmetic with rational numbers. Then, in the worst
case, we perform g2

1 = O(lg2(τ + L)) evaluations of A at
numbers of bitsize O(L).

Using Horner’s rule, each evaluation costs ÕB(d2(τ +L)).

Hence, the overall complexity is ÕB(d2(τ +L) lg2(τ +L)) =

ÕB(d2(τ + L)). This bound is greater by a factor of d than
the one supported by αDES.

However, since we are working with exact arithmetic in the
bit complexity model, Horner’s arithmetic is not optimal. To
see this, notice that the output of the evaluation is of bitsize

Õ(d(τ + L)). If we use the divide and conquer approach

[10, 19], each evaluation costs ÕB(d(τ + L)) and the overall



complexity is ÕB(d(τ +L) lg2(τ +L)) = ÕB(d(τ +L)). This
bound is the same as the one supported by αDES.

Nevertheless, this approach has some drawbacks. First, we
are forced to work with full precision right from the begin-
ning. Even though this does not affect the worst case bound
it is a serious disadvantage for implementations. Second,
this approach does not scale well, in the case where we want
to refine all the real roots of A. Then, we have to multiply
the bound by d, which is not the case for the approximate
algorithm. For further details we refer to Section 2.4.

2.2 Bisection(s)
This section covers the second step of the refinement al-

gorithm. Recall that the isolation ratio of a real isolating
interval I of a root α1 is defined as ir(I) = 2 |m− αc1 |/|I|,
where αc1 is the root of A closest to α [30]. Our goal is,
using bisections, to achieve an isolation ratio of ir(I) ≥ 5d2,
which ensures the quadratic convergence of Newton iteration
right from the start [33, Corollary 4.5].

If ir(I) = 1 + δ for an interval I = [a .. b], then after k
bisection steps, we obtain an interval Ik, such that ir(Ik) ≥
1 + 2kδ. Details of the algorithm appear in Alg. 2. We
increase the isolation ratio by applying bisections, for which
we need to evaluate A. We set dir, equal to −1, 0, or 1 to
indicate the search direction. If the initial isolation ratio is
ir(I) = 1 + 2δ, then after k bisections, in the worst case, we
increase the isolation ratio to ir(Ik) = 1 + 2kδ, where Ik is
the new, refined, isolating interval. The variable dir takes
the values left or right and specifies if the roots is on the
left or on the right of m. If we know in advance whether
the closest root of A not belonging to the interval I lies to
the left or the right of the midpoint of I then we may set
dir accordingly. Otherwise we set dir = ∅. In the latter
case, after the first bisection, we are sure about the value of
dir. Even if this observation does not affect the asymptotic
behavior of the algorithm, it can save us a constant number
of bisections, which might be important in practice.

If the initial isolation ratio is r = 1 + 2 · 2lg(r−1)−1, then
after k steps it becomes 1 + 2k · 2lg(r−1)−1. If our goal is to
achieve an isolation ratio R, then

1 + 2k · 2lg(r−1)−1 ≥ R⇔ 2k · 2lg(r−1)−1 ≥ R− 1⇔

k + lg(r − 1)− 1 ≥ lg(R− 1)⇔ k ≥ 1 + lg
R− 1

r − 1
.

In our case R = 5d2. From the previous step αDES guaran-
tees an isolation ratio at least 3 and thus we need to perform
k = O(lg(d)) bisections.

Each bisection consists of an evaluation of A over the mid-
point of the corresponding interval and setting dir accord-
ingly. We will perform this in an approximate way using the
algorithm from [22]. We need the following lemma for the
approximate variant, αBIS.

Lemma 6. [22] The approximate bisection for a root α1 ∈
I = [a .. b] ofA requires a working precision of ρ = Õ(− lgw+

τ+dΓ+lg
∏
i ∆i)) bits and has bit complexity ÕB(d(− lgw+

τ + dΓ + lg
∏
i ∆i)), where w is the width of I.

A single bisection halves an interval of width w, k bisec-
tions decrease the width to wk = w/2k.

In the worst case the interval has the width w 2−L, and so

the number of bits needed in the worst case is ρ = Õ(− lgw+
L+ τ +dΓ + lg

∏
i ∆i). We perform O(lg(d)) bisections, and

so the overall cost is ÕB(d(− lgw+L+ τ + dΓ + lg
∏
i ∆i)).

Recall that − lgw = −O(lg ∆(A)) = Õ(dτ).

Lemma 7 (αBIS). The cost of αBIS is ÕB(d(− lgw + L+

τ + dΓ + lg
∏
i ∆i)) or ÕB(d2τ + dL).

Remark 8 (BIS). If we perform the bisection step using
only exact arithmetic with rational numbers, then we per-
formO(lg(d)) evaluations of A over numbers of bitsizeO(L−
lgw), in the worst case. Each evaluation costs ÕB(d(τ −
lgw + L)), using the divide and conquer scheme [19, 10].

Hence, the overall complexity is ÕB(d(τ − lgw+L) lg(d)) =

ÕB(d(dτ + L)) = ÕB(d2τ + dL).

2.3 Bounding the Newton operator
The last step of the refinement algorithm consists in per-

forming a suitable number of Newton iterations to refine
the isolating interval up to the required width. The bisec-
tions of the previous step ensure that the interval is small
enough that Newton iteration converges quadratically, right
from the beginning. Actually it satisfies the conditions of
the following theorem [33, Corollary 4.5].

Theorem 9. Suppose both discs D(m, r) and D(m, r/s) for
s ≥ 5d2 contain a single simple root of a polynomial A =
A(x) of degree d. Then Newton’s iteration

xk+1 = xk −A(xk)/A′(xk), k = 0, 1, . . . (4)

converges quadratically to the root α right from the start
provided x0 = m.

First, we estimate the precision needed at each of Newton
iteration. Given an interval [ak .. bk], let mk = (ak + bk)/2
be its middle point, where we apply the Newton operator,
that is

NA(mk) = mk −
A(mk)

A′(mk)
,

where Ak = A(mk), A′k = A′(mk), and A′ is the derivative
of A. We assume that Ak > 0 and A′k < 0. The other
sign combinations could be treated similarly. Suppose we
compute Ak and A′k using interval arithmetic and a working
precision ρ to be specified later. We can assume that their
interval representation is [Ak] = [Ak− ε .. Ak + ε] and [A′k] =
[A′k − ε .. A′k + ε], both having the same width, ε.

The interval evaluation of Newton operator, using the
same working precision ρ, results in the interval

[NA(mk)] =

[
mk − ε−

Ak − ε
A′k − ε

..mk + ε−
Ak + ε

A′k + ε

]
.

The width of [NA(mk)] is 2ε − Ak+ε
A′

k
+ε

+ Ak−ε
A′

k
−ε , and now we

ensure its upper bound t = 2−Lw.

2ε− Ak + ε

A′k + ε
+
Ak − ε
A′k − ε

≤ t⇒

P (ε) = 2ε3 − tε2 − 2(Ak −A′k +A′k
2
)ε+ tA′k

2 ≥ 0 .

The coefficient list of P has 2 sign variations and hence
from Descartes’ rule of signs it follows that P has at most
two positive real roots. If there exists such a pair of roots,
let them be ε1 < ε2 and assume that P is positive between
0 and ε1. For the width of [NA(mk)] to be smaller than
t = 2−Lw, it suffices ε to satisfy 0 < ε ≤ min{1, ε1}. To
guarantee this we estimate a (positive) lower bound on the



roots of the P and require ε to be smaller than it. Combine
Lemma 2 and Cauchy’s bound, e.g. [40, 26] to obtain

ε ≤ tA′k
2

t+ 2(Ak −A′k +A′k
2)

.

by working with a precision ρ that satisfies

2−ρ+1(d+ 1)22τ+d(Γ+2) ≤ ε ≤ tA′k
2

t+ 2(Ak −A′k +A′k
2)

. (5)

Hence, we can express ρ as a function of the desired width.
It remains to bound the evaluations Ak and A′k. At the k-

th step, given an interval Ik, we apply Newton operator on its
midpoint, mk, and deduce that ∆i < 2|mk−αi| for all i 6= 1.
Indeed for mk ≤ α1 ≤ αi, it holds |mk−αi| ≥ |α1−αi| ≥ ∆i,
whereas for α1 ≤ mk ≤ αi it holds |α1 −mk| ≤ |mk − αi|,
because αi lies outside the isolating interval. Therefore ∆i ≤
|αi − α1| ≤ |αi −mk|+ |α1 −mk| ≤ 2|mk − αi|.

So using Lemma 3 we get

|Ak| ≥ |mk − α1||ad| 31−dM (A)−1 2lg
∏

i ∆i−1 . (6)

For the approximations achieved by Newton iterations [32,
8], when the convergence is quadratic, we have

|mk − α1| = 24−2k

|m0 − α1| . (7)

Obviously

|m0 − α1| ≥ t = 2−Lw ,

since the required width is not achieved from the initial in-
terval, and so

|mk − α1| = 24−2k

|m0 − α1| ≥ 24−2k−L+lgw , (8)

which leads to

|Ak| ≥ |ad| 24−2k−L+lgw 31−dM (A)−1 2lg
∏

i ∆i−1 . (9)

We need a similar bound for |A′k|. Let α′i be the roots
of A′. We assume that A′ is square-free. This is no loss
of generality since we can estimate the required quantities
using the square-free part of A′.

Let the two roots of A′ that are closer to α1 be α′1 and
α′2, which are located to the left and to the right of α1,
respectively. Let α′ denote any other root of A′. Then it
holds that |mk − α′i| ≥ |α′ − α′i| ≥ ∆′i, where ∆′i is the
local separation bound of α′i and where α′ is either α′1 or α′2
depending on which side from mk the root α′i lies. To see
this assume that α′i lies on the right of α′2. Then it holds
mk ≤ α′2 ≤ α′i, and so |mk−α′2| ≥ |α′2−α′i| ≥ ∆′i. A similar
argument holds when α′i lies on the left of α′1. Therefore

|A′k| = |A
′
(mk)| = |d ad|

d−1∏
i=1

|mk − α′i| =

= |d ad||mk − α′1||mk − α′2|
d∏

i=3

|mk − α′i|

≥ |d ad||mk − α′1||mk − α′2|
1

∆′1∆′2

d∏
i=1

∆
′
i

≥ |d ad||mk − α′1||mk − α′2|M
(
A
′)−2

2
−2

2
lg
∏

i ∆′i ,

where we used the inequality ∆′i ≤ 2M (A′).
We bound |mk −α′1| and |mk −α′2| using the width of Ik.

We notice that mk is closer to α1 than to α′1 and α′2. This is
so because both α′1 and α′2 lie outside the interval of interest,
which holds because of the quadratic convergence of Newton
operator.

The complex disc with diameter the interval I0 satisfies the
assumptions of Thm. 9, and this is also the case for all discs
with the centers at mk and radii |Ik|/2. In other words, the
roots α′1 and α′2 lie outside the 5d2-dilations of these discs,
that is the centers mk lie much closer to α1 than to α′1 and
α′2.

So using Eq. (8) we obtain |mk − α′1| ≥ |mk − α1| ≥
24−2k−L+lgw. Hence

|A′k| ≥ |d ad| 28−2k+1−2L+2 lgwM
(
A′
)−2

2−2+lg
∏

i ∆′i .
(10)

Now we can bound the right-hand side of inequality (5).
First, we bound the numerator. For all mk it holds that
|mk| ≤ 2Γ ≤ 2τ+1, see Eq. (1). Thus

|A′k| = |A′(mk)| ≤
d∑
i=1

i |ai| 2(i−1) Γ ≤ d 2τ 2dΓ ≤ 22dτ+lg d ,

and so

tA′k
2 ≤ 2−L+lgw+6dτ+2 lg d . (11)

Next, we bound the denominator of the upper bound in
(5). To simplify the notation let |Ak| ≥ 2−`1 > 0 and
|A′k| ≥ 2−`2 > 0. For the exact bounds we refer the reader
to equations (9) and (10). Recall that we assume A′k to be
negative and hence −A′k > 0. Then

t+ 2(Ak −A′k +A′k
2
) ≥ 2min{−`1,−2`2,−L+lgw}

≥ 2−max{`1,2`2,L−lgw} ,

and so

1

t+ 2(Ak −A′k +A′k
2)
≤ 2max{`1,2`2,L−lgw} . (12)

Combining (9) and (10) with (11), (12) and (5) we deduce
that the required precision is

Õ

(
L− lgw + 2k + τ + lg

(
M (A)M

(
A′
))
− lg

∏
i

∆i

∏
i

∆′i

)
.

We want to achieve |mk−α1| ≤ w/2L. Using Eq. (7) we get

|mk − α1| ≤ 24−2k w

2
≤ w

2L
⇒ k ≥ lg(L+ 3) .

Hence, we need to apply the Newton operator k = O(lg(L))
times, to refine the interval by a factor of 2−L. So the overall
bit complexity of this step is

ÕB

(
d

(
L− lgw + dτ + lg

(
M (A)M

(
A′
))
− lg

∏
i

∆i

∏
i

∆′i

))
.

Note that |ad| ≥ 1, O(lgM (A)) = O(τ+lg d), O(lgM (A′)) =
O(τ lg d), − lgw = O(dτ), use Prop. 1 to bound lg

∏
i ∆i and

lg
∏
i ∆′i, and obtain that the precision Õ(dτ+L) is sufficient

for us. So the Boolean complexity of αDES is ÕB(d2τ + dL).

Lemma 10 (αNEWTON). The maximum number of bits needed

by Newton iterations is Õ(dτ +L) and the total complexity

of the Newton step is ÕB(d2τ + dL).

We should mention that there is no need to realize the
Newton iteration using interval arithmetic. However, it is
easier to estimate theoretically the working precision needed
using the formalization of interval arithmetic.



Remark 11 (NEWTON). We can also estimate the complex-
ity of Newton iterations in the case where only exact arith-
metic with rational number is used. We need to perform
O(lg(L)) Newton iterations, each of which consists of an
evaluation of A and its derivative over numbers of bitsize
O(τ + L − lgw), in the worst case. The cost of the evalua-

tions is ÕB(d(τ + L − lgw)). Hence the overall complexity

is ÕB(d(τ + L− lgw) lg(L)) = ÕB(d2τ + dL)).

2.4 Overall complexity of R3 and αR3

Theorem 12 (αR3). We can refine an isolating interval of
a real root of A to decrease its width by a factor of 2−L by

using αR3 or R3 with Boolean complexity ÕB(d2τ + dL).

Suppose we wish to refine r ≤ d real roots of A. We can
apply our algorithm concurrently, and then its overall cost
is dominated by the cost of recursive numerical polynomial
evaluation at r points. For that task we can apply the nu-
merical algorithm of [31], which solves this problem by using
O(d log d) arithmetic operations, which promises extension
to this task of the complexity bounds of FFT and conse-
quently the extension of the complexity estimates of Th. 12
to simultaneous refinement of r real roots.

In the exact version, R3, we perform evaluations at num-
bers of bitsize L. The output of such an evaluation re-

sults in rational numbers of bitsize Õ(d(τ + L)). When
we isolate all the r real roots, the bitsize of the output is

Õ(r d(τ + L)) = Õ(d2(τ + L)), which is also a lower bound
on the Boolean complexity of the refinement process. This
exceeds the bound for αR3 by a factor of d.

2.5 Requirements for the isolating intervals
Our algorithms support the complexity bound of Thm. 12

provided that we are given a real m and a positive r such
that the root-isolation disc D(m, r) = {x : |x − m| < r}
contains a single simple real root α of A, and no other roots
of A, and furthermore α is not very close to the boundary
circle of the disc, namely

|α−m|(1 + c′/dc) ≤ r , (13)

for two real constants c′ > 0 and c. Our argument in Section
2.2 shows that under the latter assumption it is sufficient to
apply O(log d) bisections to strengthen bound (13) to the
level 5d2|α−m| ≤ r. Then we can apply Theorem 9 to en-
sure quadratic convergence of Newton’s iteration, and then
complete our algorithms and proofs.

Is it simple to ensure bound (13) at a low cost? For the
worst case input this is not simpler than to approximate
the root α very closely. Indeed the divide-and-conquer algo-
rithms (cf. [29], [36]) can compute a real isolation interval
for a single simple root, but produce such intervals already
well isolated from all other roots, and then our construc-
tion is not needed. On the other hand root-finders working
on the real line such as the subdivision algorithms produce
such intervals independently of the distribution of nonreal
roots on the complex plane. In this case we cannot exclude
any unfavorable distribution of them. On the average input,
however, violation of the isolation assumption (13) seems to
be rather pathological (see also the next section).

A natural question arises: How can we test whether this
assumption holds for a given polynomial A and a real inter-
val I containing its single simple root α? In fact very easily:

Algorithm 1: Isolation discs(A, I1, . . . , Ir)

Input: A ∈ ZZ[X], and isolating intervals I1, . . . , Ir
Output: Isolation ratio for convergence of Newton.

1 Apply a fixed number of bisections as well as bisections
of exponenent to all r input intervals I1, . . . , Ir, which
transforms them into subintervals Ī1, . . . , Īr.

2 Recall that the Möbius map z = x+
√
−1

x−
√
−1

maps the real

line {x : =(x) = 0} into the unit circle
C1 = {z : |z| = 1}. Note that x =

√
−1 z−1

z+1
and

compute the coefficients of the polynomial
B(z) = (z + 1)nA(

√
−1 z−1

z+1
).

3 Apply the root-radii algorithm (cf. [29], [36]) to
approximate the root radii of this polynomial. In
particular this defines an annulus about the circle C1,
which contains the images of the r real roots of the
polynomial A(x) and no images of its nonreal roots.

4 Compute the boundary circles of the image of this

annulus in the converse map x =
√
−1 z−1

z+1
.

5 For all subintervals Ī1, . . . , Īr compute at first the

distances d̄1, . . . , d̄r from their midpoints to these two
boundary circles and then the ratios
2d1/|Ī1, . . . , 2dr/|Īr|.

6 return the minimum of the ratios as the quaranteed
isolation ratio for the input intervals.

we can just apply our algorithms. They compute a sequence
of real inclusion intervals (ah .. bh), for h = 0, 1, . . . , where
(a0 .. b0) = I and bh > ah for all h. We verify the inclusion
property by checking whether A(ah)A(bh) < 0 and either
observe that h bisection steps decrease the width of the iso-
lating interval by a factor of 2h or otherwise conclude that
the assumption (13) is certainly violated. This test by action
requires negligible extra cost.

Alternatively, given m and r, we can test whether the disc
D(m, r) contains only one root by applying the Schur–Conn
test, partial inverses of Descartes’ rule of sign, e.g. [16] or the
root-radii algorithms of [36] (cf. [28, Section 4]), which ap-
proximate the distances from m to all roots of A within, say
1% error. These a priori tests, however, have no advantage
versus the test by action and have a little greater cost.

Remark 13. Suppose we have r real intervals I1, . . . , Ir,
each containing a single simple root of A. In this case our
algorithm Isolation discs in Alg. 1 is a single a priori test
of the existence of all the r root-isolation discs. Our present
paper does not use this algorithm, but it may be of indepen-
dent interest, and our next research plan includes estimation
of its Boolean complexity, which seems to be dominated at
Stage 3. This stage is quite inexpensive, according to the
estimates in [36] and [29].

3. AVERAGE ANALYSIS OF DES AND αDES

The most time consuming part of R3 and αR3 is the αDES
procedure. It requires, in the worst case,

g2
1 = dlg(lg(w) + L− 1)e2 = O(lg2(τ + L))

evaluations of our input polynomial A. This occurs where
(other) roots of A lie very close to the endpoints of the initial



interval I. However, in practice this behavior is rare, if it
occurs at all. To explain this phenomenon, Pan and Linzer
[30] estimated the average number of steps of DES under the
assumption that a real root is uniformly distributed in an
interval and concluded that in this case R3, and hence αR3,
needed a constant number of steps, with a high probability.

Even though the assumption on the equidistribution of
the real roots in [30] is plausible, we are not aware of any
distribution on the coefficients that results in such a behavior
for the roots. We consider an average case analysis in the
case where the root we approximate is a real root of a random
Weyl or SO(2) polynomial [18]. The density function of the
real roots is considerably different in these cases. We will also
arrive to the same conclusion, that is R3 and αR3 perform a
constant number of steps with high probability.

3.1 Weyl polynomials
Weyl polynomials, are random polynomials of the form

A =
∑d
i=0 aix

i/
√
i!, where the coefficients ai are indepen-

dent standard normals. Alternatively, we could consider
them as A =

∑d
i=0 aix

i, where ai are normals of mean

zero and variance 1/
√
i!. As the degree grows, the real

roots, except a constant number of them, are in the interval
[−
√
d ..
√
d]. Their (asymptotic) probability density function

is f(t) = 1

2
√
d
.

The probability that α1 ∈ [a .. a+ w/22k

] is

Pr[α1 ∈ [a .. a+w/2
2k

]] = Pr[g1 > k] =

∫ a+w/22k

a

f(t)dt =
w

22k+1
√
d
,

which rapidly goes to zero as k, but also as d, grows.

3.2 SO(2) polynomials
Random polynomials of the form A =

∑d
i=0 aix

i, where
the coefficients are i.d. normals with mean zero and vari-
ances

(
d
i

)
, where 0 ≤ i ≤ d are called SO(2) polynomials. Al-

ternatively, we could consider them as A =
∑d
i=0

√(
d
i

)
ai x

i,

where ai are i.i.d. standard normals. They are called SO(2)
because the joint probability distribution of their zeros is
SO(2) invariant, after homogenization.

The (asymptotic) probability density function of the real
roots of SO(2) random polynomials is f(t) = 1

π(1+t2)
.

Assume that the isolating interval I = [a .. b] is a subset
of (0 .. 1), and let its width be w. We can treat the case
where I is subset of (1 ..∞) similarly. The probability that

α1 ∈ [a .. a+ w/22k

] is

Pr
[
α1 ∈ [a .. a+ w/22k

]
]

= Pr[g1 > k]

=

∫ a+w/22k

a

f(t)dt = arctan(a)− arctan(a+ w/22k

)

= arctan
w/22k

1 + a2 w/22k
≤ w

22k + a2w
− 1

3

(
w

22k + a2w

)3

,

which rapidly goes to zero as in the case of Weyl polynomials.
However, now there is no dependence on the degree but only
on the endpoints of the (initial) isolating interval.

4. CONCLUSIONS AND FUTURE WORK
We present an approximate variant of a real root refine-

ment algorithm that is based on the Bisection of the Ex-
ponents, or Double Exponential Sieve algorithm, bisection

and Newton operator. The complexity of the algorithm is

ÕB(d2τ+dL). We are currently implementing the presented
algorithm for real root refinement and the first results are
quite encouraging. We plan to report a detailed experimen-
tal analysis in the near future.

Can we combine αDES with the approximate version of
qir in [22] to provide an alternative method to guarantee
quadratic behavior? We believe that this is a very interesting
approach to explore.

For random polynomials, it is reasonable to assume that
we can derive an even faster algorithm for real root refine-
ment that takes advantage of the distribution of the roots.
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