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Abstract. Classification of medical images in multi-subjects settings is

a difficult challenge due to the variability that exists between individ-

uals. Here we introduce a new graph-based framework designed to deal

with inter-subject functional variability present in fMRI data. A graph-

ical model is constructed to encode the functional, geometric and struc-

tural properties of local activation patterns. We then design a specific

graph kernel, allowing to conduct SVM classification in graph space. Ex-

periments conducted in an inter-subject classification task of patterns

recorded in the auditory cortex show that it is the only approach to per-

form above chance level, among a wide range of tested methods.

Keywords: fMRI, classification, graphs, kernels, inter-subject, variabil-
ity

1 Introduction

Since brain functions are considered to arise from activities distributed across
networks, multivariate pattern recognition methods are adapted to study infor-
mation processing in the brain. Multi-voxel pattern analysis (MVPA) of func-
tional MRI allows to study the organization of distributed representations in
the brain by using a classification framework where one attempts to predict the
category of the input stimuli from the data [8]. MVPA has been largely applied
within individual subjects [13].

However, because of the challenge posed by the large inter-individual vari-
ability, very few studies describe inter-subject decoding, i.e successfull prediction
on data from a subject that was not part of the training set. Among these, most
rely on global (i.e full-brain) analysis, using large-scale features ([12], [15]). The
few studying fine-scale local patterns achieve very low inter-subject general-
ization performances [3], or use implicit abstract models [9]. None attempt to
characterize the inter-subject functional variability (i.e the fact that the corre-
lation between cortical folding and the underlying functional organization vary
between subjects [4]) and use such characterization in the classification process.
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In this paper, we introduce a new framework specifically aimed at tackling
the challenges offered by inter-subject functional variability by modelling its spa-
tial properties. Our approach integrates the fact that the geometric properties
of local functional features, as well as their levels of activation, can vary across
subjects, under the assumption that the underlying spatial structure of the local
activation pattern is consistent. We therefore design a graphical model to rep-
resent such patterns with their properties of interest: the nodes of the graphs
represent small activation patches; their attributes carry the relevant features,
such as their position and activation level; the edges of the graph (given by spa-
tial adjacency) encode the spatial structure of the pattern. The classification is
then performed directly in graph-space with Support Vector Machines (SVM),
using a graph kernel specifically designed to take into account all properties of
our graphical model. Since the topographic organization of primary sensory ar-
eas ensures the structural consistency of activation patterns across subjects, we
validate our framework on fMRI data recorded in the primary auditory cortex
during a tonotopy experiment [10].

This paper is organized as follows: we detail the construction of our graphical
model in section 2 and the kernel design in section 3; we then describe our
experiments in section 4 and present our results in section 5.

2 Graphical Model of Activation Patterns

We here describe the design of a graphical model that summarizes the infor-
mation relevant to characterize a pattern a pattern of activation measured with
fMRI within a contiguous region of interest (ROI).

Graph nodes. Assuming that the ROI admits an underlying subdivision into
a set of smaller and functionally relevant sub-regions, the first step to construct
our graphical model estimates a parcellation of the ROI, i.e. a partition into a
set of sub-regions or parcels [5]. Specifically, for a contiguous ROI R, we compute
the parcellation V = {Vi}

q
i=1

of R, so that the q parcels verify: ∪q
i=1

Vi = R
and Vi ∩ Vj = ∅ whenever i 6= j. We use V as the set of vertices of our graphical
model, each parcel corresponding to a node of the graph.

Nodes attributes: functional features. Let f be the real-valued function de-
scribing the Bold activation. In a parcel Vi, the activations values {f(v)}v∈Vi

are summarized to form an n-dimensional feature vector F (Vi); we note F the
n × q matrix F = [F (V1) · · ·F (Vq)] of functional features, where each column i

of F is F (Vi). A simple example of such F , which we make use of later on, is to
compute the mean activation value within a parcel.

Nodes attributes: geometric features. Let x be a coordinate system defined
in R. We summarize the geometric information of parcel Vi through a m-
dimensional feature vector X(Vi) , computed from the locations {x(v)}v∈Vi

.
We note X the m × q matrix X = [X(V1) · · ·X(Vq)] of geometric features. X
may contain information on the shape or location of the parcels.

Graph edges: structural information. The set of edges is represented by a
binary adjacency matrix A = (aij) ∈ R

q×q, where aij = 1 if parcels Vi and Vj
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are spatially adjacent (i.e if ∃vi ∈ Vi, ∃vj ∈ Vj so that vi and vj are neighbors, for
a given neighborhood definition), and aij = 0 otherwise. This adjacency matrix
encodes the spatial structure of the activation pattern.

Full graphical model. Using these definitions, we have defined an attributed
region adjacency graph [14] (hereafter noted a-RAG) G = (V, A,F ,X ), which
represents the fMRI activation pattern within the ROIR by encoding functional,
geometric and structural information.

3 Kernel design

The fully generic family of convolution kernels [7] is defined as:

K(G,H) =
∑

g⊆G,h⊆H

∏

t

kt(g, h), (1)

where t ∈ N
∗ is the, usually small, number of base kernels kt, which act on

subgraphs g and h. To design a kernel for our a-RAGs, we need to choose the
type of subgraphs, the value of t and to instantiate each base kernel kt.

Subgraphs used to design such kernels include paths and random walks [6],
tree motives [11] etc. For simplicity reasons, we will here use paths of length two;
note that the definitions below are directly extendable to other choices. Given
the characteristics of the a-RAGs, we need to define t = 3 elementary kernels kf ,
kg and ks, respectively acting on functional, geometric and structural features.

Let G = (VG, AG,FG,XG) and H = (VH , AH ,FH ,XH) be two a-RAGs: we
note gij = {i, j} and hkl = {k, l} two pairs of nodes in G and H, respectively;
let qG and qH be the number of nodes in G and H, respectively — note that qG
and qH may be different.

Functional kernel. Kernel kf aims at measuring the similarity of the activa-
tion in parcels of gij and hkl. We therefore propose the following product (and
thus positive definite) kernel

kf (gij , hkl) = e−‖FG
i −FH

k ‖2/2σ2

f · e−‖FG
j −FH

l ‖2/2σ2

f , (2)

where σf ∈ R
∗
+ and FG

p (resp. FH
p ) is the pth column of FG (resp. FH). Us-

ing such a product of Gaussian kernels allows dealing with the inter-subject
functional variability.

Geometric kernel. The second base kernel kg acts on the geometric features.
To allow for inter-subject variability, we follow the same principle as for the
functional kernel, which gives:

kg(gij , hkl) = e−‖XG
i −XH

k ‖2/2σ2

g · e−‖XG
j −XH

l ‖2/2σ2

g , (3)

where σg ∈ R
∗
+, and XG

p (resp. XH
p ) is the pth column of XG (resp. XH).

Structural kernel. The base kernel ks aims at valuing the structural similar-
ity of G and H. Since our main hypothesis is that the structure is consistent
across patterns recorded in different subjects, we adopt a decision function (by
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opposition to the smooth functional and geometric kernels), by using the linear
kernel on binary entries aGij and aHkl of the adjacency matrices AG and AH , which
encodes the fact that pairs gij and hkl are both edges:

ks(gij , hkl) = aGij .a
H
kl (4)

Resulting kernel. With the definitions of kf , kg and ks, we may define the
resulting kernel (with parameters σg and σf ):

K(G,H) =

qG∑

i,j=1

qH∑

k,l=1

kg(gij , hkl) · kf (gij , hkl) · ks(gij , hkl), (5)

Fig. 1. Graph construction process. A. Inflated cortical surface of the right hemisphere
for one subject; Heschl’s gyrus is highlighted. B. A normalized activation pattern C.
The two coordinates fields computed within the ROI. D. Example of parcellation with
10 parcels (arbitrary colors for illustration only). E. Example of an attributed graph:
the nodes are located at the barycenter of the parcels and the color encodes the average
level of activation in the parcel.

4 Real experiment and data analysis

fMRI tonotopy experiment. In order to test this framework, we used a dataset
that was acquired to study the tonotopic property of the human auditory cortex.
This property states that neighboring neurons in the cortex respond to auditory
stimuli of neighboring frequencies. This results in a spatially organized mapping
of the auditory cortex. Typically higher frequencies are represented in the medial
part of the primary auditory cortex (A1) while lower frequencies are represented
more laterally, although recent high resolution studies suggest a more complex
patterns with mirror-symmetric frequency gradients [10].

For each of the nine subjects, a T1 image was acquired (1mm isotropic vox-
els). Each stimulus consisted of a 8s sequence of 60 isochronous tones covering
a narrow bandwidth around a central frequency f . There were five types of
sequences (i.e. conditions), each one centered around a different frequency f

(f ∈ {300Hz, 500Hz, 1100Hz, 2200Hz, 4000Hz}), with no overlap between the
bandwidths covered by any two types of stimuli. Five functional sessions were
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acquired, each containing six sequences per condition presented in a pseudo-
random order. Echo-planar images (EPI) were acquired with slices parallel to the
sylvian fissure (repetition time=2.4s, voxel size=2x2x3mm, matrix size 128x128).
Fieldmaps were recorded to allow EPI geometric distortion correction.

Data processing and classification. The preprocessing of the functional data,
carried on in SPM8 (www.fil.ion.ucl.ac.uk/spm), consisted in realignment,
slice timing correction and “fieldmap” unwarping. Then, a generalized linear
model was performed (in nipy: nipy.sourceforge.net) with one regressor of
interest per stimulus. The weight (beta) maps of these regressors served as
estimates of the response size for each stimulus. For the spatial proximity to
have an anatomical meaning, one has to work on the 2D cortical surface. We
therefore used freesurfer (surfer.nmr.mgh.harvard.edu) to extract the corti-
cal surface from the T1 image and automatically define the primary auditory
cortex (Fig. 1A) as part of Heschl’s gyrus (thus defining our cortical ROI R in
each subject). The beta maps are then projected onto the cortex, and slightly
smoothed (equivalent fwhm of 3mm) in cortical space, which defines the func-
tion {f(v)}v∈R (Fig. 1B). A 2D local coordinates system is defined through
a conformal mapping of R onto a rectangle [1], defining {x(v)}v∈R (Fig. 1C).
One then need a parcellation technique that produces homogeneous parcels.
We use Ward’s hierarchical clustering algorithm on anatomo-functional features
{f(v), x(v)}, with an added spatial constraint: the merging criterion of two adja-
cent parcels consists in minimzing the variance across all parcels [12] (Fig. 1D),
and the neighboring criterion is given by the neighboring of the vertices of the
cortical mesh. Finally, we define one functional feature F , the mean activation
in a parcel (normalized between 0 and 1) and a 2D geometric feature vector X
as the coordinates of the barycenter of each parcel.

Using the kernel trick, one can then directly perform Support Vector Clas-
sification in graph space (G-SVC) to guess the class of the input stimulus (i.e
the tone frequency) from a given activation pattern. In practice, the Gram ma-
trix was computed with custom-designed code, and given as input to the SVC
function of the scikit-learn python module (scikit-learn.org), which uses Lib-
SVM (www.csie.ntu.edu.tw/~cjlin/libsvm/) to implement SVM. A leave-
one-subject-out cross-validation scheme was used to measure the classification
accuracy. For each fold of this cross-validation, we estimated the kernel param-
eters σf and σg as the median euclidean distance between the functional and
geometric (respectively) feature vectors of the parcels between all nodes of all
example-graphs in the training set, which corresponds to a standard heuristic [2].
Two types of analyses were conducted. First, we performed simulations with a
fixed number of nodes q for all graphs and all subjects; several simulations were
conducted, with q ∈ {5, 6, 7, 8, 9, 10, 15, 20, 25, 30}. Second, we imposed different
number of nodes for each subject, randomly taken in three intervals Iq = [5, 13],
[14, 22] and [5, 21]; for each of these intervals, we ran 18 simulations with different
random sets of node numbers (each time with a different q for each subject).

In order to compare the performances of our framework to vector-based meth-
ods, one need to define a vertex to vertex correspondance across subjects (which
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is not needed with our framework). We therefore aligned the anatomy of all
subjects to a standard spherical cortical space using freesurfer and projected
the beta maps to this standard space. R is now common to all subjects and
we can use {f(v)}v∈R as a feature set. Several classification algorithms were
then used, each time with several values of their respective hyper-parameters:
1) linear SVC; 2) non linear SVC, with gaussian (with σ ∈ {10−n}n∈{−2,−1,0,1})
and polynomial (of order n ∈ {2, 3, 4}) kernels; 3) k-nearest neigbors (with
k ∈ {3, 5, 7, 11, 15}); 4) logistic regression with l1 and l2 regularization (with
weight λ ∈ {10n}n∈{2,3,4}).

5 Results and discussion

Table 1 contains the performances of our G-SVC framework vs. the different
benchmark vector-based methods. The scores are the mean classification accu-
racies across all folds of the cross-validation; for the benchmark methods, the
reported score is the highest one across simulations ran with all values of their
hyper-parameters; for G-SVC, it is the mean performances across all values of q.
All vector-based methods performed similarly, but none of them performed sig-
nificantely above chance level (equal to 0.2 since there were five types of auditory
stimuli). Our G-SVC framework was the only method to perform significantely
above chance level (one sample t-test, p < 0.05, indicated by a ⋆), in both the
left and right Heschl’s gyri (HG). It also performed significantely better than
the best benchmark method (linear SVC for the right HG, logistic regression for
the left HG; paired t-test with matched left-out subject, p < 0.05; indicated by
a ⋄). Table 2 describes the accuracy of our G-SVC depending on the number of
graph nodes q. Our framework performed above chance level in all cases (one
sample t-test, p < 0.05; ⋆), and significantely better than the best benchmark
method (paired t-test, p < 0.05; ⋄) in all but two cases (left HG, q = 10, 15).

G-SVC lin. SVC non lin. SVC k-NN log. reg.

right HG 0.45⋆⋄ 0.25 0.23 0.27 0.27

left HG 0.36⋆⋄ 0.26 0.24 0.25 0.24

Table 1. G-SVC vs. benchmark methods

G-SVC q nodes 5 6 7 8 9 10 15 20 25 30

right HG 0.48⋆⋄ 0.45⋆⋄ 0.45⋆⋄ 0.43⋆⋄ 0.47⋆⋄ 0.43⋆⋄ 0.44⋆⋄ 0.48⋆⋄ 0.47⋆⋄ 0.44⋆⋄

left HG 0.33⋆⋄ 0.37⋆⋄ 0.35⋆⋄ 0.38⋆⋄ 0.35⋆⋄ 0.35⋆ 0.34⋆ 0.37⋆⋄ 0.39⋆⋄ 0.38⋆⋄

Table 2. Influence of the number of graph nodes q in G-SVC

Results of the simulations using a randomized number of nodes q for each
subject are given in Table 3. In all 108 simulations, our G-SVC framework per-
formed above chance level (one sample t-test, p < 0.05, ⋆). This shows that the
proposed kernel is efficient for graphs having different number of nodes. More-
over, in 80% of the simulations (86/108), it outperformed the best benchmark
method (paired t-test, p < 0.05, ⋄). Overall, the performances are very similar
to the ones obtained when the number of nodes is fixed for all subjects.
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Interval Iq [5,13] [14,22] [5,21]

right HG 0.43 (18⋆, 18⋄) 0.45 (18⋆, 18⋄) 0.45 (18⋆, 18⋄)

left HG 0.35 (18⋆, 12⋄) 0.36 (18⋆, 9⋄) 0.36 (18⋆, 11⋄)

Table 3. Mean G-SVC performances with variable q over 18 simulations (number that
resulted in accuracy above chance level ⋆, above the best benchmark method ⋄)

Discussion. In this paper, we designed a graphical model and a graph-kernel
that allows to compare and discriminate high dimensional patterns of fMRI acti-
vation across subjects. To our knowledge, this is the first time that a graph-based
pattern recognition approach is used to study local fMRI activation patterns.
Specifically, we have demonstrated the power of this approach in a classification
task that aims at predicting experimental variables from fMRI patterns when
the classifier is trained on data from a set of subjects and its generalization
performance is tested on data from a different subject.

Our G-SVC framework performed above chance level in all cases, whereas
none of the benchmark methods did. This validates that this framework is ap-
propriate to deal with inter-subject variability that is not accounted for by a
state of the art group alignment, such as the one offered in freesurfer. How-
ever, it is important to use the anatomical information at our disposal, as was
attempted in this study by i) working on the cortical surface, and ii) defining
a local coordinates system within our region of interest for each subject, thus
using the most of the local individual anatomy. Indeed, we also tested G-SVC
using the raw three-dimensional voxel coordinates for x, and the performances
(not reported here) were systematically lower.

A major asset of using a graph kernel such as the one defined here is that
the graphs can have different number of nodes, without having to strictly solve
a graph matching problem, i.e to assign nodes to one another across instances.
This is emphasized by the results of our simulations where the number of nodes
was randomly chosen and forced to be different for each subject. In those, our
framework still outperformed vector-based methods, demonstrating the ability
to deal with graphs with different node numbers. We also noted a few simulations
where the classification accuracy was higher than with a fixed q for all subjects.
This suggests that there might exist an “optimal” number of nodes for each
subject and that performances could increase by adequately choosing q for each
subject. We will address this in future work, for instance by using a model
selection criterion (BIC, AIC etc.) in the parcellation. Another source of potential
improvement lies in selecting the hyper-parameter σf and σg of the kernel in a
nested cross-validation, rather than using a heuristic estimator.

6 Conclusion

We have designed a graphical model carrying functional, geometric, and struc-
tural features to represent spatial patterns. With a custom-designed graph kernel
providing a natural metric, this framework seems particularly attractive to per-
form classification tasks in multi-subject settings, as evidenced by the conclusive
results obtained here when dealing with inter-subject functional variability in
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fMRI data. This modelling strategy therefore opens the possibility to character-
ize and discriminate populations based on their functional patterns of activation.
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