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ABSTRACT

We propose efficient algorithms to compute the Gröbner basis of an
ideal I ⊂ k[x1, . . . ,xn] globally invariant under the action of a com-
mutative matrix group G, in the non-modular case (where char(k)
doesn’t divide |G|). The idea is to simultaneously diagonalize the
matrices in G, and apply a linear change of variables on I corre-
sponding to the base-change matrix of this diagonalization. We can
now suppose that the matrices acting on I are diagonal. This action
induces a grading on the ring R = k[x1, . . . ,xn], compatible with the
degree, indexed by a group related to G, that we call G-degree. The
next step is the observation that this grading is maintained during
a Gröbner basis computation or even a change of ordering, which
allows us to split the Macaulay matrices into |G| submatrices of
roughly the same size. In the same way, we are able to split the
canonical basis of R/I (the staircase) if I is a zero-dimensional
ideal. Therefore, we derive abelian versions of the classical al-
gorithms F4, F5 or FGLM. Moreover, this new variant of F4/F5 al-
lows complete parallelization of the linear algebra steps, which has
been successfully implemented. On instances coming from appli-
cations (NTRU crypto-system or the Cyclic-n problem), a speed-up
of more than 400 can be obtained. For example, a Gröbner basis
of the Cyclic-11 problem can be solved in less than 8 hours with
this variant of F4. Moreover, using this method, we can identify
new classes of polynomial systems that can be solved in polyno-
mial time.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation—Algorithms

Keywords

Gröbner Basis, Invariant Ideals, Group Action

1. INTRODUCTION
Solving multivariate polynomial systems is a fundamental prob-

lem in Computer Algebra, since algebraic systems can arise from
many applications (cryptology, robotics, biology, physics, coding
theory, etc...). One method to solve such systems is based on Gröb-
ner basis theory. Efficient algorithms to compute Gröbner bases
have been proposed, for instance Buchberger’s algorithm [1] and
Faugère’s F4 or F5 [4, 5]. If the system has only a finite number
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of solutions the usual strategy is to compute a Gröbner basis for
the DRL ordering, and then perform a change of ordering to ob-
tain a Gröbner basis for the lexicographic ordering with the FGLM
algorithm [10]. However, problems coming from applications are
often highly structured: in several algebraic problems the set of
solutions (the algebraic variety) is invariant under the action of a
finite group. The underlying algebraic problem is to compute the
variety V (I) associated to an ideal I ⊆ k[x1, . . . ,xn] that is globally
stable under a finite matrix group G ⊂ GLn(k), which means that

∀ f ∈ I ∀A∈G f A ∈ I. If all the equations are invariant under the
action of the group, several approaches have been proposed to solve
the system while taking the symmetries into account. In [2] Colin
proposes to use invariants [19] to solve the system. This method
is very efficient if the Hironaka Decomposition of the ring of in-
variants is simple, but for the Cyclic-n problem [12] for example,
it seems better to use a second method based on SAGBI Gröbner
Basis techniques [7]. However, it remains an open issue to solve ef-
ficiently the system in the general case. In the biology problem [6]
or in the physics problem [9], an approach has been proposed if the
group G is the symmetric group or copies of the symmetric group

(elements of the form (σ , . . . ,σ) ∈S
j
m with m j = n.)

MAIN RESULTS. We present efficient algorithms together with
complexity analysis to solve polynomial systems which are glob-
ally invariant under the action of any commutative group G. The
algorithms are based on three main ideas: first, since the group G
is commutative, it is possible to diagonalize the group G, assuming
that the characteristic of the field k and |G| are coprime. Thus, up
to some linear change of variables, we obtain an ideal ID invariant
under a diagonal group GD isomorphic to G.

The second idea is to introduce a grading on R = k[x1, . . . ,xn]
given by the group GD . This grading exists for every finite group H
and is indexed on X(H), the set of irreducible linear representations
of the group H. The decomposition R =

⊕

χ∈X(H)Rχ is known as

the decomposition of R into isotypic components (see [17]). In our
case, since GD is diagonal, the set X(GD ) is isomorphic to GD and
the isotypic components are generated by monomials. Therefore,
we introduce the notion of GD -degree of a polynomial: assuming
that GD is generated by diagonal matrices Diag(βi,1, . . . ,βi,n) of
order qi with q1|q2| . . . |qℓ = e and that β is a primitive e-root of 1,
we say that a polynomial f ∈ k[x1, . . . ,xn] is GD -homogeneous of
GD -degree (d1, . . . ,dℓ) ∈ Zq1

×·· ·×Zqℓ if f (βi,1x1, · · · ,βi,nxn) =

β
di

e
qi f (x1, . . . ,xn) for all i. Notice that the action of diagonal groups

on polynomials has been used in invariant theory or to speed up
Gröbner basis computation in [17, 19, 18, 13]. However, to the best
of our knowledge, the impact of such a grading on the complexity
of Gröbner bases has not been studied.

Taking into account that the operation of taking the S-polynomial
preserves this grading, the final idea is to observe that this can
be used to speed up the Gröbner basis computation. More pre-
cisely, Macaulay matrix can be decomposed into |GD | smaller in-



dependent matrices, being roughly the same size. In particular,
this allows us to split the matrices arising in classical Gröbner ba-
sis algorithms based on linear algebra like Macaulay/Lazard algo-
rithm [15], F4 [4] or F5 [5]. Therefore, the complexity (in time and
in memory) of computing Gröbner bases of such invariant ideals
can be decreased in both, theory and practice. In the same way,
in the case of a zero-dimensional ideal ID , the canonical basis of
the ring R/ID can also be decomposed in monomials having same
GD -degree and thus we are able to split the multiplication matrices
arising in FGLM.

In addition, this grading can be used to transform very easily a
globally invariant problem into a problem for which all the equa-
tions are GD -homogeneous: we show that for each original equa-
tion f we can take the GD -homogeneous components of f .

We have implemented, in the computer algebra system Magma,
“abelian” versions of the F5 and FGLM algorithms that run several
times faster, compared to the same implementation of these clas-
sical algorithms. For example, applying FGLM on the Cyclic-10
problem (a system with 34940 solutions), instead of computing 10
multiplication matrices of size 34940, our algorithm computes 900
quasi-square matrices of size at most 348.

In order to compare similar implementations, we have imple-
mented an “abelian” version of F4 [4] in FGb (C language): com-
puting a Gröbner basis of the Cyclic-10 problem is about 410 times
faster with the new approach. Moreover, a grevlex Gröbner ba-
sis for the Cyclic-11 problem (184756 solutions) can be computed
in less than 8 hours. We also demonstrate that our approach has a
significant impact in other fields: NTRU is a well known cryptosys-
tem and the underlying problem can easily be modeled by quadratic
equations which are left globally invariant by the action of a cyclic
group. We observe a factor of 250 in favor of the new approach
for small size problems and more importantly we can solve pre-
viously untractable problems. Surprisingly, during these experi-
ments, the linear algebra parts (that is building the matrices and the
gaussian elimination parts) can sometimes be so accelerated that
the management of the list of critical pairs becomes the most time-
consuming part whereas it is usually negligible.

More generally, the algorithms given in this paper can also be
used for other kinds of structured polynomial systems like quasi-
homogeneous or multi-homogeneous polynomials. Hence we now
have a systematic and uniform approach to solve those structured
problems. Several further developments can be made on the sub-
ject: the Abelian-F5 and Abelian-FGLM algorithms have to be im-
plemented in C, and it seems possible to obtain a parallelized ver-
sion of the Abelian-FGLM algorithm. We have already identified
new classes of invariant problems which can be solved in polyno-
mial time; for other classes of problems the degree reached during
the Gröbner basis computation is much lower than expected and
it would be very useful to compute explicitly the Hilbert Series of
ideals invariant under a diagonal group.

The organization of the paper is as follows: in section 2, we re-
call classical notations and explain the relations between the ideals
I and ID , and the matrix groups G and GD . In section 3, we explain
the grading induced by the diagonal matrix group GD , and intro-
duce the notion of GD -degree of monomials and polynomials. The
vector space generated by all monomials having same GD -degree is
nothing else than an isotypic component ([17]) but since the formu-
lation is simpler in the case of a diagonal group, we introduce the
notion of GD -degree of monomials and GD -homogeneous poly-
nomials. Sections 4 and 5 provide variants of the F5 and FGLM
algorithms. The complexity questions are answered in section 6,
and benchmarks are made in section 7.

2. LINEAR CHANGE OF VARIABLES

2.1 Frequently used notations
From now on we assume that G is a finite commutative subgroup

of GLn(k), the set of square matrices with coefficients in a field

k of characteristic 0 or p such that p and |G| are coprime. GD

will be used to denote a diagonal matrix group, conjugated to G.
Rk = k[x1, . . . ,xn] is the ring of polynomials with coefficients in k.
In the following, we will have to consider a finite simple extension
of k that will be denoted K = k(ξ ). The set of monomials of Rk (or
RK) will be denoted M . We fix an admissible monomial ordering
� on the set of monomials (only admissible orderings are allowed,
for a precise definition, we refer to [3] p. 53). For a given degree
d, Md will be the set of all monomials in R of degree d. For a
polynomial in R, LC( f ) (resp LM( f ), LT( f )) denotes the leading
coefficient (resp leading monomial, leading term) in f . We have
the relation LT( f ) = LC( f )LM( f ).

2.2 Action of GLn(k) on k[x1, . . . ,xn]. Invariant rings.
This subsection describes the basic properties of the action of

GLn(k) on polynomials. We recall that G is a finite subgroup of
GLn(k). Let X be the column vector whose entries are x1, . . . ,xn.

For f a polynomial in R and A ∈ G, let f A be the polynomial ob-
tained by substituting the components of A.X to x1, . . . ,xn. Since

( f A)B = f AB, we obtain an action of G on R. Let Rd be the vec-
tor space of all homogeneous polynomials of degree d. Then R =
⊕∞

d=0 Rd and we observe that the action of G preserves the homo-
geneous components.

Definition 1 We denote by RG the set of invariant polynomials,

that means polynomials invariant under the action of G : f A = f
for every A in G.

Although we won’t work exclusively in the ring RG of invari-
ant polynomials, we will use several known properties of this set,
especially in the complexity section.

Example 1 The symmetric group Sn can be embedded in GLn(k),

Mσ=









0 1 0 . . . 0
0 0 1 . . . 0

.

.

.

.

.

.

.

.

.
. .

.
.
.
.

0 0 0 . . . 1
1 0 0 . . . 0









and RSn is nothing else than the set
of the so called symmetric polynomials.
Let Cn be the subgroup of Sn gener-
ated by the n-cycle σ = (12 . . .n). Cn is
a cyclic group of order n, embedded in
GLn(k) and generated by Mσ .

For example if n = 3 then x2
1x2 +x2

2x3 +x2
3x1 belongs to RCn\RSn .

2.3 From commutative group to diagonal group
This subsection presents one of the main ideas of the paper, al-

though it is very simple. We recall some well known facts about
commutative matrix groups.

Theorem 1 Any finite commutative group is uniquely isomorphic
to a product Z/q1Z×·· ·×Z/qℓZ with q1| . . . |qℓ.

Definition-Proposition 1 Following the notations of the previous
theorem, the integer e = qℓ is called the exponent of the group and
is the lowest common multiple of the orders of the elements of the
group.

Theorem 2 Let G be a finite commutative matrix group, and e be
its exponent. Let ξ be a primitive e-th root of 1, in an extension of k
and K = k(ξ ). The subgroup G is diagonalizable over K, meaning
that there exists a matrix P in GLn(K), such that the group GD =
P−1GP = {P−1AP | A ∈ G} is a diagonal group.

PROOF. Every matrix A ∈ G satisfies the polynomial Xe − 1,
which fully splits in K and has simple roots since char(k) 6 | |G|, so
every matrix of G is diagonalizable, and it is well known that a com-
mutative set of diagonalizable matrices is codiagonalizable.

Example 2 Let k be any field of characteristic 0 or coprime with
n. Then if we denote K = k(ξ ) where ξ is a primitive n-root of 1
in an extension of k, then the cyclic group Cn defined in example 1
is diagonalizable with the base-change matrix P = (ξ i j)i, j∈{1,...,n}.

The matrix associated to the cycle (1 . . .n) becomes the diagonal

matrix Dσ = diag(ξ , . . . ,ξ n−1,1).



Definition 2 Let I be an ideal in Rk = k[x1, . . . ,xn]. I is said to be

stable under the action of G (G-stable) if: ∀ f ∈ I,∀A ∈ G f A ∈ I

Proposition 1 Let I be a G-stable ideal, and let GD and P be the
diagonal group and the base-change matrix obtained in theorem 2.
Then ID = K

⊗

k{ f P, f ∈ I} is an ideal of RK stable under GD . If

I = 〈 f1, . . . , fm〉Rk
, then ID = 〈 f P

1 , . . . , f P
m〉RK

.

Example 3 To illustrate the definition, we will use the well known
Cyclic-n problem. The ideal I of Rk is generated by:























h1 = x1 + · · ·+xn

h2 = x1x2 +x2x3 + · · ·+xnx1

...
hn−1 = x1x2 . . .xn−1 +x2 . . .xnx1 + · · ·+xnx1 . . .xn−2

hn = x1x2 . . .xn−1xn−1

The ideal I is obviously invariant under the cyclic group Cn, since

each hi satisfies h
Mσ
i = hi and is also stable under the scalar ma-

trix ξ In with ξ a primitive n-root of 1, since h
ξ In

i = ξ ihi. The group
G is generated by Mσ and ξ In. With P the matrix given in exam-

ple 2, GD = P−1GP, generated by Dσ and ξ In, is a diagonal group
isomorphic to Z/nZ×Z/nZ. We denote by fi the polynomials hP

i ,

which generate ID : for instance, f1 = 3x3, f2 =−3x1x2+3x2
3, f3 =

x3
1 + x3

2 +3x1x2x3 + x3
3−1 when n = 3. It is easy to prove that for

the Cyclic-n problem, the polynomial f1 is always equal to nxn.

3. GRADING INDUCED BY A DIAGONAL

MATRIX GROUP
In this section, we define the GD -degree of a monomial where

GD is a diagonal matrix group. This GD -degree induces a grading
of RK given by the isomorphism GD ≃∏Z/qiZ.

3.1 GD -degree of monomials
Let GD be a diagonal group of GLn(K), with diagonal coeffi-

cients in Ue = {ξ
0,ξ 1, . . . ,ξ e−1}, with e the exponent of G and ξ

a primitive e-root of 1, as defined in the previous section. Let φ be
an isomorphism

φ :

(

GD −→ Z/q1Z×·· ·×Z/qℓZ
D 7−→ φ(D)

)

and let Di be the preimage of (0, . . . ,0,1
i
,0, . . . ,0), so Di generates

a subgroup of GD of cardinality |qi|.

Example 4 With GD the group arising in the previous example 3,
we take φ such that φ(Dσ ) = (1,0) ∈ Z/nZ×Z/nZ and φ(ξ In) =
(0,1).

Proposition 2 For every monomial m ∈M and for each i, there

exists a unique µi ∈ {0, . . . ,qi−1} such that mDi = ξ
e
qi

µi m.

PROOF. Let m = ∏x
α j

j and Di = Diag(β1, . . . ,βn). Since Di

has order qi, the coefficients β j are qi-roots of 1, so can be denoted

ξ
ℓ j

e
qi . Then

mD
i = (β1x1)

α1 ×·· ·× (βnxn)
αn =

(

∏β
α j

j

)

m = ξ
e
qi

∑ℓ jα j m

Then we can take µi = ∑ℓ jα j mod qi. Since ξ has order e, ξ
e
qi has

order qi and the unicity of µi is clear.

Instead of considering µi in {0, . . . ,qi− 1}, we take µi in Z/qiZ,

which makes sense since ξ
e
qi has order qi.

Definition 3 The k-tuple (µ1, . . . ,µk) ∈ ∏Z/qiZ is said to be the
GD -degree of m and is denoted degGD

(m), although it depends on
the choice of the matrices Di (more exactly, the choice of φ ). We

denote by Ĝ = ∏Z/qiZ the set of all GD -degrees.

Remark 1 It is yet unclear that every µ ∈ Ĝ is the GD -degree of
some monomial. This will be proved in the complexity section.

Proposition 3 Since degGD
(m) + degGD

(m′) = degGD
(mm′) for

all m,m′ ∈M , R can be graded by R =
⊕

g∈Ĝ

Vect(Mg), where Mg

is the set of monomials of GD -degree g.

PROOF. Let i∈{1, . . . ,k}, m,m′ ∈M and µi,µ
′
i such that mDi =

ξ
e
qi

µi m and m′Di = ξ
e
qi

µ ′i m′. Then (mm′)Di = ξ
e
qi
(µi+µ ′i )mm′. It

follows that the GD -degree verifies degGD
(mm′) = degGD

(m) +

degGD
(m′) for all monomials m,m′ ∈M and degGD

is a monoid

morphism between M and Ĝ since degGD
(1) = (0, . . . ,0),

Remark 2 If we denote by Md,g the set of monomials of degree

d and GD -degree g, Md,gMd′,g′ ⊆Md+d′,g+g′ for all d,d′,g,g′.

Therefore R =
⊕

d∈N,g∈Ĝ

Vect(Md,g).

Notice that for computing degGD
(m) with m = ∏x

αi

i , we just have

to know degGD
(xi) since degGD

(m)=∑αidegGD
(xi). This grading

will be used to reduce the sizes of the matrices in the Diagonal-F5
algorithm.

Example 5 Let GD be the matrix group generated by the diagonal
matrix Dσ = Diag(ξ ,ξ 2,1) where ξ is a primitive third root of

1. Each xi has GD -degree i mod 3, so m = ∏x
α j

j has GD -degree

∑ jα j mod 3. Hence, x1x2x3 (resp. x1x2
2) has GD -degree 0 (resp.

2).

Example 6 (cont. of example 3) The GD -degree of xi is (i,1).

3.2 GD -homogeneous polynomials
In this subsection, we define the notion of GD -homogeneity.

The cornerstone of the Abelian-F5 algorithm (section 4) is that
the S-polynomial of two GD -homogeneous polynomials is GD -
homogeneous, which will be proved in theorem 3.

Definition 4 A polynomial f in RK is said to be GD -homogeneous

if all monomials of f share the same GD -degree (µ1, . . . ,µk) ∈ Ĝ.
In this case, we set degGD

( f ) = degGD
(LM( f )).

Proposition 4 If f is GD -homogeneous and m is a monomial, then
m f is GD -homogeneous. Moreover, degGD

(m f ) = degGD
(m) +

degGD
( f ).

PROOF. For any monomial m̃ of f , degGD
(m̃m) = degGD

(m̃)+
degGD

(m) = degGD
( f )+degGD

(m), so all monomials of m f share

the same GD -degree degGD
( f )+degGD

(m) = degGD
(m f ).

Theorem 3 Let f ,g be two GD -homogeneous polynomials of RK .
The S-polynomial of ( f ,g), defined by

S( f ,g) =
LM( f )∨LM(g)

LM( f )
f −

LM( f )∨LM(g)

LM(g)

LC( f )

LC(g)
g

is GD -homogeneous of GD -degree degGD
(LM( f )∨LM(g)).

(LM( f )∨ LM(g) denotes the lowest common multiple of LM( f )
and LM(g).)

PROOF. Since LM( f ) and LM(g) divide LM( f )∨LM(g), both

fractions
LM( f )∨LM(g)

LM( f )
and

LM( f )∨LM(g)
LM(g)

are monomials, therefore

by previous proposition,
LM( f )∨LM(g)

LM(g)
LC( f )
LC(g) g and

LM( f )∨LM(g)
LM( f ) f are

GD -homogeneous. Moreover, they share the same leading mono-
mial, so they have same GD -degree, which is the GD -degree of
S( f ,g). We actually proved that degGD

(S( f ,g))= degGD
(LM( f )∨

LM(g)).

Example 7 Following example 3, it appears that each fi has GD -
degree (0, i) ∈ Z/nZ×Z/nZ under GD generated by Dσ and ξ In.



3.3 GD -homogeneous ideals
In this subsection, GD is a diagonal group, and ID is a GD -

stable ideal generated by f1, . . . , fm. A Gröbner basis computa-
tion preserves the GD -degree, but the polynomials fi are not nec-
essarily GD -homogeneous. Our aim here is to prove that the GD -
homogeneous components of the fi are in ID , and so to compute
a Gröbner basis of ID , we take the GD -homogeneous components
of generators of ID as inputs. This operation has a negligible cost
since at each degree d, the abelian-F5 algorithm (presented in the
next section) separates the set Md into subsets Md,g of same GD -
degree g.

Definition 5 An ideal J of RK is said to be GD -homogeneous if for
any polynomial f ∈ J, its GD -homogeneous components are also
in J.

Theorem 4 An ideal is GD -homogeneous if and only if it is GD -
stable.

It is obvious that a GD -homogeneous ideal is GD -stable. To prove
the other implication, we will first prove a lemma.

Lemma 1 Let f ∈ ID , and D ∈ GD , then the 〈D〉-homogeneous
components of f are in ID , where 〈D〉 is the subgroup generated by
D.

PROOF. Let q be the order of D in GD , and ξD = ξ
e
q . Then,

all diagonal coefficients of D are powers of ξD. f can be writ-

ten ∑
q−1
j=0 f j, with f D

j = ξ
j

D f j; in other words, the f j are the 〈D〉-

homogeneous components of f . Let X f =
t( f0, f1, . . . , fq−1), V =

(ξ
i j
D )0≤i, j≤q−1 , and Y f =V X f . Since f Di

j = ξ
i j
D f j, the column vec-

tor Y f is equal to t( f , f D, . . . , f Dq−1
). Since f ∈ ID and ID is GD -

stable, all components of Y f belong to ID . But V is a VanDerMonde
invertible matrix, so the components of X f are obtained from Y f by
linear combinations, and the f j belong to ID .

PROOF. We now prove theorem 4 by induction on ℓ where G≃
Z/q1Z×·· ·×Z/qℓZ : the case ℓ = 1 is the lemma. Now assume
that ℓ ≥ 2 and let Di be the matrices generating GD as defined in
section 2. Let f ∈ ID . By the lemma, the 〈Dℓ〉-homogeneous com-

ponents of f are in ID . Denote by G̃D the subgroup of GD gen-
erated by D1, . . . ,Dℓ−1, then G̃D ≃ Z/q1Z× ·· ·×Z/qℓ−1Z, and

ID is also G̃D -stable, and by induction the G̃D -homogeneous com-
ponents of each 〈Dℓ〉-homogeneous component of f are in ID , but
they are exactly the GD -homogeneous components of f .

Remark 3 In representation theory, the GD -homogeneous compo-
nents of a polynomial in ID are the images of the projections onto
each isotypic component. [17]

Example 8 Let GD be the diagonal group of order 2 generated
by the matrix diag(−1,1), acting on R = k[x1,x2]. Suppose that

x3
1x2 + x2

1x2
2− x1 + 1 ∈ ID , with ID a GD -stable ideal. Then since

degGD
(xi)= i mod 2, degGD

(x3
1x2)= degGD

(x1)= 1 and degGD
(1)

= degGD
(x2

1x2
2) = 0, so x3

1x2−x1 and x2
1x2

2 +1 belong to ID .

4. ABELIAN-F5 ALGORITHM
Now, we are able to describe the Abelian-F5 algorithm, which

is a variant of F5 that takes advantage of the action of the abelian
group GD . As usual, ID is a GD -stable ideal, with GD a diago-

nal group isomorphic to Ĝ, the set of GD -degrees. Let f1, . . . , fm

be GD -homogeneous polynomials generating ID (according to the-
orem 4). All computation of the reduced Gröbner basis of ID
would implicitly use the grading R =

⊕

g∈Ĝ
Rg since it computes

S-polynomials. There exist several versions of the F5-algorithm
(see [7, 5]), we present here a variant of the matrix version. The
F5-algorithm constructs matrices degree by degree. At a fixed de-
gree d, it constructs m matrices of the form Md,i for each i between

1 and m, and performs row reduction on them to obtain M̃d,i. In
the homogeneous case, m̃1, . . . , m̃ν are all monomials of degree d,

Md,i =



















m̃1 m̃2 . . . m̃ν

m1 f1 . . . . . . . . . . . .

.

.

. . . . . . . . . . . . .
mµ f j . . . . . . . . . . . .

.

.

. . . . . . . . . . . . .
mγ fi . . . . . . . . . . . .



















whereas in the affine case, they are
all monomials of degrees between
0 and d. For the sake of simplicity,
we assume that all polynomials fi

are homogeneous. The rows are in-
dexed by couples of the form mµ f j,
the matrix Md,i is deduced from the

matrix ˜Md,i−1 by adding all rows mµ fi with mµ describing the set
of monomials of degree d−deg( fi), except monomials removed by
the F5-criterion (see [7, 5]). The key of the Abelian-F5 algorithm is
the following : the polynomials fi are GD -homogeneous, and also
the polynomials mµ fi. Therefore, the only non-zero coefficients of
the row indexed by mµ fi are on columns indexed by monomials
having same GD -degree. So, instead of building one Macaulay

matrix Md,i, we will construct |GD | matrices Md,i,g, for all g ∈ Ĝ.

Abelian-F5 (homogeneous-case)

Input: The set Ĝ of GD -degrees, homogeneous and GD -homogeneous
polynomials ( f1, . . . , fm) with degrees d1 ≤ . . . ≤ dm and a maximal de-
gree D.
Output: the elements of degree at most D of a Gröbner basis of ( f1, . . . , fi)
for i = 1, . . . ,m.

for i from 1 to m do Gi := /0 end for
for d from d1 to D do

for g in Ĝ do
Md,0,g := /0, M̃d,0,g := /0

for i from 1 to m do
case

d < di) Md,i,g := M̃d,i−1,g

d = di) if g = degGD
( fi) then

Md,i,g := add new row fi to M̃d,i−1,g with index (i,1)
else

Md,i,g := M̃d,i−1,g
end if

d > di) Md,i,g :=add new row m. fi for all monomials m of degree

d−di with degGD
(m)= g−degGD

( fi) that do not appear as leading mono-

mials in the matrix M̃d−di ,i−1,u−degGD
( fi)

to M̃d,i−1,g with index (i,m).

end case
Compute M̃d,i,g by Gaussian elimination from Md,i,g.

Add to Gi all rows of M̃d,i,g not reducible by LM(Gi).
end for

end for
end for
return G1, · · · ,Gm

Notice that all the loops on g ∈ Ĝ are independent, so at each
degree d, it is possible to parallelize on |G| different processors to
speed up the computations. Assuming that the degrees of the pri-
mary invariants are relatively prime, we will see in the complexity
section 6 that the number of monomials of Md having same GD -
degree is almost the same for all g. In the affine case, we will prove
without any assumption that the monomials of degree between 0

and d are evenly distributed on Ĝ. These considerations allow us
to bound the complexity of the computation of a Gröbner basis on
such ideals, and we will verify that in practice they make an im-
provement on the timings (see section 7).

5. ABELIAN-FGLM ALGORITHM
In this section, we explain how to take advantage of the GD -

grading to speed up the change of ordering, using a variant of the
classical FGLM algorithm [10]. We suppose that dim(ID ) = 0,
and that a Gröbner basis G�1

for an ordering �1 (for instance the
DRL ordering) of the ideal ID ⊂ RK has already been computed,
and we are interested in computing the Gröbner basis of ID for an
other ordering �2 (for example, the lexicographical ordering). In
this section, Deg(ID ) will denote the degree of ID , defined by the
dimension of R/ID . The idea of both FGLM and Abelian-FGLM
algorithms is to pick up monomials m in M by increasing order



for �2, and look for linear combinations in R/ID between the Nor-
mal Forms NF(m,G�1

). To this end, these algorithms use linear
algebra: we first compute the staircase

E = {m ∈M | m not reducible by LM(G�1
)}

The elements of E form a basis of R/ID , which has dimension
Deg(ID ), the degree of ID . Since ID is GD -homogeneous, this
staircase can be splitted in |GD | parts, and we will denote by Eg

the set of monomials in E having GD -degree g. As in the FGLM-
algorithm, we use the linear maps given by the multiplication by
one variable xi in R/ID . The main difference lies in the following
proposition:

Proposition 5 Let f be a GD -homogeneous polynomial, and G�1

be the Gröbner basis of the ideal ID for �1. Then NF( f ,G�1
) is

GD -homogeneous and has same GD -degree as f .

PROOF. We have seen that being GD -homogeneous is a prop-
erty stable under S-polynomials operations, so NF( f ,G�1

) is GD -
homogeneous. Moreover the only operations used in a Normal-
Form computation are of the form f̃ ← f − λmh with h ∈ G�1

,
λ ∈ K and m a monomial such that LM(h)×m is equal to some

monomial in f , so degGD
( f ) = degGD

( f̃ ).

Diagonal-FGLM algorithm
Input: Multiplication matrices Mi,g, the sub-staircases Eg, an ordering �2

Output: The Gröbner basis of ID for �2.

L := [(1, 0̂,n),(1, 0̂,n− 1), . . . ,(1, 0̂,1)] // list of 3-uples ( j,g, i) symbol-
izing the monomials Sg[ j]× xi , ordered by increasing order.

Sg := [] for g ∈ Ĝ\{0̂} and S0̂ = [1]. // subsets of the staircase S for the
ordering �2 having same GD -degree.

Vg := [] for g ∈ Ĝ\{0̂} and V0̂ = [t (1,0, . . . ,0)]. // Vg contains the expres-

sions of NF(Sg[ j],G�1
) in Eg, each vector in Vg has ng components.

G := [] // The Gröbner basis for �2

Qg := Ing for all g ∈ Ĝ.

Do
m := first(L) and remove m from L.
j := m[1];g′ := m[2]; i := m[3];g := g′+degGD

(xi)

v := Mi,g′Vg′ [ j] // components of NF(xiSg[ j],G�1
) in Eg

s := #Sg // number of elements in Sg .

λ = t(λ1, . . . ,λng ) := Qgv

if λs+1 = · · · = λng = 0 then

G := G∪ [m−
s

∑
j=1

λ j ·Sg[ j]]

else
Sg := Sg∪ [Sg′ [ j]× xi]
Vg :=Vg∪ [v]
L := Sort(L∪ [(s+1,g, i) | i = 1, . . . ,n] ,�2)
Remove duplicates from L
Update(Qg,λ ,v) // Now Qgv = t(0, . . . ,0, 1

s+1
,0, . . . ,0)

end if
Remove from L all multiples of LM�2

(G)
if L = /0 then return G end if

Therefore, if m has GD -degree g, degGD
(xim) = degGD

(xi)+g

and NF(xim,G�1
) is of same GD -degree. The map of multiplica-

tion by xi in Vect(E ) can be splitted into the following maps:

Mi,g : Vect(Eg) −→ Vect(Eg+degGD
(xi))

f 7−→ NF(xi f ,G�1
)

The Diagonal-FGLM algorithm needs the matrices of multipli-
cation Mi,g and proceeds just like FGLM-algorithm:a new mono-

mial to consider (except 1) is of the form m = xim
′, with m′ �2 m.

Assume that degGD
(m′) = g′, so we already know the expression

of NF(m′,G�1
) in terms of Eg′ , which is a vector V ′. It follows that

NF(m,G�1
) is computed by the product V =Mi,g′V

′. Then we have

to decide if m belongs to the new staircase in construction S or if
it is the leading monomial of a polynomial of the Gröbner basis for
�2. To this end, we use base-change matrices Qg between Eg an
Sg, the subsets of the staircases having same GD -degree g. If s is
the number of elements of the staircase Sg = {u1 �2 · · · �2 us} at
the current point of the algorithm, and Vi the vectors corresponding
to NF(ui,G�1

), then QgVi is equal to the i-th vector of the canonical
basis. Since the matrix Qg is invertible, if all the components but
the s first ones of QV are zero, then we deduce a new element of
the Gröbner basis G�2

, otherwise m is a new element of Sg and we
have to update Qg, to map V on the (i+1)-th element of the canoni-
cal basis. We can now give the pseudocode of the Diagonal-FGLM

algorithm, here 0̂ means the GD -degree (0, . . . ,0). We suppose
that x1, . . . ,xn is the set of variables, with xn �2 xn−1 �2 · · · �2 x1,
and denote by ng the number of elements in Eg. Notice that with

degGD
(xi)= 0̂ for each i, we recover the standard FGLM algorithm.

Remark 4 According to a point of view of representation theory,
the sub-staircases Eg and Sg can be seen as two distinct bases of
an isotypic component of the representation R/ID .

6. COMPLEXITY QUESTIONS
In this section, we discuss the arithmetic complexity of the algo-

rithms presented before. This complexity will be counted in terms
of operations in K = k(ξ ).

Remark 5 [18] A very interesting case is when ξ belongs to k, so
K = k. Assume that k is the finite group Fp with p prime. Then

ξ ∈ k⇐⇒Xe−1 splits on k⇐⇒Z/eZ⊆Z/(p−1)Z⇐⇒ p≡ 1[e]

By Dirichlet’s theorem, there are infinitely many such primes and
the distribution of such primes is 1/ϕ(e), where ϕ is the Euler’s
totient function. To compute the Gröbner basis of an ideal over Q,
it is more efficient to compute modulo some such primes and use
modular methods to recover the original Gröbner basis.

We start by giving without proof a bound on the cost of the two
first linear steps:

Proposition 6 The cost of the diagonalization of the matrix group
G is bounded by O((q1+ · · ·+qk)n

ω ), with ω the constant of linear
algebra. With m polynomials fi of degree less or equal than d, the

cost of computing the f P
i is bounded by O(

(

n+d
d

)

ndm log d log logd).

6.1 Dimensions of the subspaces Rd,g

6.1.1 General facts about the ring of invariants
The first object we are interested in is the ring of invariants RGD ,

with GD the diagonal matrix group. Notice that we consider the in-
variants in a theoretical point of view to obtain complexity bounds,
so we don’t have to compute them. In this paragraph, we recall

some well known facts about RG, without any assumption on G,
excepted that G is a finite matrix group of GLn(K), charK doesn’t
divide |G|, and G is diagonalizable on K. We follow the presen-
tation of [19]. Although Sturmfels works on C, the results can be
easily extended since the characteristic polynomials of matrices in
G fully split on K.

Theorem 5 [19] The invariant ring RG
K is Cohen-Macaulay : there

exist a set of n homogeneous polynomials θ1, ..,θn and t other in-
variant polynomials η1, ..,ηt such that RG

K =
⊕t

i=1 ηiK[θ1, . . . ,θn].

The set of polynomials θi is called a set of primary invariants of G
and the set of η j a set of secondary invariants of G. A consequence
of the previous theorem is the following proposition

Proposition 7 [19] The Hilbert (Molien) series of the ring RG
K is

H(RG
K ,z) =

∞

∑
d=0

zddim(RG
K,d) =

∑t
i=0 zdeg(ηi)

∏n
j=1(1− zdeg(θ j))



Proposition 8 [19] The set of secondary invariants depends on the
chosen set of primary invariants, moreover the degrees of the pri-
mary invariants and the number of secondary invariants are related
by the formula : t = ∏ j deg(θ j)/|G|

Now, we want to give an estimation of the size of RG
d (set of invari-

ant polynomials of degree d) compared to Rd . To give an estimation
of the complexities of Abelian-F5 and Abelian-FGLM algorithms,
we are interested in two quantities.

Definition 6 We define the density of RG
d in Rd and the density of

RG in R by

δ (RG
d ) =

dim(RG
d
)

dim(Rd)
and δ (RG) = lim

D→+∞

∑D
d=0 dim(RG

d
)

∑D
d=0 dim(Rd)

The goal of this subsection is to prove the following theorem:

Theorem 6 The density δ (RG)is well defined and is equal to 1/|G|.

If a set of primary invariants of RG can be chosen such that their de-
grees are relatively prime, the density δ (RG

d ) has the limit δ (RG) =
1/|G| as d tends to infinity.

PROOF. Denote by αi the degree of θi, and by α the greatest
common divisors of the αi. We are interested in an asymptotic esti-

mation of the coefficient in zd in the Hilbert series of RG
K . For now,

denote by f (z) the power series 1/(∏n
j=1(1− zα j )), and [zd ] f (z)

the coefficient in zd in the expansion of f . Clearly, [zd ] f (z) = 0 if

α doesn’t divide d. Then, if α|d, [zd ] f (z) = [zd/α ] 1

∏n
j=1(1−z

α j/α )
.

Since the integers αi/α have no common factor, it follows that 1 is
the unique pole of multiplicity n in the previous rational function,
the other poles having a smaller multiplicity. Following the idea
of [11] Theorem 4.9, p.256, we obtain that

[zd/α ]
1

∏n
j=1(1− zα j/α )

= [zd/α ]
1

(1− z)n ∏n
j=1(∑

(α j/α)−1

ℓ=0 zℓ)

= γ

(

d/α +n−1

n−1

)

with γ the coefficient of 1
1−zn in the partial fraction expansion:

1/γ = limz→1 ∏n
j=1(∑

(α j/α)−1

ℓ=0 zℓ) = ∏n
j=1 α j/αn

Since
(

d/α+n−1
n−1

)

∼
d→+∞

(d/α)n−1, we have obtained that:

[zd ] f (z) =

{

0 if α ∤ d
αdn−1

∏ j α j
+o(dn−1) if α | d

We are now able to give the density of RG :

∑D
d=0 dim RG

d
∼

D→+∞
t ∑0≤d≤D,α |d

αdn−1

∏ j α j
∼

D→+∞

t
∏ j α j

∑D
d=0 dn−1

But ∑D
d=0 dim Rd ∼

D→+∞
∑D

d=0 dn−1, and by applying proposition 8,

we conclude that δ (RG
K) = 1/|G|. Assume now that α = 1, then

[zd ] f (z) = dn−1

∏αi
+o(dn−1), so [zd ]H(RG,z) = tdn−1

∏αi
+o(dn−1), and

the second part of the theorem follows.

Remark 6 If the degrees of the primary invariants have a common
factor, the second part of the theorem is false. The following (triv-
ial) example illustrates this fact.

Example 9 Let G = {Diag(±1,±1)} Then K[x,y]G = K[x2,y2],
and all the densities δ (RG

d
) are zero for odd d.

6.1.2 Application to diagonal groups
Now we go back to the situation where G is a diagonal group

isomorphic to ∏k
i=1Z/qiZ. Recall that Md,g is the set of monomi-

als of degree d and GD -degree g. We denote by 0̂ = (0, . . . ,0) the

GD -degree of 1. Then RG
d = VectK(Md,0̂), and dim(RG

d ) = |Md,0̂|.

Definition 7 Following definition 6, we define the densities δ (Rg)

and δ (Rd,g) for any g ∈ Ĝ as

δ (Rd,g) =
dim(Rd,g)

dim(Rd)
=
|Md,g|

|Md|
and δ (Rg) = lim

D→+∞

∑D
d=0 |Md,g|

∑D
d=0 |Md|

Theorem 7 The density δ (Rg) is well defined and is equal to 1/|G|.

If a set of primary invariants of RG can be chosen such that their
degrees are relatively prime, the density δ (Rd,g) has limit δ (RG) =
1/|G| as d tends to infinity.

PROOF. First of all assume that all the sets Mg are non-empty,

and let mg ∈Mg for all g ∈ Ĝ. Denote by dmg
its degree. Then

Mg can be written Mg = mgM0̂⊔{m ∈Mg | mg ∤ m}. Therefore,

for d big enough, Md,g = mgMd−dmg ,0̂
⊔ {m ∈Md,g | mg ∤ m}.

Assuming the condition of the degrees of the primary invariants,
we obtain by theorem 6

|Md,g|

|Md |
=
|M

d−dmg ,0̂
|

|Md−dmg
|

|Md−dmg
|

|Md |

→
d→∞

1/|G|

+
|{m ∈Md,g | mg ∤ m}|

|Md |
→

d→∞
0

and the second part of the theorem is proved. In the same way, we
conclude by sketching the proof of theorem 6 that

δ (Rg) =

{

1/|G| if Mg 6= /0
0 if Mg = /0

But by definition, ∑δ (Rg) = 1, so we proved that every set Mg is
non-empty and δ (Rg) = 1/|G|.

Remark 7 We have seen that asymptotically, the sets Md,g have
roughly the same size (with the assumption on the degrees of the
primary invariants) and that the same result holds without assump-
tion on the sets ∪D

d=0Md,g, and the sizes of these sets correspond
to the number of columns in the matrices of the abelian-F5 algo-
rithm, in the homogeneous or affine case. Actually, these sets are
very fast evenly distributed, as we will see in section 7. To perform
a complexity analysis, we will suppose that this is the case.

6.2 Application to the complexity of abelian-
F5 and abelian-FGLM algoritms

6.2.1 Abelian-F5 algorithm
To analyse the efficiency of our algorithm to compute a Gröb-

ner basis of ID , we have to compare the complexity of the classical
F5 algorithm on I and ID and the abelian-F5 algorithm on ID . In
order to bound the complexity of F5 we bound the complexity of
the so called Macaulay/Lazard algorithm [15], consisting in build-
ing a row echelon form of the Macaulay’s matrix; this computation
can be seen as a redundant variant of the F5 algorithm. Since the
base-change matrix P defined in section 2 induces an isomorphism
between the homogenous components of same degree of I and ID ,
assuming they are homogeneous, so these ideals have same Hilbert
series. Therefore, the index of regularity (homogeneous case) or
the degree of regularity (affine case) are the same. For a good intro-
duction to these notions, see [16]. From the Lazard algorithm [15]
it is possible to derive a complexity bound of the computation of a
Gröbner basis of zero dimensional homogeneous system.

Theorem 8 [16] Let F = ( f1, . . . , fm)∈ Rm be a family of homoge-
neous polynomials generating a zero-dimensional ideal. The com-
plexity of computing a Gröbner basis for the DRL ordering of the
ideal 〈F〉 is bounded by

O
(

m

(

n+dreg(F)

dreg(F)

)ω)

where ω is the constant of linear algebra.

The proof of the previous theorem is obtained by analyzing size
and rank of the Macaulay’s matrix, and by the fact that a row ech-
elon form of a matrix of size (ℓ,c) and rank r can be computed in



times O(ℓcrω−2). In the case of an ideal F invariant under a diag-
onal group GD , we have seen that such a matrix can be slitted into
|GD | parts, and previous analysis of the size of the sets Md,g in
theorem 7 proves that, under parallelization on the computations of
row echelon form of the |GD | submatrices, the following theorem
holds:

Theorem 9 Let F = ( f1, . . . , fm)∈ Rm be a family of homogeneous
polynomials generating a 0-dimensional ideal, invariant under a
diagonal group GD such that a set of primary invariants of GD

can be chosen with degrees relatively prime. The complexity of
computing a Gröbner basis for the DRL ordering of the ideal 〈F〉
is bounded by

O
( m

|GD |ω

(

n+dreg(F)

dreg(F)

)ω)

Remark 8 In the affine case, it seems that a bound similar to the-
orem 8 could be obtained (see [16], page 53), therefore we could
obtain a similar improvement than in theorem 9.

6.2.2 Abelian-FGLM algorithm
Let ID be a zero-dimensional ideal invariant under the diagonal

group GD . We have to consider the two parts of the algorithm to
give a complexity estimation : the construction of the multiplica-
tion’s matrices Mi,g and the loop in FGLM. We denote by Deg(ID )
the degree of the ideal ID .

Theorem 10 Under the hypothesis that the monomials of E are
evenly distributed over the staircases Eg (which is verified in prac-
tice), it is possible to obtain the reduced Gröbner basis G�2

from

G�1
of ID with O( n

|GD |2
Deg(ID )3) arithmetics operations in K.

PROOF. We follow the notations of [10].
• To compute the multiplication matrices, we have to compute the
normal forms NF(m,G�1

) for all m ∈ B(G�1
)∪M(G�1

). For at
most nDeg(ID ) of these monomials, arithmetic computations are
needed and since the staircases Eg have size about Deg(ID )/GD ,

each of these normal forms can be computed with O((
Deg(ID )
|GD |

)2)

arithmetic operations in K.
• In the same way, the loop in the FGLM algorithm presented in
section 5 has to be done at most nDeg(ID ) times. The cost of

the linear operations was O(Deg(ID )2) in the original FGLM al-

gorithm [10] but it is reduced to O(Deg(ID )2/|GD |
2) here since

the square matrices have a number of lines and columns divided by
about |GD |.

6.3 Polynomial complexity
Suppose that g1, . . . ,gm are affine polynomials of R of degree 2,

which are individually invariant under the cyclic-n group. Usually,
computing a Gröbner basis of I = 〈g1, . . . ,gm〉 is exponential, but
we will see that we can obtain a Gröbner basis of ID in polynomial
time in n and m. With P = (ξ i j), and fi = gP

i , each fi is invariant

under Dσ = diag(ξ ,ξ 2, . . . ,ξ n−1,1) and fi has GD -degree 0.

Lemma 2 The support of each fi is contained in
{1,xn,x

2
n}∪{xixn−i, | 1≤ i≤ ⌊(n−1)/2⌋}.

PROOF. Each xi has GD -degree i mod n, so degGD
(xix j) = i+

j mod n, and the only monomials of degree 2 having GD -degree 0
are xixn−i. The only monomial of degree 1 and GD -degree 0 is xn,
and 1 is also of GD -degree 0.

Theorem 11 A Gröbner Basis for every monomial ordering of a
system of m equations invariant under Dσ = diag(ξ , . . . ,ξ n−1,1)
can be computed in polynomial time in n+m.

PROOF. We set yi = xixn−i for each i ∈ {0, . . . ,⌊(n−1)/2⌋} to
linearize the equations, and perform a Gauss elimination on the

equations. The result is a Gröbner Basis since the leading mono-
mials of any pair of the obtained polynomials are coprime. The
matrix we have to reduce has m lines and ⌊(n+5)/2⌋ columns, and
the complexity is polynomial in n+m.

Remark 9 Similar results can be obtained for other groups and
systems. This will be discussed in an extended version of this paper.

7. EXPERIMENTS
In this section, we report some experiments that show the im-

provements given by our approach on the computation of Gröb-
ner bases of ideals invariant under a commutative group. We first
present sizes of the sets Md,g and Eg, and then give timings ob-
tained with an implantation of the algorithm Abelian-F4. A web
page has been made for other softwares and benchmarks, see [8].

7.1 Sizes of the sets Mg or Eg

In this subsection, we suppose that G is the cyclic group gener-
ated by the matrix Mσ presented in example 1. Therefore GD is the
group generated by the diagonal matrix with diagonal coefficients

(ξ ,ξ 2, . . . ,ξ n−1,1). We want to compare the size of Md,g with
|Md |/n (recall that n is the order of GD ). To this end we compute
the relative standard deviation of the sets |Md,g| to |Md |/n, for sev-

eral n and d. The formula is σd,n =

√

1
n ∑g∈GD

(|Md,g|−|Md |/n)2

|Md |/n
. The

following table presents some values of σd,n. We see that the mono-

mials are very fast evenly distributed over g ∈ Ĝ. In the same way,

d/n 2 3 4 5 10 15
3 0.00 0.14 0.00 0.09 0.00 0.01
4 0.20 0.00 0.10 0.09 0.02 0.01
5 0.00 0.09 0.00 0.02 0.00 0.00

10 0.09 0.00 0.02 0.00 0.00 0.00

Table 1: Repartition of the monomials under GD

the stairs Eg that appear in the abelian-FGLM algorithm have about
same size. Table 2 presents some zero dimensional ideals together
with the size of the group and the size of the stairs. The final col-
umn is the relative standard deviation between |Eg| and |E |/|GD |.

n |E | |GD | |Eg|/|GD | Max |Eg| σE

5 70 25 2.80 6 0.286
6 156 36 4.33 6 0.133
7 924 49 18.86 24 0.045

10 34940 100 349.40 354 0.0043
11 184756 121 1526.91 1536 0.00060

Table 2: Cyclic-n: Repartition of the monomials into Eg

From the experimental side, applying the F4 algorithm on the cyclic
9 problem we obtain, in degree 15, a matrix of size 72558×93917;
applying the abelian-F4 algorithm we obtain 9 independent matri-
ces of roughly the same size: 8340×10703,8180×10544, 8122×
10484, 7804×10171,7993×10358,8042×10404,7796×10162,
7967×10369 and 8314×10722.

7.2 Abelian-F4 implementation
A first implementation of the Abelian-F4-algorithm [4] has been

made. The algorithm constructs |GD | matrices at each degree, us-
ing the usual strategy of F4. Notice that only the construction of the
matrices and the operations of row-reduction on them have been
parallelized, the handle of the list of critical pairs is still sequen-
tial. Surprisingly, the linear algebra can sometimes be so acceler-
ated that this handling can become the most time-consuming part
whereas it is usually negligible. Therefore we report in the follow-
ing tables two timings or ratios in each column: the timings are

related to F
A,n
4 , which is the new abelian algorithm parallelized on

n cores. The first one is the total timing and the second one is only
the parallelized part (that is to say, building the matrices and the
linear algebra parts). The other columns contain the ratios between



FA
4 or F4 and F

A,n
4 . F4 means the standard F4 applied on I and FA

4

the standard F4 applied on ID . FM
4 is the F4 of Magma, and there

is only the ratio for the total timing. In each case except table 7,
the group G acting on I is the cyclic group Cn generated by the
matrix Mσ defined in example 1, and GD is the group generated

by the diagonal matrix diag(ξ ,ξ 2, . . . ,1). Notice that we have to
reach big-sized problems to have a significant impact. In table 3,
we consider n randomized equations of degree 3 stable under Cn,
which give rise to equations of GD -degree 0 in ID . Table 4 presents
n equations of degree 2, half of these equations in ID are of GD -
degree 0, and half of GD -degree 1. In this case, the computation
on ID becomes polynomial in n and the handling of the critical
pairs is the most time-consuming part. All computations have been
made on a computer with 4 Intel(R) Xeon(R) CPU E5-4620 0 @

2.20GHz with 387 GB of RAM, on a field where X |G| − 1 fully
splits (most of the time F65521), according to remark 5.

n F
A,n
4 FA

4 /F
A,n
4 F4/F

A,n
4 FM

4 /F
A,n
4

total; // part tot;p.p tot;p.p tot
8 3.46s;2.48s 2.2;2.7 33.0;45.4 22
9 77.04s;64.21s 7.3;8.6 67.8;81.0 50
10 762s;672s 10.0;11.3 160.9;182.1 134
11 22162s;20425s 13.0;14.0 ∞ ∞

Table 3: n cubic equations of GD -degree 0

n F
A,n
4 FA

4 /F
A,n
4 F4/F

A,n
4

total; // part tot;p.p tot;p.p
25 0.25s;0.06s 1.9;4.5 56.60;230.0
30 0.58s;0.11s 1.5;4.6 80.79;415.1
35 0.86s;0.11s 1.9;8.5 228.5;1755
40 1.55s;0.21s 2.0;8.5 300.6;2174
50 3.96s;0.45s 2.6;13.3 753.8;6504
60 10.85s;0.96s 2.8;17.2 1294;14330

Table 4: n quadratic equations of GD -degree 0 or 1

Table 5 presents equations coming from a cryptographic appli-
cation : the cryptosystem NTRU [14]. The underlying problem
is the following: given h ∈ Fp[x], we are looking for a polyno-
mial f ∈ Fp[x] of degree n− 1 and coefficients in {0,1} such that
g = f h mod xn− 1 has also its coefficients in {0,1}. Denote f =

∑n−1
i=0 fix

i and g = ∑n−1
i=0 gix

i, then the gi’s are linear forms in the

fi’s verifying g
Mσ
i = gσ(i). Since the conditions of fi and gi to be

in {0,1} can be written f 2
i − fi = g2

i −gi = 0, the system consists
of 2n quadratic equations in the fi’s generating an ideal globally

stable under the action of Cn. The speed-up between F4 and F
A,n
4

is roughly 250 with 24 variables, and the use of F
A,n
4 has a signifi-

cant impact since we can achieve bigger problems. In this case the
handling of the critical pairs is also the most time-consuming part.

n F
A,n
4 FA

4 /F
A,n
4 F4/F

A,n
4

total; // part tot;p.p tot;p.p
21 4.52s;1.21s 4.0;11.9 90.15;334.0
23 11.16s;1.87s 3.3;17.2 115.2;686.1
24 128s;14.3s 5.2;36.5 241.1;2149.
25 218s;31.0s 5.8;32.5 ∞
28 1214s;192s 7.1;36.1 ∞

Table 5: NTRU equations
Table 6 presents timings on the Cyclic-n problem, we see that

Cyclic-11 could be solved in less than 8 hours although it is un-
tractable with F4. Table 7 is an example of ideals generating by ran-
dom polynomials of degree 3 invariant under the group Ck1

×Ck2
,

each subgroup Ck acting on k variables. We see that the algorithm
is more efficient where k1 = k2, which makes sense since the size
of the group is k1k2.
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n F
A,n
4 FA

4 /F
A,n
4 F4/F

A,n
4 FM

4 /F
A,n
4

total; // part tot;p.p tot;p.p tot
8 0.50s;0.40s 2.5;2.7 7.8;9.3 6.0
9 10.21s;7.71s 4.3;5.4 37.0;48.4 30.5
10 334s;290s 13.2;14.8 411.0;472.3 207
11 27539s;25454s ∞ ∞ ∞

Table 6: The Cyclic-n problem

k1,k2 F
A,k1k2

4 FA
4 /F

A,k1k2

4 F4/F
A,k1k2

4 FM
4 /F

A,k1k2

4
tot; // p.p tot;p.p tot;p.p tot

4,4 2.0s;1.3s 2.4;3.2 61.8;94.6 37
6,2 2.9s;2.4s 2.2;2.5 76.4;91.4 44
5,5 70s;43s 11.8;16.2 ∞ ∞
6,4 92s;76s 17.7;19.8 ∞ ∞
8,2 107s;100s 12.1;12.3 ∞ ∞

Table 7: n = k1 +k2 cubic equations invariant under Ck1
×Ck2
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