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Abstract: The surveillance game [Fomin et al., 2012] models the problem of web-page prefetch-
ing as a pursuit evasion game played on a graph. This two-player game is played turn-by-turn. The
first player, called the observer, can mark a fixed amount of vertices at each turn. The second one
controls a surfer that stands at vertices of the graph and can slide along edges. The surfer starts
at some initially marked vertex of the graph, her objective is to reach an unmarked node before
all nodes of the graph are marked. The surveillance number sn(G) of a graph G is the minimum
amount of nodes that the observer has to mark at each turn ensuring it wins against any surfer in
G. Fomin et al. also defined the connected surveillance game where the observer must ensure that
marked nodes always induce a connected subgraph. They ask what is the cost of connectivity, i.e.,
is there a constant c > 0 such that the ratio between the connected surveillance number csn(G)
and sn(G) is at most c for any graph G. It is straightforward to show that csn(G) ≤ ∆ sn(G) for
any graph G with maximum degree ∆. Moreover, it has been shown that there are graphs G for
which csn(G) = sn(G)+1. In this paper, we investigate the question of the cost of the connectivity.
We first provide new non-trivial upper and lower bounds for the cost of connectivity in the surveil-
lance game. More precisely, we present a family of graphs G such that csn(G) > sn(G) + 1.
Moreover, we prove that csn(G) ≤ sn(G)

√
n for any n-node graph G. While the gap between these

bounds remains huge, it seems difficult to reduce it. We then define the online surveillance game
where the observer has no a priori knowledge of the graph topology and discovers it little-by-little.
This variant, which fits better the prefetching motivation, is a restriction of the connected variant.
Unfortunately, we show that no algorithm for solving the online surveillance game has competitive
ratio better than Ω(∆). That is, while interesting by itself, this variant does not help to obtain
better upper bounds for the connected variant.

Key-words: surveillance game, cost of connectivity, prefetching, Cops and robber, competitive
ratio
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Jeux de Surveillance Connexe
Résumé : Le jeu de surveillance [Fomin et al., 2012] modélise le problème de
préchargement des documents web comme un jeu de poursuite dans un graphe.

Ce jeu se joue tour par tour à deux joueurs. Le premier joueur, appelé
l’observateur, peut marquer un nombre k prédéfini (et constant) de sommets à
chaque tour. Le deuxième joueur commande un surfeur qui se déplace sur les
sommets du graphe en suivant les arêtes.

Le surfeur commence à un sommet prédéfini du graphe, initialement marqué.
Son objectif est d’atteindre un noeud non marqué avant que tous les noeuds du
graphe soient marqués.

L’indice de surveillance sn(G) d’un graphe G est le nombre k minimum de
noeuds que l’observateur doit marquer à chaque tour en s’assurant qu’il gagne
quelle que soit la trajectoire du surfeur dans G.

Fomin et al. ont également défini le jeu de surveillance connexe où l’observateur
doit s’assurer que l’ensemble des noeuds marqués induit toujours un sous-graphe
connexe. Ils demandent quel est le coût de la connectivité, c’est-à-dire, existe-
t-il une constante c > 0 telle que le rapport (ou la différence) entre l’indice de
surveillance connexe csn(G) et sn(G) est au plus c pour tout graphe G.

Il est facile de montrer que csn(G) ≤ ∆ sn(G) pour tout graphe G de degré
maximum ∆. En outre, il a été démontré qu’il existe des graphes G pour lesquels
csn(G) = sn(G) + 1. Dans cet article, nous examinons la question du coût de la
connectivité.

Nous présentons d’abord de nouvelles bornes supérieures et inférieures non
triviales pour le coût de la connectivité dans le jeu de surveillance.

Plus précisément, nous présentons une famille de graphesG tels que csn(G) >
sn(G) + 1. De plus, nous prouvons que csn(G) ≤ sn(G)

√
n pour tout graphe

G avec n-noeuds. Nous définissons ensuite le jeu de surveillance en ligne où
l’observateur n’a pas a priori connaissance de la topologie du graphe et la
découvre peu à peu. Cette variante, qui s’adapte mieux à la motivation du
préchargement, est une restriction de la variante connexe.

Malheureusement, nous montrons que tout algorithme pour résoudre le jeu
de la surveillance en ligne a un rapport compétitif au mieux de Ω(∆). Autrement
dit, cette variante, intéressante en soi, ne permet pas d’obtenir de meilleures
bornes supérieures pour la variante connexe.

Mots-clés : jeux de surveillance, cout de connectivité, préchargement, Cops
and Robbers, ratio de compétitivité
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1 Introduction
In this paper, we study two variants of the surveillance game introduced in
[FGJM+12]. This two-player game involves one Player moving a mobile agent,
called surfer, along the edges of a graph, while a second Player, called observer,
marks the vertices of the graph. The surfer wins if it manages to reach an
unmarked vertex. The observer wins otherwise, i.e., if it manages to mark all
nodes before the surfer “escapes”.

Surveillance game. More formally, let G = (V,E) be an undirected simple
n-node graph, v0 ∈ V , and k ∈ N∗. Initially, the surfer stands at v0 which is
marked and all other nodes are not marked. Then, turn-by-turn, the observer
first marks k unmarked vertices and then the surfer may move to a neighbor of
her current position. Once a node has been marked, it remains marked until
the end of the game. The surfer wins if, at some step, she reaches an unmarked
vertex; and the observer wins otherwise. Note that the game lasts at most
dnk e turns. When the game is played on a directed graph, the surfer has to
follow arcs when it moves [FGJM+12]. A k-strategy for the observer from v0,
or simply a k-strategy from v0, is a function σ : V × 2V → 2V that assigns the
set σ(v,M) ⊆ V of vertices, |σ(v,M)| ≤ k, that the observer should mark in
the configuration (v,M), where M ⊆ V , v0 ∈ M , is the set of already marked
vertices and v ∈ M is the current position of the surfer. We emphasis that σ
depends implicitly on the graph G, i.e., it is based on the full knowledge of G.
A k-strategy from v0 is winning if it allows the observer to win whatever be the
sequence of moves of the surfer starting in v0. The surveillance number of a
graph G with initial node v0, denoted by sn(G, v0), is the smallest k such that
there exists a winning k-strategy starting from v0.

Let us define some notations used in the paper. Let ∆ be the maximum
degree of the nodes in G and, for any v ∈ V , let N(v) be the set of neighbors
of v. More generally, the neighborhood N(F ) of a set F ⊆ V is the subset
of vertices of V which have a neighbor in F . Moreover, we define the closed
neighborhood of a set F as N [F ] = N(F ) ∪ F .

As an example, let us consider the following basic strategy: let σB be the
strategy defined by σB(v,M) = N(v) \ M for any M ⊆ V , v0 ∈ M , and
v ∈M . Intuitively, the basic strategy σB asks the observer to mark all unmarked
neighbors of the current position of the surfer. It is straightforward, and it was
already shown in [FGJM+12], that σB is a winning strategy for any v0 ∈ V and
it easily implies that sn(G, v0) ≤ max{|N(v0)|,∆− 1}.

Web-page prefetching, connected and online variants. The surveillance
game has been introduced because it models the web-page prefetching problem.
This problem can be stated as follows. A web-surfer is following the hyper-
links in the digraph of the web. The web-browser aims at downloading the
web-pages before the web-surfer accesses it. The number of web-pages that
the browser may download before the web-surfer accesses another web-page is
limited due to bandwidth constraints. Therefore, designing efficient strategies
for the surveillance game would allow to preserve bandwidth while, at the same
time, avoiding the waiting time for the download of the web-page the web-surfer
wants to access.

By nature of the web-page prefetching problem, in particular because of
the huge size of the web digraph, it is not realistic to assume that a strategy
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4 Giroire et al.

may mark any node of the network, even nodes that are “far” from the current
position of the surfer. For this reason, [FGJM+12] defines the connected variant
of the surveillance game. A strategy σ is said connected if σ(v,M)∪M induces
a connected subgraph of G for any M , v0 ∈ M ⊆ V (G). Note that the basic
strategy σB is connected. The connected surveillance number of a graph G with
initial node v0, denoted by csn(G, v0), is the smallest k such that there exists
a winning connected k-strategy starting from v0. By definition, csn(G, v0) ≥
sn(G, v0) for any graph G and v0 ∈ V (G). In [FGJM+12], it is shown that there
are graphs G and v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1. Only the
trivial upper bound csn(G, v0) ≤ ∆ sn(G, v0) is known and a natural question
is how big the gap between csn(G, v0) and sn(G, v0) may be [FGJM+12]. This
paper provides a partial answer to this question.

Still the connected surveillance game seems unrealistic since the web-browser
cannot be asked to have the full knowledge of the web digraph. For this reason,
we define the online surveillance game. In this game, the observer discovers the
considered graph while marking its nodes. That is, initially, the observer only
knows the starting node v0 and its neighbors. After the observer has marked
the subset M of nodes, it knows M and the vertices that have a neighbor in M
and the next set of vertices to be marked depends only on this knowledge, i.e.,
the nodes at distance at least two from M are unknown. In other words, an
online strategy is based on the current position of the surfer, the set of already
marked nodes and knowing only the subgraph H of the marked nodes and their
neighbors (a more formal definition is postponed to Section 3). By definition, the
next nodes marked by such a strategy must be known, i.e., adjacent to an already
marked vertex. Therefore, an online strategy is connected. We are interested
in the competitive ratio of winning online strategies. The competitive ratio
ρ(S) of a winning online strategy S is defined as ρ(S) = maxG,v0∈V (G)

S(G,v0)
sn(G,v0) ,

where S(G, v0) denotes the maximum number of vertices marked by S in G at
each turn, when the surfer starts in v0. Note that, because any online winning
strategy S is connected, csn(G, v0) ≤ ρ(S) sn(G, v0) for any graph G and v0 ∈
V (G).

1.1 Related work
The surveillance game has mainly been studied in the computational complexity
point of view. It is shown that the problem of computing the surveillance number
is NP-hard in split graphs [FGJM+12]. Moreover, deciding whether the surveil-
lance number is at most 2 is NP-hard in chordal graphs and deciding whether
the surveillance number is at most 4 is PSPACE-complete. Polynomial-time
algorithms that compute the surveillance number in trees and interval graphs
are designed in [FGJM+12]. All previous results also hold for the connected
surveillance number. Finally, it is shown that, for any graph G and v0 ∈ V (G),
maxd |N [S]|−1

|S| e ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken over every
subset S ⊆ V (G) inducing a connected subgraph with v0 ∈ S. Moreover, both
previous inequalities turn into an equality in case of trees. [FGJM+12] asks for
an example where the inequalities are strict.

In the literature, there are mainly three types of prefetching: server based
hints prefetching [AEFP98, AZN99, Mog96], local prefetching [WLZC12] and
proxy based prefetching [FCLJ99]. In local prefetching, the client has no aid

Inria



Connected Surveillance Game 5

from the server when deciding which documents to prefetch. In the server
based hints prefetching, the server can aid the client to decide which pages
to prefetch. Lastly, in the proxy based prefetching, a proxy that connects its
clients with the server decides which pages to prefetch. Moreover, some studies
consider that the prefetching mechanism has perfect knowledge of the web-
surfer’s behaviour [PM96,KLM97]. In these studies, the objective is to minimize
the waiting time of the web-surfer with a given bandwidth, by designing good
prediction strategies for which pages to prefetch. In the context of prefetching
web-pages, the surveillance game is a model to study a local prefetching scheme
to guarantee that a websurfer never has to wait a web-page to be downloaded,
whilst minimizing the bandwidth necessary to achieve such a goal.

1.2 Our results
In this paper, we study both the connected and online variants of the surveillance
game. First, we try to evaluate the gap between non-connected and connected
surveillance number of graphs. We give a new upper bound, independent from
the maximum degree, for the ratio csn / sn. More precisely, we show that, for
any n-node graph G and any v0 ∈ V (G), csn(G, v0) ≤ sn(G, v0)

√
n. Then, we

describe a family of graphs G such that csn(G, v0) = sn(G, v0) + 2. Note that,
contrary to the simple example that shows that connected and not connected
surveillance number may differ by one, a larger difference seems much more
difficult to obtain.

As mentioned above, the online variant of the surveillance game is a more
constraint version of the connected game. We prove that any online strategy has
competitive ratio at least Ω(∆). More formally, we describe a familly of trees
with constant surveillance number such that, for any online winning strategy,
there is a step when the strategy has to mark at least ∆

4 vertices in order to win.
Unfortunately, this shows that the best (up to constant ratio) online strategy is
the basic one.

2 Cost of connectedness
In this section, we investigate the cost of the connectivity constraint. We first
prove the first non-trivial upper bound for the ratio csn / sn. More precisely, we
show that for any n-node graph G, csn(G, v0) ≤ sn(G, v0)

√
n. Then, we improve

the lower bound of [FGJM+12]. That is, we show a family of graphs where
csn(G, v0) > sn(G, v0) + 1. Finally, we disprove a conjecture in [FGJM+12].

2.1 Upper bound
In this section, we give the first non-trivial upper bound (independent from the
degree) of the cost of the connectivity in the surveillance game.

Theorem 1. Let G be any connected n-node graph and v0 ∈ V (G), then
csn(G, v0) ≤ sn(G, v0)

√
n.

Proof. sn(G, v0) = 1 if and only if G is a path with v0 as an end. In this case,
csn(G, v0) = sn(G, v0) and the result holds.

RR n° 8297



6 Giroire et al.

Let us assume that k = sn(G, v0) > 1. We describe a connected strategy
σ marking at most k

√
n nodes per turn. Let M0 = {v0} and let M t be the

set of vertices marked after t ≥ 1 turns. Assume moreover that M t induces a
connected graph of G containing v0. Finally, let vt be the vertex occupied by
the surfer after turn t. The set σ(vt,M t) of nodes marked by the observer at
step t + 1 is defined as follows. If |V (G) \M t| ≤ k

√
n, then let σ(vt,M t) =

V (G)\M t. Otherwise, let H ∈ V (G)\M t such that |H| = k
√
n, H∪M t induces

a connected subgraph and |H ∩ N(vt)| is maximum. Then, σ(vt,M t) = H,
i.e., the strategy marks k

√
n new nodes in a connected way and, moreover,

mark as many unmarked nodes among the neighbors of vt. In particular, if
|N(vt) \M t| ≤ k

√
n, then all neighbors of vt are marked after turn t+ 1.

By definition, σ is connected and marks at most k
√
n nodes per turn. It

remains to show that it is winning.
For purpose of contradiction, let us assume that the surfer wins against σ

by following the path P = {v0, . . . , vt, vt+1}. That is, at its t + 1th turn, the
surfer moves from a marked vertex vt to an unmarked vertex vt+1. Therefore,
n > tk

√
n, otherwise the observer marking k

√
n nodes at each turn would have

already marked every vertex on the graph by the end of turn t. Moreover, by
definition of sigma, |N(vt) \M t| > k

√
n

Since, sn(G, v0) = k, let S be any k-winning (non necessarily connected)
strategy for the observer. Assume that the observer follows S against the surfer
following P \ {vt+1}. Since, S is winning, all vertices of N(vt) must be marked
after turn t, otherwise the surfer would win by moving to an unmarked neighbor
of vt. Therefore, since S can mark at most k vertices each turn, |N(vt)| ≤ kt.

Taking both inequalities, we have that k 2
√
n < |N(vt)| ≤ kt. Hence, 2

√
n < t.

Therefore, n > tk 2
√
n > nk, a contradiction.

2.2 Lower Bound

This section is devoted to proving the following theorem.

Theorem 2. There exists a family of graphs G and v0 ∈ V (G) such that
csn(G, v0) > sn(G, v0) + 1.

We use the following result proved in [FGJM+12]. For any graph G = (V,E)
and any vertex v0 ∈ V , a k-strategy for G with initial vertex v0 is winning if and
only if it is winning against a surfer that is constrained to follow induced paths
on G. In other words, the walk of the surfer is contrained to be an induced
path.

In the following theorem, by adding a path P = {v1, · · · , vr} between two
vertices u and v of G, we mean that the induced path P is added as an induced
subgraph of G and the edges {u, v1} and {vr, v} are added.

Let x, α, β and γ be four strictly positive integers satisfying the following

Inria



Connected Surveillance Game 7

inequations.

max{β, β2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} (1)

β < 2γ + 2 (2)
3x ≥ α+ β + 2γ + 12 (3)

x >
4
5(α+ β + γ) + 10 (4)

2α ≥ 73 + β + 2γ (5)

For instance, x = 250, α = 146, β = 73, γ = 73 are values that satisfy all
the above inequalities.

For proving the main theorem in this section we mainly rely in the family of
graphs built in the following the procedure described below.

Let G = (V,E) be a graph with 10 isolated vertices {v0, w0, w1, w2, w
′
0, w

′
1,

w′2, s0, s1, s2}. Then, for all i ∈ {0, 1, 2} do the following:

1. 4x− 9 vertices of degree one are added and made adjacent to si;

2. 3x− 2 vertices of degree one are added and made adjacent to wi, respec-
tively 3x− 2 neighbors of degree one are added to w′i;

3. two disjoint paths Ai = {ai1, · · · , aiα} and A′i = {a′i1 , · · · , a′iα} are added
between v0 and si;

4. a path Bi = {bi1, · · · , biβ} is added between v0 and wi, and a path B′i =
{b′i1 , · · · , b′iβ} is added between v0 and w′i;

5. for any j ∈ {i, i+1 mod 3} a path Ci,j = {ci,j1 , · · · , ci,jγ } is added between
sj and wi, and a path C ′i,j = {c′i,j1 , · · · , c′i,jγ } is added between sj and w′i;

6. for any 1 ≤ j ≤ α, 3x − 1 vertices of degree one are added and made
adjacent to aij , respectively 3x − 1 neighbors of degree one are added to
a′ij ;

7. for any 1 ≤ j ≤ β, 3x − 1 vertices of degree one are added and made
adjacent to bij , respectively 3x − 1 neighbors of degree one are added to
b′ij ;

8. for any 1 ≤ j ≤ γ, ` ∈ {i, i+ 1 mod 3}, 3x− 1 vertices of degree one are
added and made adjacent to ci,`j , respectively 3x − 1 neighbors of degree
one are added to c′i,`j .

Hence, the graph G has (30 + 18(α + β) + 36γ)x − 29 vertices. Note that,
for any i ∈ {0, 1, 2}, the node si has 4x− 3 neighbors, v0 has 12 neighbors, and
any other non-leaf node has degree 3x+ 1.

Claim 1. If max{β, β2 +γ+1} < α < min{β+γ+1, 2γ+2} and β < 2γ+2, the
unique (up to symmetries) minimum Steiner-tree for S = N [v0] ∪ {s0, s1, s2}
in G has 15 + α + β + 2γ vertices and consists of the vertices of the paths
A0, B1, C1,1, C1,2 and the vertices in S ∪ {w1}.

RR n° 8297



8 Giroire et al.

Proof. The subgraph induced by the vertices of the paths A0, B1, C1,1, C1,2 and
the vertices in S∪{w1} is a subtree spanning S and with 15+α+β+2γ vertices.
Let us enumerate all the possible (up to symmetries) Steiner-trees for S.

1. Consider the subgraph induced by the vertices of the paths A0, A1, A2 and
the vertices in S. The number of vertices is 3α+ 13.

2. Consider the subgraph induced by the vertices of the paths A0, A1, C1,1,
C1,2 and the vertices in S ∪{w1}. The number of vertices is 2α+ 2γ+ 15.

3. Consider the subgraph induced by the vertices of the paths A0, A1, B1,
C1,2 and the vertices in S∪{w1}. The number of vertices is 2α+β+γ+14.

4. Consider the subgraph induced by the vertices of the paths A0, C0,0,
C0,1, C2,0, C2,2 and the vertices in S ∪ {w0, w2}. The number of vertices
is α+ 4γ + 17.

5. Consider the subgraph induced by the vertices of the paths B0, B1, C0,0,
C1,1, C1,2 and the vertices in S ∪ {w0, w1}. The number of vertices is
2β + 3γ + 16.

6. Consider the subgraph induced by the vertices of the paths B1, C1,1,
C1,2, C2,2, C2,0 and the vertices in S ∪ {w1, w2}. The number of vertices
is β + 4γ + 17.

If the subgraph induced by the vertices of the paths A0, B1, C1,1, C1,2 and the
vertices in S∪{w1}, is the unique (up to symmetries) minimum Steiner-tree for
S = N [v0] ∪ {s0, s1, s2} in G, then we get the following inequalities:

α > β
2 + γ + 1

α > β

α > γ + 1
β < 2γ + 2
α < β + γ + 1
α < 2γ + 2.

Thus max{β, β2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2.

The graph G is depicted in Figure 3 where the scheme of a minimum Steiner-
tree for S = N [v0] ∪ {s0, s1, s2} is depicted with dashed lines.

For any i ∈ {0, 1, 2}, let Ai = N [v0] ∪ N [Ai] ∪ N [si] (resp., A′i = N [v0] ∪
N [A′i]∪N [si]). Note that |Ai| = |A′i| = (3α+ 4)x+ 9 and that the Ai and Aj ,
i 6= j, pairwise intersect only in N [v0].

For any i ∈ {0, 1, 2}, let Bi = N [v0]∪N [Bi]∪N [wi]∪N [Ci,i]∪N [Ci,i+1 mod 3]
∪ N [si] ∪ N [si+1 mod 3] and B′i is defined similarly. |Bi| = |B′i| = (3β + 6γ +
11)x+5. Finally, for any i ∈ {0, 1, 2} and j ∈ {i, i+1 mod 3}, let Bi,j = N [v0]∪
N [Bi]∪N [wi]∪N [Ci,j ]∪N [sj ] and B′i,j = N [v0]∪N [B′i]∪N [w′i]∪N [C ′i,j ]∪N [sj ].

Lemma 3. For any i ∈ {0, 1, 2} and j ∈ {i, i+ 1 mod 3}, during its first step,
any winning (3x+ y)-strategy for G must mark at least

• x+ 8− y(α+ 1) nodes in Ai (resp., in A′i), and

Inria
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w0

s1
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Figure 1: Graph Family Scheme. Here we show only one “layer” of the graph.

• x+ 8− y(β + γ + 2) nodes in Bi,j (resp., in B′i,j), and

• 2x+ 4− y(β + 2γ + 3) nodes in Bi (resp., in B′i).

Proof. Let S be any winning (3x + y)-strategy and F be the set of nodes that
S marks during its first step.

LetM = F ∩A0. The surfer goes to a0
1. We may assume that S had marked

it since the strategy fails otherwise. Now, the surfer first goes to s0 through A0

unless, at some turn, its position has an unmarked neighbor. In the latter case,
the surfer goes to this unmarked node and wins. During these (α + 1) steps,
the strategy S can mark at most (α+ 1)(3x+ y) extra nodes in A0. Hence, in
total, at most |M | + (α + 1)(3x + y) nodes have been marked in A0 when the
surfer is at s0 and it is its turn. Because S is a winning strategy, all nodes in A0
must have been marked since otherwise the surfer would have won. Therefore,
|M |+ (α+ 1)(3x+ y) ≥ |A0 \ {v0}| = (3α+ 4)x+ 8 and |M | ≥ x+ 8− y(α+ 1).

The proof is similar for Bi,j .
Now, let M = F ∩B0 and let M ′ = F ∩ (N [v0]∪N [B0]∪N [w0]) ⊆M . The

surfer goes to b01. We may assume that S had marked it since the strategy fails
otherwise. Now, the surfer first goes to w0 through B0 unless, at some turn,
its position has an unmarked neighbor. In the latter case, the surfer goes to
this unmarked node and wins. At the turn of the surfer when it is in w0, the
strategy has marked |M |+(β+1)(3x+y) and all nodes in N [v0]∪N [B0]∪N [w0]
must have been marked. Therefore, at most |M |+ (β+ 1)(3x+ y)− (12 + 3(β+
1)x) = |M |+ y(β + 1)− 12 nodes of B′0 \ (N [v0] ∪N [B0] ∪N [w0]) are marked.
Therefore, w.l.o.g., there are at most b |M |+y(β+1)−12

2 c nodes that are marked in
(N [C0,0]∪N [s0])\N [w0]. The surfer now goes from w0 to s0. During these steps,
at most (γ+1)(3x+y) new vertices are marked. Because S is a winning strategy,
all nodes in (N [C0,0] ∪N [s0]) \N [w0] must have been marked since otherwise
the surfer would have won. Therefore, b |M |+y(β+1)−12

2 c + (γ + 1)(3x + y) ≥
|(N [C0,0]∪N [s0])\N [w0]| = 3γx+4x−4. Hence, |M | ≥ 2x+4−y(β+2γ+3).

Lemma 4. sn(G, v0) = 3x.
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Proof. First, let us show that sn(G, v0) ≤ 3x. For this purpose, consider the
following strategy. At the first step, the observer marks the 12 neighbors of v0
and, for any i ∈ {0, 1, 2}, the observer marks x− 4 one-degree neighbors of si.

Note that, all nodes in N(v0) have exactly 3x unmarked neighbors and
any vertex has at most 3x + 1 unmarked neighbors. Now, the strategy simply
consists in marking at each step the neighbors of the current position of the
surfer. Indeed, it is easy to prove by induction on the number of steps that,
each time that the surfer arrives at a new node, this node is marked and has at
most 3x unmarked neighbors.

Now, let us prove that sn(G, v0) > 3x−1. Let S be any (3x−1)-strategy and
let F be the set of nodes that S marks during its first step. Clearly, N(v0) ⊆
F since otherwise the surfer wins after its first move. Moreover, because the
sets Ai \ N [v0] are pairwise disjoint, there must be i ∈ {0, 1, 2}, such that
|F ∩ (Ai \ N [v0])| < x − 4. Hence, |F ∩ Ai| < x + 8 for some i. However, by
Lemma 3, any winning (3x−1)-strategy must mark at least x+8+α+1 > x+8
nodes in each Ai during the first step.

Lemma 5. csn(G, v0) > 3x+ 1.

Proof. For purpose of contradiction, let us assume that there is a winning con-
nected 3x + 1-strategy. Let F be the set of vertices marked by this strategy
during the first step. Clearly, N(v0) ⊆ F and |F | ≤ 3x+ 1.

For any 0 ≤ i ≤ 2, let fi = |F ∩N [si]| and let fmin = mini fi. Without loss
of generality, fmin = f0. We first show that fmin > 3.

By Lemma 3, for any i ∈ {0, 1, 2}, |F ∩ (Ai \ N [v0])| ≥ x − 5 − α and, for
any i ∈ {0, 2}, |F ∩ (Bi,0 \N [v0])| ≥ x− 6− (β + γ) and |F ∩ (B′i,0 \N [v0])| ≥
x− 6− (β + γ). Therefore,

3x+ 1 ≥ |F ∩ (A0 ∪ A′0 ∪ A1 ∪ A2 ∪ B0,0 ∪ B2,0 ∪ B′0,0 ∪ B′2,0)|
≥ 12 + 4(x− 5− α) + 4(x− 6− (β + γ))− 5|F ∩N [s0]|
≥ 8x− 4(α+ β + γ)− 32− 5fmin

Hence, 5fmin ≥ 5x− 4(α+β+ γ)− 33, and fmin ≥ x− 4
5 (α+β+ γ)− 7 > 3

by the above inequality.
Therefore, by definition of fmin, |F ∩ N [si]| ≥ 4 for any i ∈ {0, 1, 2}. By

connectivity of the strategy, si ∈ F ∩N [si] for any i ∈ {0, 1, 2}. Hence, F must
contain a subset of vertices inducing a subtree spanning S = N [v0]∪{s0, s1, s2}.
Let T be an inclusion-minimal subset of F that induces a subtree spanning S.
By Claim 1, |T | ≥ α+ β + 2γ + 15. Let T ′ = T \ (N [v0]∪

⋃
0≤i≤2N [si]). Then,

|T ′| ≥ α + β + 2γ − 4. Moreover, because of the symmetries, we may assume
w.l.o.g., that T ′ ⊆

⋃
0≤i≤2(Ai ∪ Bi).

By Lemma 3 and because N(v0) ⊆ F , for any 0 ≤ i ≤ 2, |F ∩ (A′i ∪
B′i+1 mod 3)| ≥ x+8−(α+1)+2x+4−(β+2γ+3)−12 = 3x−(α+β+2γ)−4.
Hence, |T ′|+|F∩(A′i∪B′i+1 mod 3)| ≥ 3x−8. LetWi = F \(A′i∪B′i+1 mod 3∪T ′).
Since |F | ≤ 3x+ 1, it follows that |Wi| ≤ 9.

Let fmax = maxi fi and assume w.l.o.g. that fmax = f2. Since
∑

0≤i≤2 fi ≤
|F \ T ′|, we get that f0 + f1 ≤ b 2

3 (5 + 3x− (α+ β + 2γ)c.
To conclude, |F∩B′0| = |N(v0)|+f0+f1+|W0| ≤ 21+b 2

3 (5+3x−(α+β+2γ)c.
On the other hand, Lemma 3 implies that |F∩B′0| ≥ 2x+1−(β+2γ). Therefore,
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22 + 2
3 (5 + 3x− (α+β+ 2γ) > 2x+ 1− (β+ 2γ) and it follows 73 > 2α−β−2γ.

This contradicts the inequalities.

Lemmas 4 and 5 are sufficient to prove Theorem 2. More precisely, it shows
that there exist a family of graphs G and v0 ∈ V (G) such that csn(G, v0) ≥
sn(G, v0) + 2. However, as shown in the next lemma, the family of graphs
we described does not allow to increase more the lower bound on the cost of
connectivity.

Lemma 6. csn(G, v0) ≤ 3x+ 2.

Proof. Consider the following strategy. At the first step, the observer marks
the 12 neighbors of v0, all nodes of the paths A0, B1, C1,1 and C1,2, the vertices
w1, s0, s1 and s2 and finally Z = b(3x−α−β−2γ−12)/3c one-degree neighbors
of each si. Note that Z ≥ 0 by Equation 3.

Then, the strategy goes on as follows. Let i ∈ {0, 1, 2}. When the surfer
arrives at some node aij (resp., a′ij ), 1 ≤ j ≤ α, the observer marks the at
most 3x unmarked neighbors of aij and marks at least 2 unmarked neighbors
of si. When the surfer arrives at some node bij (resp., b′ij ), 1 ≤ j ≤ β, or at
wi, the observer marks the at most 3x unmarked neighbors of this node and
marks at least 1 unmarked neighbor of si and at least 1 unmarked neighbor of
si+1 mod 3. When the surfer arrives at some node ci,`j (resp., c′i,`j ), 1 ≤ j ≤ γ,
` ∈ {i, i+ 1 mod 3}, the observer marks the at most 3x unmarked neighbors of
ci,`j and marks at least 2 unmarked neighbors of s` (if any) and, if all neighbors
of s` are already marked, the observer marks at least 2 unmarked neighbors of
sk where {k} = {i, i + 1 mod 3} \ {`}. Finally, when the surfer arrives at si,
the observer marks 3x+ 2 unmarked neighbors of it.

To prove the validity of this strategy, it is sufficient to show that the surfer
will loose for the following three different trajectories. This is sufficient, because
the surfer is only able to win when moving from s0, s1 or s2 and because α < 2γ,
i.e., the amount of steps it takes for the surfer to move from si to sj , with j 6= i
is bigger than the amount of steps it takes it to move from v0 to sj . Meaning
that, if the fugitive wins it wins the first time it moves out of one of these three
vertices.

First, let us assume that the surfer goes from v0 to si through Ai (i ∈
{0, 1, 2}). Clearly, at each step before reaching si, all neighbors of the current
position of the surfer are marked. Now, when the surfer arrives at si, there
are at least 2(α + 1) + Z neighbors of si that are already marked. To show
that the observer wins, it is sufficient to note that |N(si)| − (2(α + 1) + Z) =
4x−3−2α−2−b(3x−α−β−2γ−12)/3c ≤ 3x−2α−5+(α+β+2γ+12)/3 =
3x− 1 + (β + 2γ − 5α)/3 ≤ 3x+ 2 because 2α > β + 2γ + 1.

Second, let us assume that the surfer goes from v0 to si through Bi, wi and
Ci,i (i ∈ {0, 1, 2}). When the surfer arrives at si, there are at least β+1+2γ+Z
neighbors of si that are already marked. To show that the observer wins, it is
sufficient to note that |N(si)|−(β+1+2γ+Z) = 4x−3−β−1−2γ−b(3x−α−β−
2γ−12)/3c ≤ 3x−β−4−2γ+(α+β+2γ+12)/3 ≤ 3x+(α−2β−4γ)/3 ≤ 3x+2
because α < β + γ + 1.

Finally, let us assume that the surfer goes from si (all neighbors of which are
already marked) to si+1 mod 3 through Ci,i, wi and Ci,i+1 mod 3 (i ∈ {0, 1, 2}).
When the surfer arrives at si+1 mod 3, there are at least 4γ + 2 + Z neighbors
of si+1 mod 3 that are already marked. To show that the observer wins, it is
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12 Giroire et al.

sufficient to note that |N(si+1 mod 3)|−(4γ+2+Z) = 4x−3−4γ−2−b(3x−α−
β−2γ−12)/3c ≤ 3x−5γ−4+(α+β+2γ+12)/3 ≤ 3x−1+(α+β−10γ)/3 ≤ 3x+2
because β < α < 2γ + 1.

To conclude this section, we answer a question asked in [FGJM+12] neg-
atively. In this paper, it is shown that, for any graph G and v0 ∈ V (G),
maxd |N [S]|−1

|S| e ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken over ev-
ery subset S ⊆ V (G) inducing a connected subgraph with v0 ∈ S [FGJM+12].
Moreover, both previous inequalities turn into an equality in case of trees. The
authors of [FGJM+12] ask whether the first inequality may be strict.

First, let us notice that an equality might give new way to attack the question
of the cost of the connectivity. However, such an equality is unlikely to hold
since it would imply that the problem of computing the surveillance number of
a graph is in co-NP while this problem is known to be PSPACE-complete in
DAGs. We actually show that there are graphs where the inequality is strict.

Let us build a graph as follows. Starting from the vertex set V = {a, b, c, ab,
ac, bc, s} and edge set E = {(s, a), (s, b), (s, c), (a, ab), (a, ac), (b, ab), (b, bc), (c,
ac), (c, bc)}. Then, we add 11k−21−2x

6 leaves to each vertex ab, ac and bc, more-
over, add 3 leaves to each vertex a, b and c, and, finally, add x leaves to s. A
scheme of this family can be found in Figure 2.

s

a

b c

ab ac

bc

11k−21−2x
6

11k−21−2x
6

11k−21−2x
6

x

Figure 2: Scheme of the graph family described in the proof of Theorem 7.

We moreover assume that k − 5 ≡ 0 (mod 2), k − x − 3 ≡ 0 (mod 3),
11k − 21− 2x ≡ 0 (mod 6), x ≤ k − 36 and k ≥ 34. For instance, k = 105 and
x = 42 are possible.

Let G be the graph obtained by the above construction and where parameters
satisfy the above constraints.

Theorem 7. sn(G, s) = k and maxS⊆V (G)d{ |N [S]|−1
|S| }e < k.

Proof. Troughout this proof, let M ⊆ V denote the set of (currently) marked
vertices in G.

Inria



Connected Surveillance Game 13

We show a strategy for the surfer that wins against an observer that can mark
at most k − 1 vertices per turn. Let Sa = (N [a] ∪ N [ab] ∪ N [ac]) \ {s, a, b, c},
Sb = (N [b]∪N [ab]∪N [bc]) \ {s, a, b, c}, Sc = (N [c]∪N [bc]∪N [ac]) \ {s, a, b, c}.

In the first step and after the observer has used its marks, the surfer chooses
to move to i where i = arg mini={a,b,c} |Si ∩M |. Since the observer must mark
the vertices in N(s) (including a, b, c) we have that |Si ∩M | ≤ 2

3 (k − 1 − x −
3). Without loss of generality assume that i = a. In the second step, all
neighbors of a must have been marked, otherwise the surfer wins by moving to
an unmarked leaf of a. Let Sab = N [ab] \ {a, b, ab} and Sac = N [ac] \ {a, c, ac},
therefore, after all marks are spent in the second step, minj={ab,ac} |Sj ∩M | ≤
k−1−5+ 2

3 (k−1−x−3)
2 . The surfer then chooses to move to arg mini={ab,ac} |Si∩M |,

w.l.o.g. assume that it is the vertex ab. In the third step, the observer might
use all its available marks onto the leaves of ab, hence, after spending all the
marks, |Sab ∩M | ≤ k − 1 + k−1−5+ 2

3 (k−1−x−3)
2 = 11k−32−2x

6 which is less than
|Sab|, hence there is an unmarked leaf of ab that the surfer can reach.

We consider now a winning strategy for the observer that marks k vertices
per step. At the first step, the observer marks all vertices in N [s], with the
remaining marks, k − x − 3, being spread evenly among vertices in the sets
N [ab] \ {a, b, ab}, N [ac] \ {a, c, ac} and N [bc] \ {b, c, bc}. Hence, there are at
least bk−x−3

3 c = k−x−3
3 vertices marked in each of those sets. Without loss of

generality assume that the surfer moves towards a. Then, the observer marks
the vertices in N(a) and, with the remainning marks, proceeds to distribute
them evenly among the vertices of the sets N(ab) and N(ac). When the surfer
is about to move there are at least bk−5

2 c + k−x−3
3 = k−5

2 + k−x−3
3 vertices in

(N(ab) \ {a, b}) ∩M and in (N(ac) \ {a, c}) ∩M . Without loss of generality
assume that the surfer moves towards ab. Then the observer uses all its available
marks on the unmarked vertices in N(ab)\{a, b}. Therefore, after all marks are
spent, there are k + k−5

2 + x−3
3 marked vertices in N(ab) \ {a, b}. It remains to

show that k + k−5
2 + x−3

3 ≥ 11k−21−2x
6 .

k + k − 5
2 + x− 3

3 ≥ 6k
6 + 3k − 15

6 + 2x− 6
6 − 2 = 9k − 21 + 2x

6 − 2

9k − 21 + 2x
6 − 2 = 9k − 33 + 4x− 2x

6 ≥ 11k − 21− 2x
6

Now we show that for all connected sets S such that s ∈ S we have that
d |N [S]−1|

|S| e < k.

Claim 2. For all connected sets S such that s ∈ S, then d |N [S]−1|
|S| e ≤ k − 1.

Proof. First we prove that if S contains a vertex v ∈ V with degree 1, then
d |N [S]−1|

|S| e ≤ d |N [S\{v}]−1|
|S\{v}| e. Since S contains s and induces a connected sub-

graph, then N(v) ⊂ S because |N(v)| = 1. Thus N [S \ {v}] contains v and so
N [S \ {v}] = N [S].

In the rest of the proof, we consider sets S that do not contain a node with
degree 1. Let Lab = N(ab)\{a, b}, Lac = N(ac)\{a, c}, and Lbc = N(bc)\{b, c}.
By the previous assumption, if a node v ∈ Lab is such that v ∈ N [S], then all
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14 Giroire et al.

nodes in Lab are in N [S]. By symmetry, we have the similar property for Lac
and Lbc. Note that (N(s) \ {a, b, c}) ⊂ N [S] because s ∈ S by definition.

We have four different cases:

• Consider S such that N [S] ∩ (Lab ∪ Lac ∪ Lbc) = ∅. We get that |S| ≥ 1
and N [S] ≤ x+ 16. Thus d |N [S]−1|

|S| e ≤ x+ 15 ≤ k− 1 because x ≤ k− 36.

• Consider S such that N [S]∩ (Lac∪Lbc) = ∅ and Lab ⊂ N [S]. We get that
|S| ≥ 3 and N [S] ≤ x+ 16 + 11k−21−2x

6 . Thus d |N [S]−1|
|S| e ≤ d11k+4x+69

18 e ≤
k−1 because x ≤ k−36 and k ≥ 34. The case N [S]∩ (Lab∪Lbc) = ∅ and
Lac ⊂ N [S] is similar and the case N [S]∩ (Lab∪Lac) = ∅ and Lbc ⊂ N [S]
is also similar.

• Consider S such that N [S] ∩ Lbc = ∅ and Lab ∪ Lac ⊂ N [S]. We get that
|S| ≥ 4 and N [S] ≤ x+ 16 + 11k−21−2x

3 . Thus d |N [S]−1|
|S| e ≤ d 11k+x+24

12 e ≤
k − 1 because x ≤ k − 36 and k ≥ 34. The case N [S] ∩ Lac) = ∅ and
Lab ∪Lbc ⊂ N [S] is similar and the case N [S]∩Lab) = ∅ and Lac ∪Lbc ⊂
N [S] is also similar.

• Consider S such that Lab ∪ Lac ∪ Lbc ⊂ N [S]. We get that |S| ≥ 6 and
N [S] ≤ x + 16 + 11k−21−2x

2 . Thus d |N [S]−1|
|S| e ≤ d 11k+9

12 e ≤ k − 1 because
k ≥ 34.

Claim 2 concludes the proof of Theorem 7 because we have proved that
sn(G, s) = k.

3 Online Surveillance Number
In this section, we study the online variant of the surveillance game motivated
by the web-page prefetching problem where the observer (the web-browser) dis-
covers new nodes through hyperlinks in already marked nodes. In this variant,
the observer does not know a priori the graph in which it is playing. That is,
initially, the observer only knows v0, its degree and the identifiers of its neigh-
bors. Then, when a new node is marked, the observer discovers all its neighbors
that are not yet marked. Note that the degree of a node is not known before it
is marked.

Another property of an online strategy that must be defined concerns the
moment when the observer discovers the unmarked neighbors of a node that it
has decided to mark. There are two natural models. Assume that the set M
of nodes have been marked and this is the turn of the observer, and let N(M)
be the set of nodes with a neighbor in M . Either it first chooses the k nodes
that will be marked among the set N(M)\M of the unmarked neighbors of the
nodes that were already marked and then the observer marks each of these k
nodes and discover their unknown neighbors simultaneously. Or, the observer
first chooses one node x in N(M) \M , marks it and discovers its unmarked
neighbors, then it chooses a new node to be marked in N(M ∪{x}) \ (M ∪{x})
and so on until the observer finishes its turn after marking k nodes. We choose
to consider the second model because it is less restricted, i.e., the observer has
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Connected Surveillance Game 15

more power, and, even in this case, our result is pessimistic since we show that
the basic strategy is the best one with respect to the competitive ratio.

Formal definition of online strategy. Now we are ready to formally define
an online strategy. Let k ≥ 1, let G = (V,E) be a graph, v0 ∈ V , and let G be
the set of subgraphs of G.

GivenM ⊆ V be a subset of nodes inducing a connected subgraph containing
v0 in G. Let GM ∈ G be the subgraph of G known by the observer when M
is the set of marked nodes. That is, GM = (M ∪ N(M), EM ) where EM =
{(u, v) ∈ E | u ∈ M}. For any u, v ∈ N(M) \M , let us set u ∼M v if and
only if N(u) ∩M = N(v) ∩M . Let χM be the set of equivalent classes, called
modules, of N(M) \M with respect to ∼M . The intuition is that two nodes in
the same module of χM are known by the observer but cannot be distinguished.
For instance, χ{v0} = {N(v0)} because initially all neighbors of v0 look the same
to the observer.

A k-online strategy for the observer starting from v0 is a function σ : G ×
V ×2V ×{1, · · · , k} → 2V such that, for any subset M ⊆ V of nodes inducing a
connected subgraph containing v0 in G, for any v ∈ M , and for any 1 ≤ i ≤ k,
then σ(GM , v,M, i) ∈ χM . This means that, if M is the set of nodes already
marked and thus the observer only knows the subgraph GM , if v is the position
of the surfer and it remains k− i+ 1 nodes to be marked by the observer before
the surfer moves, then the observer will mark one node in σ(GM , v,M, i).

More precisely, we say that the observer follows the k-online strategy σ if the
game proceeds as follows. LetM = M0 be the set of marked nodes just after the
surfer has moved to v ∈M . Initially,M0 = {v0} and v = v0. Then, the strategy
proceeds sequentially in k steps for i = 1 to k. First, the observer marks an
arbitrary node x1 ∈ σ(GM0 , v,M0, 1). Let M1 = M0∪{x1}. Sequentially, after
having marked 1 < i < k nodes at this turn, the observer marks one arbitrary
node xi+1 ∈ σ(GMi , v,M i, i+ 1) and M i+1 = M i ∪ {xi+1}. When the observer
has marked k nodes, that is after choosing xk ∈ σ(GMk−1 , v,Mk−1, k), it is the
turn of the surfer, when it may move to a node adjacent to its current position
and then a new turn for the observer starts. Note that because we are interested
in the worst case for the observer, each marked node xi ∈ σ(GMi−1 , v,M i−1, i)
is chosen by an adversary.

The online surveillance number of a graph G with initial node v0, denoted
by on(G, v0), is the smallest k such that there exists a winning k-online strategy
starting from v0. In other words, there is a winning k-online strategy σ starting
from v0 such that an observer following σ wins whatever be the trajectory of
the surfer and the choices done by the adversary at each step. Note that, since
we consider the worst scenario for the observer, we may assume that the surfer
has full knowledge of G.

Theorem 8. There exists a infinite family of rooted trees such that, for any T
with root v0 ∈ V (T ) in this family, sn(T, v0) = 2 and on(T, v0) = Ω(∆) where
∆ is the maximum degree of T .

Proof. We first define the family (Tk)k≥1 of rooted trees as follows.
Let k ≥ 4 be a power of two and let i = 2k and d = 2k

k .
Let us consider a path P = {v0, v1, . . . , vi−1} with i nodes Let B be a

complete binary tree of height h = 3k + 1 and rooted at some vertex vi, i.e., B
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v0
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v1 v2 vi�1
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S1 S2 Sk
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2k

k
d =

2k

k

w2

Figure 3: Tree Tk described in the proof of Theorem 8.

has 2h+1 − 1 vertices. Let w0 be any leaf of B. Finally, let Q = {w1, . . . , wk}
be a path on k nodes. Note that, P,B and Q depend on k.

The tree Tk is obtained from P,B and Q by adding an edge between vi−1
and vi, an edge between w0 and w1. Finally, for any 1 ≤ j ≤ k, let us add an
independent set, Sj , with d vertices and an edge between each vertex of Sj and
wj (i.e., each node in Sj is a leaf in the resulting tree Tk). Tk is then rooted in
v0.

Let Q+ denote the union of vertices of Q and
⋃k
j=1 Sj . The maximum degree

∆ of Tk is reached by any node wj , 1 ≤ j < k, and ∆ = d+ 2 = 2k

k + 2.

We first show that sn(Tk, v0) = 2. Clearly, sn(Tk, v0) > 1. Let us consider
the following (offline) strategy for the observer.

At each turn j ≤ i, the surfer marks the vertex vj and one unmarked vertex
of Q+ that is closest to the surfer. Note that the observer is allowed to mark
nodes in Q+ because in an offline strategy, the observer knows the whole tree.
Just after turn i, the surfer must occupy a node of P ∪{vi}. Moreover, it cannot
have reached an unmarked vertex so far since all nodes of P ∪ {vi} have been
marked before the surfer can access them.

For each turn j > i and while the surfer does not occupy a node in Q+∪{w0},
the observer marks the neighbors of the current position of the surfer if they
are not already marked. While the surfer remains on the nodes of B or P , this
strategy clearly requires to mark at most 2 nodes per turn since B is a binary
tree.

Finally, if the surfer occupies a node in Q+ ∪ {w0}, the observer marks two
unmarked nodes of Q+ that are closest to the surfer. It only remains to prove
that the surfer cannot reach an unmarked node in Q+. When the surfer reaches
w0, this node must be marked by the previous strategy. Moreover, by the
strategy of the first i turns, the i nodes of Q+ that are closest to w0 have been
marked. Hence, for any 1 ≤ j ≤ k, when the surfer reaches wj , at least the i+2j
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nodes of Q+ that are closest to w0 are marked. Since |
⋃

1≤p≤j N [wp] ∩Q+| ≤
j(d + 1) + 1 and because i = dk, we get that i + 2j = dk + 2j ≥ dj + j + 1 ≥
|
⋃

1≤p≤j N [wp] ∩ Q+| and therefore, the surfer never reaches a node with an
unmarked neighbor.

Hence, sn(Tk, v0) = 2.

Now it remains to show that on(Tk, v0) = Ω(∆). Let γ be any online strategy
for Tk and marking at most d

4 = 2k−2

k nodes per turn. We show that γ fails.
For this purpose, we model the fact that the observer does not know the

graph by “building” the tree during the game. More precisely, each time the
observer marks a node v, then the adversary may add new nodes adjacent to v
or decide that v is a leaf. Of course, the adversary must satisfy the constraint
that eventually the graph is Tk. Initially, the observer only knows v0 that has
one neighbor v1. Now, for any 1 ≤ j < i, when the observer marks the node
vj of P , then the adversary “adds” a new node vj+1 adjacent to vj , i.e., the
observer discovers its single unmarked neighbor vj+1. Now, let v be any node
of B. Recall that h is the height of B. When the observer marks v, there are
three cases to be considered: if v is at distance at most h− 1 from vi, then the
adversary adds two new nodes adjacent to v; if v is at distance h from vi and
not all nodes of B have been marked then the adversary decides that v is a leaf;
finally, if all nodes of B have been marked (v is the last marked node of B, i.e.,
B is a complete binary tree of height h), the adversary decides that v = w0
and add one new neighbor w1 adjacent to it. Note that we can ensure that the
last node of B to be marked is at distance h of vi by connectivity of any online
strategy.

Now, let consider the following execution of the game. During the first i
steps, the surfer goes from v0 to vi. Just after the surfer arrives in vi, the
observer has marked at most (di)/4 nodes and all nodes of P ∪ {vi} must be
marked since otherwise the surfer would have won. Therefore, at most i(d/4−
1) + 1 = 22k−2/k − 2k + 1 nodes of B are marked when it is the turn of the
surfer at vi. Since B has 2h+1 − 1 = 23k+2 − 1 nodes, at least one node of B is
not marked.

From vi, the surfer always goes toward w0. Note that the observer may guess
this strategy but it does not know where is w0 while all nodes of B have not
been marked.

Then let 0 ≤ t ≤ h and let v′t ∈ V (B) be the position of the surfer at step
i + t and Bt the subtree of B rooted at v′t. Note that, at step i, v′0 = vi and
B0 = B. Let Btl and Btr be the subtrees of B rooted at the children of v′t.
W.l.o.g., let us assume that the number of marked nodes in Btl is at most the
number of marked nodes in Btr, when it is the turn of the surfer standing at v′t.
Then, the surfer moves to the root of Btl . That is, v′t+1 is the child of vt whose
subtree contains the minimum number of marked nodes.

Let mt be the number of marks in the subtree of B rooted at v′t when it
is the turn of the surfer at v′t. Since, at beginning of step i there are at most
22k−2/k−2k+1 nodes of B that are marked and k ≥ 4, m0 ≤ 22k−2/k−2k+1 ≤
22k−2/k. Note that, for any t > 0, mt ≤ (mt−1 − 1 + d

4 )/2 ≤ (mt−1 + d
4 )/2.

Simply expanding this expression we get that, for any t > 0,
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mt ≤
m0

2t + 2k

k

t+2∑
j=3

2−j ≤ 22k−(t+2)

k
+ 2k

k

t+2∑
j=3

2−j .

Therefore, for any t ≥ 2k:

mt ≤
1
k

+ 2k

k

t+2∑
j=3

2−j ≤ 2k + 1
k

.

In particular, at step i+ 2k (when it is the turn of the surfer), the surfer is
at v′2k which is at distance k+ 1 from w0. Hence, |B2k| ≥ 2k+1− 1 and at most
2k+1
k < 2k+1− 1 of its nodes are marked. Hence, w0 neither no nodes in Q+ are

marked.
From this step, the surfer directly goes to wk unless she meets an unmarked

node, in which case, she goes to it and wins. When the surfer is at wk and it is
her turn, the observer may have marked at most (2k+2)d4 ≤

kd
2 + d

2 ≤ 2k−1+ 2k−1

k
nodes in Q+. Since |Q+| = (d+ 1)k = 2k + k and k ≥ 4, at least one neighbor
of wk is not marked yet and the surfer wins.

A direct consequence of this theorem is the following result:

Corollary 1. No online winning strategy has better competitive ratio than the
basic strategy up to a constant factor.

As mentioned in the introduction, any online strategy is connected and
therefore, for any graph G and v0 ∈ V (G), csn(G, v0) ≤ on(G, v0). More-
over, we recall that, for any tree T and for any v0 ∈ V (T ), csn(T, v0) =
sn(T, v0) [FGJM+12]. Hence, the previous theorem shows that there might
be an arbitrary gap between csn(G, v0) and on(G, v0).

4 Conclusion
Despite our results, the main question remains open. Can the difference or the
ratio between the connected surveillance number of a graph and its surveillance
number be bounded by some constant?
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