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Answer’s to the referees’ questions

Aurore Back and Eric Sonnendrücker

April 12, 2013

We thank the referees for the careful reading of our manuscript and for many interesting

comments that helped us improve the article.

1 Answer to the questions of referee 0

1. We agree that exterior calculus is not really necessary in 1D, but this work provides

a proof of principle that discrete exterior calculus tools can be applied to the simu-

lation of Vlasov-Poisson and Vlasov-Maxwell systems. Discrete exterior calculus has

been proven extremely beneficial for the simulation of the Maxwell equations and

this will of course extend to the Vlasov-Maxwell equations, bringing all the benefits

for Maxwell equations and in addition some very useful properties in particular for

the coupling of Vlasov with Maxwell with the problem of discrete charge conserva-

tion is an important and challenging issue. This discussion has been added in the

introduction.

2. The tensor product extension to higher dimensions of the Hodge operator is straight-

forward and present no difficulty.

3. The equivalence of Ampère and Poisson is true only in 1D. A justification is provided

in the appendix.

4. Done.

5. Done.

6. Yes, section 4.1 is devoted to expressing the most important conservation properties

at the continuous level in the language of differential forms. This is conservation of

mass, momentum and energy. These are not automatically conserved at the discrete

level even using discrete differential forms, but it can be obtained by choosing care-

fully the discretisation spaces and the Poisson solver with a full 2D scheme. For cost

reasons, we use here a 1D splitting in which case there are no discrete conservations

of momentum and energy. The discrete obtained in our framework is centred and

not diffusive. This is explained.

1

Response to Reviewers



7. Answers on numerical experiments:

• The algorithm is mentioned for each experiment. In the first algorithm a Crank-

Nicolson time integration is used at each split step. This has been added to the

description of the algorithm.

• Spline degrees have been indicated and comparisons performed.

• The conservation properties have been better documented. Complete energy

and momentum conservation is possible in a non time split setting, but this is

numerically a lot more expensive and outside the scope of this paper. This will

be addressed in a later paper.

• The full linear problem is solved and the solution compared to the analytical

solution of the most important mode of the linearised problem. The recur-

rence phenomenon does not depend on ǫ, only on δv and a fairly coarse mesh

of 64 points is used in the velocity direction. Indeed the recurrence time can

be explicitly computed. The formula has been added corroborating the simu-

lation results. Also it is true that our scheme is a finite element discretisation

of a transport equation which has a behaviour very similar to centred finite

difference schemes. Our diagnostic comparing the numerical solution with the

dominating mode of the linearised solution is a lot finer than just computing

the damping rate which is included in the formula: It is the -0.1533 factor of

t in the exponential. The fact that the two curves overlap until the recurrence

time also proves that the damping rate is correct.

• It has been added that a dissipation mechanism needs to be added for long time

simulation. The standard algorithm has been cited.

• Boundary conditions have been clearly defined: periodic in x and homogeneous

Dirichlet in v because of compact support.

• The conclusion has been modified.

The paper has been extensively reread and improved. We hope that it is much more

accessible now.

2 Answers to the questions of referee 1

1. We have clarified the discussion on boundary conditions. The case of periodic bound-

ary conditions is treated as if there was no boundary at all, functions leaving the

domain on one side reenter it on the other. Then the knots defining the splines can

be exactly be taken to be the grid points.

2. We have also precised how to choose the grid points. The grid points are chosen first,

arbitrarily, but in practice we use a uniform grid. This also defines the knots for a

2



periodic domain and for Dirichlet conditions we first take the knots to be the grid

points and then duplicate the boundary knots as many times as is needed to get the

sufficient number of degrees of freedom depending on the spline degree.

3. We have detailed the presentation of the Vlasov equation.

4. This has been detailed.

5. Done.

6. The second one is correct as the background needs to be included, the first is just

the contribution of the distribution function.

7. The degrees of splines are now mentioned.

8. Some energy and momentum conservation tests from the thesis are now included.

9. Page numbers are now included for the citations of the thesis

All minor errors have been corrected.
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Finite Element Hodge for Spline Discrete Differential
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Abstract

The notion of B-spline based discrete differential forms is recalled and along

with a Finite Element Hodge operator, it is used to design new numerical

methods for solving the Vlasov-Poisson equations.

Keywords: Discrete differential forms, B-splines, Vlasov-Poisson,

Numerical simulation.

1. Introduction

All equations describing physical phenomena can be written with differ-

ential forms in order to avoid artificial dependencies on specific coordinates

system. Discrete differential forms are then a natural tool for discretising such

equations. A new class of discrete differential forms based on B-splines have

been introduced recently [1, 9]. This new approach has many advantages: it is

easy and efficient to implement higher degree B-splines because higher degree

are computed by recurrence with de Boor algorithm [13]; Discrete differential

forms verify a De Rham diagram and so we have a compatible discretization

with the continuous formulation; Moreover, B-splines finite elements have
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gotten a lot of attention recently in the framework of isogeometric analysis

[4, 9, 20]. In our previous work [1], we had constructed a finite difference

Hodge for the spline discrete differential forms. In this paper we use a more

classical Finite Element Hodge coming naturally from the weak formulation.

We apply this numerical tool to the 1D Vlasov-Poisson equations. For this

we express the Vlasov equation in the language of differential geometry. This

is a first step towards a geometric discretisation of the full Vlasov-Maxwell

equation. Discrete exterior calculus has been proven extremely beneficial

for the simulation of the Maxwell equations (see for example [7, 17]) and

this will of course extend to the Vlasov-Maxwell equations, bringing all the

benefits for Maxwell equations and in addition some very useful properties,

in particular for the coupling of Vlasov with Maxwell where the problem of

discrete charge conservation is an important and challenging issue that has

a natural geometric formulation.

The article is organised as follows. In the first part (section 2), we recall

the construction of B-splines and their properties. Then, in the second one

(section 3), we explain how to construct discrete differential forms as well as

the discrete counterparts of the exterior derivative and the Hodge ⋆ operator

[1, 7, 14, 15, 18, 17]. This last operator is different because it involves a

metric. In the finite element context we use in this paper, it is natural to use

a weak formulation for the discretization of Hodge star [9, 20, 18, 17]. In the

last part (section 4), we apply the method on the Vlasov-Poisson equations

and we get here a purely Eulerian scheme as opposed to the semi-Lagrangian

generally used for this problem [12, 6, 21].
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2. A short overview of B-splines

B-splines are constructed using a sequence of points which are called

knots. In order to construct our spline differential forms, we first define a

computational grid based on N grid points x1 < x2 < · · · < xN . The grid

can be uniform or not. We shall consider periodic and Dirichlet boundary

conditions.

For periodic boundary conditions, we can remove the boundary by using

a modulo condition. Then the knot set T = (ti)16i6N−1 can be taken equal

to the grid points except the last one that is not used, as knots on each side

of the current knot are always well defined.

For Dirichlet boundary conditions, we use the fact that knots can be

duplicated and that the spline of degree α becomes interpolating at a knot

when it is replicated α times. Due to this property, Dirichlet conditions can

be enforced directly on the first and last spline coefficients by replicating the

boundary knots. The knots we take are then the grid points augmented by

the replicated knots at each of the two boundary points. The knots define

then as required a nondecreasing set of points.

Let us denote by Bα
i the B-spline of degree α (and so of order p = α+1)

with support in the interval [ti, ti+α+1]. Then Bα
i is defined recursively by

Bα
i (x) =

x− ti
ti+α − ti

Bα−1
i (x) +

ti+α+1 − x

ti+α+1 − ti+1

Bα−1
i+1 (x).

The recursion is initialized by

B0
i (x) = χ[ti,ti+1[(x), the characteristic function of [ti, ti+1[.

The B-splines verify the following properties:
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• The B-spline Bα
i is a polynomial of degree α between two consecutive

knots,

• They have a linear local independance,

• If the knot ti has a multiplicity m (where m 6 p), i.e. is repeated m

times, the B-spline is C(p−m) at ti.

• Partition of unity: for any point x ∈ [tα, tN−α), we have
∑

i B
α
i (x) = 1.

We shall also need the recursion formula for the derivatives:

Bα
i
′(x) = α

(

Bα−1
i (x)

ti+α − ti
− Bα−1

i+1 (x)

ti+α+1 − ti+1

)

= Dα
i (x)−Dα

i+1(x). (1)

with Dα
i (x) =

α
ti+α−ti

Bα−1
i (x). For details, the reader is refereed to the book

of de Boor [13].

3. Construction of discrete differential forms based on B-splines

We consider a one dimensional space. The 1D mesh of our domain will

be x1 < · · · < xN−1 < xN . Let us denote by N the dimension of the B-

spline space build on this mesh. As we discussed in the previous section if

we consider a periodic domain, we have N = N − 1 B-splines for any degree

of splines α, and if we consider a Dirichlet boundary conditions, we have

N = N + α− 1 B-splines.

In the 1D case, only the discrete 0-forms and 1-forms exist. For these

two spaces, we can take the basis functions respectively as w0,α
i = Bα

i (x) and

w1,α
i (x) = Dα

i (x) dx.

The discrete space of spline 0-forms W0,α will be the vector space gener-

ated by the basis functions w0,α
i . Any function C0 ∈ W0,α writes

C0(x) =
N
∑

j=1

c0jB
α
j (x),
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with the c0j defined by the interpolation conditions C0(xi) =
∑N

j=1 c
0
jB

α
j (xi)

for i = 1, ...,N .

The space of linear spline 1-forms W1,α will be the vector space generated

by the basis functions w1,α
i . On a periodic domain, the number of cells is

equal to the number of grid points (as the last point is identified with the

first). Therefore N̄ := dimW1,α = N . In other cases N̄ = N − 1. Any

1-form C1 ∈ W1,α writes

C1(x) =
N̄
∑

j=1

c1jD
α
j (x) dx.

Since 1-forms can be integrated on an 1-dimensional domain, the coefficients

c1j are defined by the relations

∫ xi+1

xi

C1(x) =
N̄
∑

j=1

c1j

∫ xi+1

xi

Dα
j (x) dx for 1 6 i 6 N̄ .

For the study of these linear systems the reader is refered to the articles

[13, 1, 20].

The discrete exterior derivative. The exterior derivative d is a map that as-

sociates a (k + 1)-form to a k-form. Moreover, if we denote by Ωk(M) the

set of differential k-forms on M, we have a De Rham diagram:

Ω0(M) d
// Ω1(M) d

// Ω2(M) d
// Ω3(M) . . . .

for M an open star shaped domain. The discrete exterior derivative has been

defined in [1, 7, 19, 18, 17]. The discrete exterior derivative is an incidence

matrix containing only 1,−1 or 0. It acts only on spline coefficients and we

have the discrete De Rham diagram

W0,α(M) d
// W1,α(M) d

// W2,α(M) d
// W3,α(M) . . .
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whereWk,α(M) represents the set of discrete k-forms with B-splines of degree

α.

The discrete Hodge operator. The Hodge star operator ⋆ maps a k-form to

a (n − k)-form where n is the dimension of the space. It requires a metric

which enables to define am inner product on the space of k-forms. Then the

Hodge star operator can be defined with the help of the L2 inner product of

k-forms using the relationship

< ωk, αk >=

∫

M

ωk ∧ ⋆αk ∀ωk,

with M a differential manifold, ωk, αk differential k-forms on M and ∧ the

wedge product operator (see [3]). This leads straightforwardly to the prop-

erty that if the (n− k)-form γn−k is such that γn−k = ⋆αk then:

∫

M

ωk ∧ ⋆αk =

∫

M

ωk ∧ γn−k ∀ωk. (2)

We define the discrete Hodge star operator using the standard Galerkin pro-

cedure just replacing the continuous spaces by discrete spaces. So, given a

discrete 0-form

C0(x) =
N
∑

j=1

c0jB
α
j (x),

we define the discrete Hodge star ⋆hC
0(x) as the discrete 1-form C1(x) =

∑N̄

j=1 c
1
jD

α
j (x) dx. Plugging these expressions directly into (2) does not yield

and invertible system. Therefore we use in addition that the Hodge star

operator is its own inverse for 0-forms and 1-forms in 1D. So that ⋆C1 = C0,

and using the property that ⋆dx = 1 we get ⋆C1(x) =
∑N̄

j=1 c
1
jD

α
j (x) and

using (2) in the discrete space, as the discrete 1-forms are spanned by the
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basis functions w1,α
i = Dα

i (x) dx, we get

∫

M

Dα
i (x) dx ∧ ⋆C1(x) =

∫

M

Dα
i (x) dx ∧ C0(x) i = 1, . . . , N̄ .

Injecting the expressions of C0 and ⋆C1, we obtain the following linear sys-

tem, characterising the coefficients c1j given c0j :

N̄
∑

j=1

c1j

∫

M

Dα
i (x) dx ∧Dα

j (x) =
N
∑

j=1

c0j

∫

M

Dα
i (x) dx ∧ Bα

j (x).

In the same way, given a discrete 1-form

C1(x) =
N̄
∑

j=1

c1jD
α
j (x) dx,

we can define a 0-form with the form C0(x) =
∑N

j=1 c
0
jB

α
j (x) such that C0(x)

is an approximation of ⋆C1(x). Using ω0 = w0,α
i = Bα

i (x), we obtain the

following linear system

N̄
∑

j=1

c1j

∫

M

Bα
i (x) ∧Dα

j (x)dx =
N
∑

j=1

c0j

∫

M

Bα
i (x) ∧Bα

j (x)dx.

To conclude, denoting by (M1
α)i,j =

∫

M
Dα

i (x)D
α
j (x)dx,

(Sα)i,j =
∫

M
Dα

i (x)B
α
j (x) dx, (M0

α)i,j =
∫

M
Bα

i (x)B
α
j (x)dx, the discrete

Hodge operator which associates a 1-form to a 0-form, is represented by

the matrix
(

M1
α

)−1
Sα,

and the discrete Hodge operator which associates a 0-form to a 1-form, is

represented by the matrix
(

M0
α

)−1
ST
α ,

where ST
α is the transpose of the matrix Sα.
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We notice that, as the space of discrete 0-forms spanned by the Bα
i (x)

does in general not have the same dimension as the space of discrete 1-forms

spanned by the Dα
i (x) dx, Sα is not a square matrix (except for periodic

boundary conditions) as opposed to M1
α and M0

α which are always nonsingu-

lar (see [20, 9]).

Now, we will see that the construction of the Hodge star operator in higher

dimensions is just a tensor product construction of these matrices by defini-

tion of 3D discrete differential forms.

Extension to higher dimensions. Higher dimensional discrete differential forms

can be derived from the one dimensional case using a tensor product con-

struction. For example the 3D discrete differential forms will be defined as

the span of the following basis functions:

• The basis functions for the 0-forms are

0wα
i,j,k(x, y, z) = Bα

i (x)B
α
j (y)B

α
k (z).

• The basis functions for the 1-forms are

1w
α,x
i,j,k(x, y, z) = Dα

i (x)B
α
j (y)B

α
k (z) dx,

1w
α,y
i,j,k(x, y, z) = Bα

i (x)D
α
j (y)B

α
k (z) dy,

1w
α,z
i,j,k(x, y, z) = Bα

i (x)B
α
j (y)D

α
k (z) dz.
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• The basis functions for the 2-forms are

2w
α,x
i,j,k(x, y, z) = Bα

i (x)D
α
j (y)D

α
k (z) dy ∧ dz,

2w
α,y
i,j,k(x, y, z) = Dα

i (x)B
α
j (y)D

α
k (z) dz ∧ dx,

2w
α,z
i,j,k(x, y, z) = Dα

i (x)D
α
j (y)B

α
k (z) dx ∧ dy.

• The basis functions for the 3-forms are

3wα
i,j,k(x, y, z) = Dα

i (x)D
α
j (y)D

α
k (z) dx ∧ dy ∧ dz.

This construction will yield the same basis functions as in [9, 10] and

[20] where vector calculus is used. The matrices allowing to compute the

coefficients of B-splines in 3D are just the tensor product of 1D matrices and

for the Hodge star operator in higher dimensions it is just the inverse matrix

of the tensor product of 1D matrices, Mα applied on the tensor product of

1D matrices, Sα.

4. Application to Vlasov-Poisson’s equations

4.1. Theory in 1D

The Vlasov equation describes the evolution in time of the distribution

function f ≡ f(x, v, t) of a collection of charged particles on a periodic do-

main of period L in x and on the whole line ]−∞,+∞[ in v. It depends on

position x, velocity v and time t. It reads

∂f

∂t
+ v

∂f

∂x
+ E(x, t)

∂f

∂v
= 0, (3)
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where E(x, t) is the electric field that we will consider here to be only the

self-consistent field generated by the particles. Then the Vlasov equation is

coupled with an equation giving the self-consistent electric field E, which can

be either the Ampère equation

∂ E

∂t
= −J(x, t) = −

∫

f(x, v, t)v dv. (4)

or the Poisson equation
∂ E

∂x
= ρ(x, t)− ρ0 (5)

where ρ(x, t) =
∫

f(x, v, t) dv and ρ0 is a constant describing the neutralising

background which is defined by ρ0 = 1
L

∫ L

0

∫

f0(x, v) dx dv, so that the total

charge in the domain vanishes. Here f0(x, v) = f(x, v, 0) denotes the initial

condition.

We can prove that the Vlasov-Ampere equation or the Vlasov-Poisson

equation are equivalent in 1D (see Appendix A), provided the initial electric

field is compatible with the initial density and the initial current density

J(x, 0) is of 0 average. This is not true in higher dimensions, where the

magnetic field appears in Ampère’s equation.

We can write these equations using differential forms. Note that the

distribution function f is defined in the two dimensional phase-space and

the electric field, charge and current densities are one dimensional. We will

thus need both differential forms in 2D and 1D. We choose to define the

distribution function f0 as a 0-form in the two dimensional phase space,

the electric field E1 as 1-form and the electric displacement D0 as a 0-form

in the one dimensional physical space. We have ⋆D0 = E1 (given by the

constitutive equations) and dE1 = 0 (given by Faraday equation for a null
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magnetic field). We deduce that the electric field is an exact form and so it

exists a 0-form (the electric potential) denoted by φ0 such as dφ0 = E1 (since

⋆D0 = E1 we obtain ⋆D0 = dφ0). On the other hand the Vlasov equation

becomes:
∂f0

∂t
+ v

∂f0

∂x
+ i ∂

∂x

E1∂f
0

∂v
= 0.

where iτ represents the interior product along the vector field τ [3]. An other

option would be to consider f as a 2-form. See [2], p. 128 and following

for details. The interior product of a 1-form ω with a vector τ is the 0-form

defined by iτω = ω(τ) for any vector v. On the other hand the Ampere and

Poisson equations become

∂D0

∂t
= −J0,

dD0 = ρ1,

where ρ1 =
∫

v
⋆f0 − ⋆xρ0 is a 1-form and J0 a 0-form.

Let us recall conservation of mass and total momentum of the Vlasov

equation using the language of differential forms. More details can be found

in [2] on page 4 to 11:

Conservation of mass. We observe that if we integrate the Hodge star of

Vlasov equation over phase space, we obtain the conservation of mass:

∂

∂t

∫

M

∫

v

⋆f0 = 0.

The conservation of momentum. To find the conservation of momentum, we

do the interior product along the vector field τx = v ∂
∂x

of the Hodge star of

Vlasov equation then we integrate it over phase space. We obtain

∂

∂t
iτxf

2 + iτxdiv ∂

∂x

f2 + iτxdiD0 ∂

∂v

f2 = 0. (6)
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with f2 = ⋆f0. We observe that this equation is on a 1-form so in order to

integrate it over the 2D phase space we do the wedge product with a Killing

form u (which means that u conserves the metric) and after we can integrate

over phase space. We obtain, after simplification:

∂

∂t

∫

M

J0 ∧ u = 0, (7)

where u can be equal to dx.

Conservation of energy. For the conservation of energy we must do the wedge

product between the Hodge star of Vlasov equation and v2 = ⋆(v ∧ ⋆v) then

we integrate it over the space phase. We obtain

∂

∂t

∫

⋆(v ∧ ⋆v) ∧ f2 − 2

∫

M

J0 ∧ E1 = 0 (8)

But the wedge product between the Ampre equation and E1 give us

∂D0 ∧ E1

∂t
= −2J0 ∧ E1.

So we deduce the following conservation of energy:

∂

∂t

(
∫

⋆(v ∧ ⋆v) ∧ f2 +

∫

M

D0 ∧ E1

)

= 0. (9)

4.2. Numerical algorithm

We consider the 1D Vlasov-Poisson equations on a periodic domain [0, L]

in x and infinite in v (but as the distribution function has an exponential

decay in velocity we can restrict the velocity domain for the numerical com-

putations to the interval [−A,A] with A large enough so that f is 0 up to

round-off error at ±A). We consider the distribution function f0, the electric

field D0 and the potential φ0 as 0-forms so their discrete formulations are

f0(x, v, t) =
∑

i,j

f 0
i,j(t)B

α
i (x)B

α
j (v), D0(x, t) =

∑

i

d0i (t)B
α
i (x),
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and

φ0(x, t) =
∑

i

φ0
i (t)B

α
i (x).

We also suppose that the density ρ1 and the electric field E1 are 1-forms in

x:

ρ1(x, t) =
∑

i

ρ1i (t)D
α
i (x) dx and E1(x, t) =

∑

i

e1i (t)D
α
i (x) dx.

Their coefficients will be defined with the help of the techniques introduced

in the section 3.

Classically the Vlasov-Poisson equations are solved using an operator

splitting method. This has been done in [2] page 127 using a weak formulation

or a finite element method at every stage. Not that the splitting method

does not enable to get the exact numerical conservation of momentum and

energy. The method consists in decomposing the Vlasov-Poisson equations

in two parts:

• an advection in x where v is fixed

∂f0

∂t
+ v

∂f0

∂x
= 0, (10)

• an advection in v where x is fixed

∂f0

∂t
+ i ∂

∂x

E1∂f
0

∂v
= 0. (11)

Initialisation. The distribution function f0(0, x, v) is projected onto the

finite element space using a L2 orthogonal projection. Then, we compute

ρ1(x, 0) =
∑

i

ρ1i (0)D
α
i (x)dx,

13



such that ρ1 =
∫

v
⋆f0 − ⋆xρ0 (⋆x represents the Hodge star in x). For doing

this, we use the definition of the discrete Hodge star in x. We denote by

⋆xf
0
x(0, x) :=

∫

v

⋆f0 =

∫

v

∑

i,j

f 0
i,j(0)B

α
i (x)B

α
j (v)dxdv =

∑

i

f 0
x,i(0)B

α
i (x) dx.

So ρ1 = ⋆x(f
0
x(0, x) − ρ0) and the spline coefficients of ρ1, ρ1i are obtained

when we apply the wedge product between ⋆ρ1 andDα
i (x)dx and we integrate

it over M:

ρ1 =
(

M1
α,x

)−1
Sα(f

0
x − ρ0),

with f 0
x the spline coefficients of ⋆xf

0
x .

Then we solve the Poisson equation dD0 = ρ1 with the help of
∫

x
⋆D0 = 0.

Moreover, since ⋆D0 = E1 and dφ0 = E1, we compute the spline coefficients

e1 of E1 i.e.

e1 =
(

M1
α,x

)−1
Sαd

0,

to have the spline coefficients φ0
i of φ0 such that dφ0 = E1.

We have implemented two different time stepping algorithms, both based

on a second order Strang-splitting scheme. Let us describe the steps enabling

in each case to go from time tn to time tn+1.

Algorithm 1. We suppose that we know the spline coefficients of f0(tn) and

D0(tn).

First, we solve with a time step ∆t/2 and with a time scheme of order 2

(Crank-Nicolson), the equation

∂f

∂t
+D0(tn)

∂f

∂v
= 0,

using a weak formulation. We obtain an equation on spline coefficients:

∂

∂t
M0

α(v)f
0M0

α(x) + Pα,vf
0Dα = 0,

14



with

(Pα,v)i,j =

(
∫

v

Bα
i (v)(B

α
j )

′(v)dv

)

and (Dα)i,j =

(
∫

x

Bα
i (x)D

0(tn)B
α
j (x)dx

)

.

Then, we solve with a time step ∆t and with a time scheme of order 2

(Crank-Nicolson), the equation

∂f

∂t
+ v

∂f

∂x
= 0,

using a weak formulation. We obtain an equation on spline coefficients:

∂

∂t
M0

α(v)f
0M0

α(x) + V f 0 tPα,x = 0,

with tPα,x the transposed matrix and

Vi,j =

(
∫

v

Bα
i (v) v B

α
j (v)dv

)

.

Now, we can deduce the new spline coefficients for 1ρ(tn+1) and for D0(tn+1)

by solving the Poisson equation.

For, the last stage we solve again with a time step ∆t/2 and with a time

scheme order 2, the equation

∂f

∂t
+D0(tn+1)

∂f

∂v
= 0.

We propose another manner to solve these equations. We use also the

splitting but instead of doing the finite element in two direction in each

time step, we fixed a point and we apply the weak formulation in the other

direction. For example, for the advection in the direction x, for all point vl

in our mesh we apply on the equation the wedge product by Bα
k (x)dx and

we integrate it over space. Then, we resolve it in time with help of the ETD

method (Exponential Time differencing) and so that is avoided to have the

CFL condition on the time step. This method is explained in details on [2]

page 144. The algorithm is

15



Algorithm 2. We suppose that we know the spline coefficients fn of f0,n =

f0(tn) and φ0,n = φ0(tn).

• First, we solve, on a half time step ∆t/2 and using the ETD method of

Cox and Matthews [11], the advection in v of the Vlasov equation (10),

with a weak formulation in v (i.e. doing on the equation the wedge

product by Bα
l (v)dv and integrating it over velocity space). We obtain

an equation on the spline coefficients for each point xk of our mesh:

f ∗(tn+1/2, xk) = exp

(

−∆t

2
D0(xk, tn)(M

0
α,v)

−1Pα,v

)

f ∗(tn, xk),

where the vector f ∗(tn, xk) is equal to
∑

i f
0
i,j(tn)B

α
i (xk). Then we

compute the new spline coefficients f 0
i,j(tn+1/3) = N−1

α,xf
∗(tn+1/2, xk)

where (Nα,x)i,j = Bα
i (xj).

• Then, we solve, on a time step ∆t and using the ETD method, the

advection in x of the Vlasov equation (11), with a weak formulation

in x (i.e. doing on the equation the wedge product by Bα
k (x)dx and

integrating it over space). We obtain an equation on spline coefficients

for each point vl of our mesh:

f ∗∗(tn+1, vl) = exp
(

−∆t vl (M
0
α,x)

−1tPα,x

)

f ∗∗(tn, vl),

where the vector f ∗∗(tn, vl) is equal to
∑

j f
0
i,j(tn+1/3)B

α
j (vl). Then

we compute the new spline coefficients f 0
i,j(tn+2/3) = N−1

α,vf
∗∗(tn+1, vl)

where (Nα,v)i,j = Bα
i (vj).

• Then, we can deduce ρ1(tn+1) from f 0
i,j(tn+2/3) and solving the Poisson

equation with the procedure explained previously we obtain D0(tn+1)

and also φ0(tn+1).
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• Finally, we solve again, on a half time step ∆t/2 and using the ETD

method, the advection in v of the Vlasov equation (10), with a weak

formulation in v. We obtain an equation on spline coefficients for each

points xk:

f ∗(tn+1, xk) = exp

(

−∆t

2
D0(xk, tn+1)(M

0
α,v)

−1Pα,v

)

f ∗(tn+1/2, xk),

where the vector f ∗(tn+1/2, xk) is equal to
∑

i f
0
i,j(tn+2/3)B

α
i (xk). Then

we compute the new spline coefficients f 0
i,j(tn+1) = N−1

α,xf
∗(tn+1, xk).

Note that both schemes amount to using a Finite Element discretisation

in phase space of the transport problem with no unwinding mechanism. This

is unstable for long time computations, but can be easily stabilised adding

some viscosity which would be artificial collisions in our case. See the corre-

sponding section for the Arakawa scheme in [16] for details.

4.3. Numerical results

We consider the Vlasov-Poisson 1D with a distribution function for the

electrons and neutralizing ion background on a periodic domain [0, L] in x

and an infinite domain in v. For the simulation, we truncate the velocity

space to a segment [−A,A] such that during the whole simulation, 0f stays

around round-off error for velocities close to −A or A. We define an uniform

mesh of the phase space xi =
i L
N
, for i = 0, . . . , N−1 (xN = x0 by periodicity)

and vj = −A + j 2A
M

, for j = 0, . . . ,M . The boundary condition imposed in

v in the simulation is then the Dirichlet boundary condition f(x,±A) = 0

and periodic boundary conditions in x. When nothing is mentioned splines

of degree 3 are used for the simulations, but comparisons between degree 1,

3 and 5 will also be presented.
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4.3.1. Landau Damping

The Landau Damping problem corresponds to the initial condition

f 0(x, v, 0) = (1 + ǫ cos(k x))
1√
2π

exp

(

−v2

2

)

,

with (x, v) ∈ [0, L] × [−10, 10] where L = 2π
k
. The classical solution of

the linearized Vlasov-Poisson around the maxwellian equilibrium yields for

k = 0.5 the least damped part of the electric field

D0(x, t) = 4 ǫ 0.3677 exp (−0.1533t) sin(0.5x) cos(1.4156t− 0.536245).

We take ǫ = 0.001 and with 64 points in x and in v we compare the con-

servation of different physic quantities. First the solution of the linearized

system is well recovered and the results are undistinguishable for our two

methods. The traditional decay of the electric energy can be observed on

Figure 1. We also observe the classical recurrence phenomenon due to the

uniform velocity grid. An approximate formula for the recurrence time is

given in [22]. It is TR = L/∆v, where L is the period in x. In our case,

L = 4π and ∆v = 0.3125, so that TR ≈ 40.2 which corresponds to the

observed recurrence time.

Our algorithm conserves mass, which is verified numerically, mass being

conserved up to round-off error for all methods. Momentum, energy and L2

norm are exactly conserved by none of the two methods but still with a very

good numerical accuracy for this problem. Figures 2, 3, 4 and 5 show the

time evolution of energy and momentum for the two algorithms and different

spline degrees. These conservation properties depend on the perturbation

parameter ǫ and get a little bit worse but still good for larger values of ǫ. This

values are not relevant for the Landau damping problem. The conservation
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Figure 1: Log of potential energy versus time for Landau damping.

properties when the physics is further away from equilibrium will be evaluated

in the next test case.
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Figure 2: The relative error of energy with the first algorithm and for different degree of

spline and for ǫ = 0.001. To the left to right the degree of spline is equal to 1, 3 and 5.

Figure 3: The relative error of energy with the second algorithm and for different degree

of spline and for ǫ = 0.001. To the left to right the degree of spline is equal to 1, 3 and 5.

Figure 4: The relative error of momentum with the first algorithm and for different degree

of spline and for ǫ = 0.001. To the left to right the degree of spline is equal to 1, 3 and 5.
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Figure 5: The relative error of momentum with the second algorithm and for different

degree of spline and for ǫ = 0.001. To the left to right the degree of spline is equal to 1, 3

and 5.
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4.3.2. Two stream instability

The two stream instability is generated by two beams moving with op-

posite velocities. This configuration can be stable or unstable depending on

the value of the velocity. We consider here an unstable case for which the

initial condition is

f 0(x, v, 0) =
1

6
√
2π

(1+5 v2) exp (−0.5v2)(1+ǫ (cos(k x)+
(cos(2 k x) + cos(3 k x))

1.2
)),

with (x, v) ∈ [0, L]× [−6, 6] where L = 2π
k
. In the simulation we take k = 0.2

and ǫ = 0.01. We take a time step ∆t = 0.01 and 128 points in both x and

v-directions.

The evolution of the distribution function in time is represented in Fig-

ure 6. We see the generation of two vortices that merge at later time so

that only one survives at the end. This corresponds to what is expected.

One other observation is that compared to standard simulations which in-

clude a dissipative mechanism, like cubic splines or WENO, the distribution

function becomes noisy at late times. This is reminiscent of schemes conserv-

ing exactly the L2 norm like the Arakawa scheme. An explicit dissipation

mechanism needs to be added in this case. See [16] for more details.

Note that apart from mass which is conserved exactly by the algorithm,

the different conserved quantities are conserved approximately but with a

very good accuracy as long as the fine scales are well resolved on the grid.

Figure 7 and the following support this statement. Note that mass conser-

vation is not completely up to round-off errors as for the Landau damping

test case. This is because the velocity boundary has been chose smaller, so

that we lose a little bit of mass at the boundary.

An algebraically exact conservation could be achieved with spline discrete
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Figure 6: Snapshots of the distribution function at different times

differential forms provided no splitting is performed as the two terms need

to balance each other exactly for energy conservation, which is impossible to

achieve with a split-step method.
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Figure 7: The relative error of mass for different degree of spline and with the first algo-

rithm. To the left to right the degree of spline is equal to 1, 3 and 5.

Figure 8: The relative error of mass for different degree of spline and with the second

algorithm. To the left to right the degree of spline is equal to 1, 3 and 5.

Figure 9: The relative error of energy for different degree of spline with the first algorithm.

To the left to right the degree of spline is equal to 1, 3 and 5.
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Figure 10: The relative error of energy for different degree of spline and with the second

algorithm. To the left to right the degree of spline is equal to 1, 3 and 5.

Figure 11: The relative error of momentum for different degree of spline with the first

algorithm. To the left to right the degree of spline is equal to 1, 3 and 5.

5. Conclusion

Spline discrete differential forms have been used to implement a Vlasov-

Poisson solver. This is a first step towards a geometric discretisation of

the Vlasov-Maxwell equations. Arbitrary high order in phase-space can be

achieved easily, and the framework can be used to get discrete conservation

properties as long as the full equation is solved not using split steps. However

split step methods that consist only of 1D sweeps can be solved a lot faster,

when a linear solver is involved as is the case for us. This is all the more

true when going to more realistic phase-space dimensions which go up to 6
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Figure 12: The relative error of momentum for different degree of spline with the second

algorithm. To the left to right the degree of spline is equal to 1, 3 and 5.

in real physics problems. Moreover they yield still very good conservation

properties as was verified here.

References

[1] A. Back and E. Sonnendrücker, Discrete differential forms based on B-

splines. Applications to Maxwell’s equations (submitted).
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An asymptotically stable semi-Lagrangian scheme in the quasi-neutral

limit., J. Sci. Comput., 2009.

26



[6] N. Besse and M. Mehrenberger, Convergence of classes of high-order

semi-Lagrangian schemes for the Vlasov-Poisson system, Math. Comp.,

2008.

[7] A. Bossavit, Computational electromagnetism, Academic Press

(Boston), 1998.

[8] A. Bossavit, Generating Whitney Forms of Polynomial Degree One and

High, IEEE Trans. on Magnetics (2002), 341–344.

[9] A. Buffa and G. Sangalli and R. Vazquez, Isogeometric analysis in elec-

tromagnetics: B-splines approximation, Comput. Methods Appl. Mech.

Engrg. 199 (2010), no. 17-20, 1143–1152

[10] A. Buffa and J. Rivas and G. Sangalli and R. Vázquez, Isogeometric dis-

crete differential forms in three dimensions, SIAM Journal on Numerical

Analysis, 2011, 49 no. 2, 818–844.

[11] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff

systems, J. Comput. Phys. 176, 430–455 (2002).

[12] N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative
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Appendix A. Equivalence between the Vlasov-Ampere equation

and the Vlasov-Poisson equation in 1D

Lemma 1. Let (E, f) be the solution of the Vlasov-Ampère equations (3)–

(4) with ∂E
∂x
(x, 0) = ρ(x, 0). Then E is solution of the Poisson equation (5)
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for all times.

Proof. Integrating the Vlasov equation (3) with respect to v yields the

continuity equation
∂ρ

∂t
+

∂J

∂x
= 0.

Then taking the x derivative of the Ampère equation and using this continuity

equation we get
∂2E

∂t∂x
= −∂J

∂x
=

∂ρ

∂t
.

Hence ∂
∂t
(∂E
∂x

− ρ) = 0, and finally as ∂E
∂x
(x, 0) = ρ(x, 0), this yields that the

Poisson equation is satisfied for all times.

Lemma 2. Let (E, f) be the solution of the Vlasov-Poisson equation (3)–(5)

with
∫ L

0
E(x, t) dx = 0 for all times. Assume that

∫ L

0
J(x, 0) dx = 0. Then

E is solution of the Ampère equation (4).

Proof. As for the previous lemma the proof is based on the continuity

equation. Taking the time derivative of the Poisson equation and using this

continuity equation we get

∂2E

∂t∂x
=

∂ρ

∂t
= −∂J

∂x
.

Hence ∂
∂x
(∂E
∂t

+ J) = 0. Next multiplying the Vlasov equation by v and

integrating over x and v, with an integration by parts in v on the last term,

we get the conservation of total momentum

d

dt

∫ L

0

J(x, t) dx =
d

dt

∫ L

0

f(x, v, t)v dx dv =

∫ L

0

ρ(x, t)E(x, t) dx

=

∫ L

0

∂E

∂x
E dx = 0,
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as E is periodic.

Finally as the average of J is initially 0, it stays so for all times and by

hypothesis the average of E is also 0 for all times. This implies that the

Ampère equation is verified.
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