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Abstract—In this paper, we present a model-based document
information content extraction approach and perform in-depth
evaluation based on clients’ relevance. Real-world users i.e.,
clients first provide a set of key fields from the document image
which they think are important. These are used to represent
a graph where nodes (i.e., fields) are labelled with dynamic
semantics including other features and edges are attributed with
spatial relations. Such an attributed relational graph (ARG) is
then used to mine similar graphs from a document image that
are used to reinforce or update the initial graph iteratively each
time we extract them, in order to produce a model. Models
therefore, can be employed in the absence of clients. We have
validated the concept and evaluated its scientific impact on real-
world industrial problem, where table extraction is found to be
the best suited application.

I. INTRODUCTION

In document analysis, information content exploitation has
been received an important attention. Extracting similar infor-
mation in accordance with the clients, will be one of the key
commercial applications in the domain. Within this framework,
lets take a table extraction problem since it is assumed to have
several similar items that basically span horizontally from left
to right, regardless their key fields alignment as well as number
of words or lines they are composed of.

In the context of table extraction [1]–[4], existing al-
gorithms basically describe it either in terms of lines and
(un)analysed text blocks, a set of cells resembling the two-
dimensional grid or a set of strings that are integrated with
each other via relations, for instance. Basically, table detec-
tion and its structure recognition are two major tasks. Table
detection can be taken as a primary issue, which however
does not provide a complete solution [5] since one needs to
be able to extract key fields within it. Existing methods such
as table segmentation [6] do not extract key fields, nor do
they explicitly perform the content understanding [7] without
considering relations between the contents, for instance. Note
that structural information can be very useful in indexing and
retrieving the information contained in the document [2]. To
analyse table-forms structure, rulings techniques are essentially
limited since since not all tables possess graphical lines [1].
Besides, plain ascii texts, text blocks are basically used where
detecting columns, lines and headers, and representing them
in terms of graph, for instance is interesting. In order to
fully exploit table in the scanned documents rather than just
outlining the overall boundary, it is interesting to extract those
fields that are important or meaningful for the clients. To
handle this, in this paper, key fields are provided by the clients.
These key fields are then used to build a graph so that it can

be applied for table extraction in the absence of clients. On
the whole, key fields exploitation, which are not necessarily
found in structured documents like table, but in semi-structured
documents like form and in structure-free documents, is the
interest of the paper.

The rest of the paper is organised as follows. We start
with explaining the proposed method in Section II. It mainly
includes graph initialisation, graph mining and graph learning.
Full experiment evaluations are reported and analysed in
Section III. The paper is concluded in Section IV.

II. PROPOSED METHOD

Following Fig. 1, clients first provide key fields within the
table which they think are important. An input pattern graph
is now initialised from such a set of key fields where each
key field is labelled and the possible relations are attributed.
The pattern graph is then transformed into a model graph via
graph mining. It simply starts with a pivotal node selection in a
document (with respect to each labelled node in pattern graph).
From each pivotal node, relation assignment will guide feature
score computation between the pairs of nodes. Our relations
constraint feature score computation is fast since the search
space is limited to the degree of the node associated with
the pattern graph. To avoid polynomial time computational
complexity [8], we use semantic labels to confirm structural
similarity via relations, between the graphs. The extracted
similar graphs are now verified and used to reinforce or update
the pattern graph as a model graph. Such a model is able to
extract information content.

This paper is the thorough extension of the work presented
in [9] where it basically provides a proof of a concept,
validating on limited input patterns that are mostly linear
and are more focussed on table extraction problem. Based
on this, in this paper, we integrate dynamic labels at nodes
instead of just not relying one a pre-defined list as well as
introduce a possible swinging (i.e., back and forth, and up and
down) capability of spatial relations in graph mining scheme.
In addition, in-depth evaluations that are not just limited to
extract information content associated with tables, are made.

A. Graph initialisation

Any document d is composed of a set Z of zones i.e.,
Z = {header, body, footer}. In generic form, we have doc.d =
{zonez, z ∈ [1,Z]} . For each zone type z, the clients provide
input pattern(s)

zonez = {patternp, p ∈ [1,P]}, (1)
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Fig. 1. Our concept in three consecutive phases:
1) graph initialisation, 2) graph mining and 3) graph
learning.

where the number of input patterns can be arbitrary. An
example of an input pattern is shown in Fig. 2. In this example,
to make an explanation simple, we take body zone type where
table-like structure is basically present. An input pattern is just
a collection of selected key fields i.e.,

patternp = {fieldi}
A

i=1. (2)

To represent a field, we define a feature set. F = {featuref}.
In our case, for any i-th field, we can formally represent a
feature as fieldFi = {

(box: [left, top, right, bottom]); (wSep: words separation);
(value: content); (noW: number of words);
(type: content type); (noL: number of lines);
(size: string length); (label: e.g., date, price ...}

(3)

Features of course, are application dependent. The labels
in the feature set, are the derivatives of the table headers,
representing semantic values. To update or enrich semantic
labels in a set L, a dynamic field analyser is proposed so that
its corresponding regular expression format can be achieved.
Thanks to the regular expressions, we are able to avoid
possible OCR errors in case characters are broken, documents
with noise and characters are connected with graphics. For
example, consider a field having OCR output as (cf. Fig. 2)
<field id="1"

name="CODE-ARTICLE" value="0652-000159"

left="261" top="1311" right="528" bottom="1338"/>

can be transformed into a label named code-article with
regular expression of ’\d{4}[-]\d{6}’. Such labels are
then used to update the set L.

To exploit relative positioning between the key fields, we
basically use bounding box and its projection into 3 × 3 par-
titions [10]: R = {left top, top, right top, . . . , right bottom}.
To integrate more precision about the level of neighbourhood
k into the basic set of spatial predicates defined in R, we have

rij = spatial predicatek1,k2
(fieldi, fieldj). (4)

Formally, k = 0 for an adjacent (an immediate field), and k
varies from 1 to A−1 for non-adjacent ones. Note that k1 and
k2 represent horizontal and vertical orientations, respectively.

The whole input pattern can be represented by a complete
4-tuple ARG

G = (V,E, FV , FE), (5)

where V is a finite set of nodes (fields) and E ⊆ V × V i.e.,
a finite set of edges. Each rij ∈ E is a pair of (vi, vj) where
vi, vj ∈ V . FV : V → LV , where LV represents a set of nodes
as well as their labels using the set L and FE : E → RE ,
where RE represents the edges via relations.

Fig. 2. An example of an input pattern (cropped image), provided by a client.
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To complete graph, we introduce missing as well as neigh-
bouring fields such as Quantity, Prix Total H.T. and
Code TVA in Fig. 2. To determine those fields, we simply
use intra-field separation from the selected key fields:

intra-fieldi = max {intra-wSepi} , (6)

where intra-wSepi is the minimum distance between two
consecutive words within the same field i.e., intra-wSepi =
min {δ(wordw,wordw+1) : wordw,wordw+1 ∈ fieldi} . Multi-
ple words are taken as a single field as long as their separation
is defined in Eq. (6). To separate missing and neighbouring
fields from the selected ones, we simply use activation key at
nodes: 1 for selected fields and 0, otherwise. For example, in

Fig. 2, we have {vi}
6
i=1 where node activation signature is [1

1 0 1 0 0], spanning horizontally, from left to right.

B. Graph mining

Given the pattern graph Q, to extract similar graphs from a
document, it starts with pivotal nodes selection in a document
and perform relation assignment to compute feature score
between the pairs of nodes. Relations assignment repeats until
a similar graph G is achieved, with respect to Q.

Step 1. For every node vqi in pattern graph Q, the correspond-
ing label ℓqi ∈ L is defined i.e., V q = {(vqi , ℓ

q
i ), i = 1 . . .Vq}.

Having these labelled nodes in Q, the target is to select nodes
sharing identical labels

{

vî, ℓî
}

in a document.

Step 2. Each pivotal node is taken and started to validate
relations with neighbouring nodes in a document, as in Q. As
an example, Fig. 4 simplifies the relation assignment process
by showing relation vector spaces from a graph. To compute
feature score between the pair of nodes (vi, vj) in a document
with respect to (vqi , v

q
j ) ∈ Q, their respective relations must be

identical i.e., rqij = rij . If exact relations do not validate, our



r12

r23r13

v1 v2

v3

(a) a graph

v1 v2 v3

v1 0 r12 r13

v2 r21 0 r23

v3 r31 r32 0

(b) an adjacency
matrix

0 r13r12

(1) using v1.
...

0 r32r31

(3) using v3.
(c) relation vectors.

Fig. 4. An example showing relation vector spaces to simplify relation
assignment. A single relation vector space is sufficient to extract structurally
similar graph.
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Fig. 5. A few examples showing possible immediate relations. For an exact
top relation, left top and right top can be two possible immediate relations.

algorithm introduces possible swinging to immediate relations
that goes back and forth, and up and down. The idea is
elaborated in Fig. 5, where relation can swing both left and
right for topij and bottomij relations, and top and bottom for
leftij and rightij relations. More formally, we can compute
feature score between two corresponding nodes vq and v as

f.score(vq, v) =

{

1 : if ℓq = ℓ, and

1
F

∑

f λf × s
featuref

vq,v : otherwise,
(7)

where λf ∈ [0, 1]. For each feature, weight λf can be varied
according to its robustness and so is application dependent.
Given two strings: x reference and y primary, we compute
feature matching scores from string type, noW and size:

stypex,y = 1− (Levenshtein dist.(x, y)/max(x, y)) ,

snoWx,y = 1−
(

dist.noW (x, y)/max(x, y)
)

, and

ssizex,y = 1−
(

dist.size(x, y)/max(x, y)
)

, (8)

where in case of stype, we treat numerals {0−9}, all alphabets
{A−Z, a− z} and symbols equally. Thus, matching score S
for data graph G with respect to Q is an aggregation of both
relations validation and feature scores

S(Q,G) = α 1
R

∑

i,j∈Rq,i 6=j r.score(rqij , rij)

+(1− α) 1
Vq

∑

i∈V q f.score(vqi , vi), (9)

where α ∈ [0, 1]. Based on this, we extract a set G
of similar graphs plus their matching scores i.e., G =
{Gg, Sg}

G
g=1. To avoid possible redundant graphs in case

every node is employed from the set {(vqi , ℓ
q
i )}, we take

argmax1<i≤Vq S(Q,Gi). Since we employ word-level pivotal
selection, labels like description are not taken. These are
extracted with the help of neighbouring labels, their relations
and features like size, noW and noL. Therefore, faster graph
isomorphism like [11] may not directly fit into our application.

Fig. 6. An output, representing two similar items (i.e., two graphs) from an
input pattern shown in Fig. 2.

C. Graph models

The mined graphs
{

(Gg, Sg)
}

are now pruned by using
two major criterion: graph consistency and matching score.
The graph is said to be consistent if ℓi ∈ L. In case all
nodes are not labelled, the graph is taken if S(, ) ≥ threshold
(empirically designed). Node features are updated by taking
their label, and properties like size, noW and noL, including
their variations. As an example, features at query nodes are
updated from data graph. As an example, in Fig. 6, fieldF

2 = {

(box: [541, 1314, 1221, 1348]); (wSep: ‘[4, 6]′);
(value: ‘{’PORTEMANTEAU’ ’10’ (noW: ‘[4, 9]′);

’CROCHETS’ ’ALU’}′), (noL: [1, 2]);
(size: ‘[25, 44]′); (label: ‘{description}′)}.

Keeping relations as in pattern graph, the updated pattern

graph will be a model graph M(V,E, F̂V , FE). Considering a
set Z of zones, we have a set M of models in class k as,

Mk =
{

M
headerp
k

,M
body

p

k
,M

footerp
k

}

, 1 ≤ p ≤ P. (10)

These models are used to exploit similar information from test
documents (in the absence of clients). From each model, an
output confidence score (CS) is computed from the aggregation
of all matching scores of the extracted similar graphs i.e.,

CS
zp
k

= 1
G

∑

g Sg. (11)

As an example, in Fig. 6, we have CS
body

p

k
= 1

2

∑2
g=1 Sg,=

1
2 (1 + 1) = 1. In case of multiple models, the outputs are now
ranked based on the order of similarity.

III. EXPERIMENTS

A. Dataset and ground-truth formation

We work on a real-world industrial problem in direct
collaboration with the ITESOFT1, France. Currently, in our
test, the dataset is composed of 25 suppliers, having a few
hundreds of images per class. In our dataset, both printed
and handwritten texts including graphics are present. Broken
strokes in characters, noise due to touched handwritten texts
– signatures, for instance and overlapping of graphics such
as stamps are considerable issues. Tabular alignments are not
always regular even when headers are found to be relatively
well positioned. For each document, clients provide ground-
truths i.e., all similar patterns, according to the selected pattern.

B. Evaluation metric

Consider the list of the extracted graphs, representing
detected table or output O = {Gg}

G
g=1 in a test document. For

this, there are G
◦ list of ground-truthed patterns corresponding

to the ground-truthed table O◦ = {G◦
g◦}G

◦

g◦=1. Each graph G
has a number of fields that are simply represented by iconic

1http://www.itesoft.com.

http://www.itesoft.com


boxes {Bb}
B

b=1 and strings (i.e., content) {strst}
ST
st=1 itself. In

this framework, two different evaluation metrics are proposed.

B.1 Area-ratio-based metric (ARM). – Unlike the evaluation
made for a complete table detection [12], in our framework,
we use the overlapping ratio between the two key field boxes,

OR0(B
◦
b◦ , Bb) =

2× |B◦
b◦ ∩Bb|

|B◦
b◦ |+ |Bb|

and OR0(, ) ∈ [0, 1], (12)

where |B◦
b ∩ Bb| is the intersected or common area of them

and |B◦
b |, |Bb| are the individual areas. Based on this, we use

two different cases:

case 1. OR1(, ) =

{

1 : if OR0(, ) > 0.8, and
0 : otherwise; and

case 2. OR1(, ) = OR0(, ). (13)

We aggregate all OR1(, ) to compute overlapping ratio between
the graphs, OR2(G

◦, G) = 1
max(B◦,B)

∑

OR1(B
◦
b◦ , Bb). Then

for a whole table, we can express evaluation metric as

EvalARM(O◦, O) =
1

max(G◦,G)

∑

OR2(G
◦
g◦ , Gg),

{g◦ : g◦ ∈ O◦ ∧ g ∈ O◦}. (14)

Both cases are separately used and analysed.

B.2 String-matching-based metric (SMM). – In this, we use
strings and compute normalised Levenshtein distance (NLD),

NLD0(str◦st◦ , strst) = 1−

(

Lev. dist.(str◦st◦ , strst)

max(str◦st◦ , strst)

)

. (15)

Based on this, as before, we use two different cases:

case 1. NLD1(, ) =

{

1 : if NLD0(, ) > 0.8, and
0 : otherwise; and

case 2. NLD1(, ) = NLD0(, ). (16)

Both cases replace Eq. (13) and as a consequence we can
update Eq. (14) respectively with EvalSMM(, ).

C. Results and analysis.

For each input pattern, we have measured the performance
of the system by taking the associated ground-truths. Before
reporting an overall performance of the system, we start with
an example as shown in Fig. 7, aiming to provide an intuitive
feeling on how evaluation has been made from two different
metrics. In this example, we observe that EvalSMM(, ) provides
better results in comparison to EvalARM(, ). It is primarily due
to missing portions in the description fields, that are encircled
(in red) and found in two different lines. This missing portion
contains just a couple of letters. When computing SMM, a
couple of letters does not make a big difference but affects
ARM since empty space is also taken into account in between
the strings. In what follows, we aim to analyse whether similar
phenomenon will be observed in overall performance.

Table I shows an overall performance of the system,
evaluated over 25 different suppliers. It is mainly composed
of two different ways of validation: one is associated with
the input pattern created in the laboratory and another one is
directly related with client or real-world patterns. In Table I, we
observe that cleaner the input pattern, better the performance.
This happens to be in test no 1 since input patterns are created

ւdescription

(a) An example of the information exploitation output where

missing portions are encircled in red, in both 2nd and 3rd

items, when considering description in the extracted table.

item 1 item 2 item 3 Avg.
EvalARM 100 100 86 94 86 94 90 96

EvalSMM 100 100 100 98 100 98 100 98

(b) Evaluation in %, from two different metrics, using the
output in (a). Scores are given in the form of case 1case 2.

Fig. 7. An example to see how EvalARM(, ) and EvalSMM(, ) are affected
due to missing small portion.

TABLE I. AVERAGE RECOGNITION PERFORMANCE (IN %).

Header Body Footer Avg.
EvalARM Test no 1 94 97 95 99 95 98 95 99

Test no 2 92 96 94 98 93 95 93 96

EvalSMM Test no 1 97 98 99 99 99 98 98 98

Test no 2 97 95 98 96 95 95 97 95

Performance score: X Y = case 1case 2
Test no 1: input patterns created in lab.
Test no 2: input patterns from clients.
Execution time ≃ 2 sec./doc. image.

in accordance with what OCR results. In contrast, in case of the
client input patterns (in test no 2), a single field selection may
sometimes take word(s) from another closer fields (can be left
or right), and multiple lines. Besides, we have observed better
results in body zone, compared to footer and header because
it contains more structured contents i.e., table-like formats.
Considering body zone, further label-wise analysis is provided
in Table II where description are not well spotted i.e., some
words may be missed (cf. Fig. 7), for instance.

Fig. 8 shows a few demonstrations where both linear as
well as zig-zag type patterns are taken into account including
missing fields as well as missing lines. In this illustration,
body is found in all documents, but not always header and
footer. In Fig. 8 (a), the last body pattern does not detect the
first field due to OCR error. On the other hand, the detected
pattern maintains its structure similar to others regardless the
alignment of the fields within it – which in fact, demonstrates

TABLE II. LABEL-WISE AVERAGE PERFORMANCE (IN %).

EvalARM EvalSMM

1. enumerate 100 100 100 100

2. reference/code article 95 97 100 98

3. description 88 92 96 94

4. quantity 93 95 100 98

5. price/cost/amount/TVA 100 98 100 99

Performance score: X Y = case 1case 2.
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Fig. 8. Examples showing content extraction in accordance with the learnt patterns (from client). Linear as well as zig-zag type patterns with missing fields
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րno clear separation (plus noisy graphical lines).

Fig. 9. An example showing an encircled part where OCR is failed to read.

the interesting part of concept. Furthermore, OCR errors do
not provide the expected semantics label at nodes in the graph.
Fig. 9 shows another example of it.

Regarding time complexity issue, graph mining is faster
(approx. 2 sec. in average per document image) since for each
pivotal node vî in a document, our search space is basically
limited to deg(vqi ) ∈ R in a pattern graph. It depends on how
many pivotal nodes are selected as shown in Fig. 10.

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we have presented client-centred pattern-
based document information content exploitation via graph
mining scheme. We have very much focussed and validated
that the table extraction does not always mean only to detect
the presence as well as to spot the area where table(s) is(are)
located but also to select important key fields within it while
rejecting others. Besides, we have shown the concept can be
employed to exploit structure-free documents, which is still
considered as its further extension.
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