
HAL Id: hal-00822667
https://hal.inria.fr/hal-00822667

Submitted on 25 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Declarative Integration of Interactive 3D Graphics into
the World-Wide Web: Principles, Current Approaches,

and Research Agenda
Jacek Jankowski, Sandy Ressler, Kristian Sons, Yvonne Jung, Johannes Behr,

Philipp Slusallek

To cite this version:
Jacek Jankowski, Sandy Ressler, Kristian Sons, Yvonne Jung, Johannes Behr, et al.. Declarative
Integration of Interactive 3D Graphics into the World-Wide Web: Principles, Current Approaches,
and Research Agenda. 18th International Conference on 3D Web Technology (Web3D’13), Jun 2013,
San Sebastian, Spain. �10.1145/2466533.2466547�. �hal-00822667�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49789042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00822667
https://hal.archives-ouvertes.fr

Declarative Integration of Interactive 3D Graphics into the World-Wide Web:

Principles, Current Approaches, and Research Agenda

Jacek Jankowski∗

Inria

Bordeaux

France

Sandy Ressler†

NIST

Gaithersburg MD

USA

Kristian Sons‡

DFKI

Saarbrücken

Germany

Yvonne Jung§

Fraunhofer IGD

Darmstadt

Germany

Johannes Behr¶

Fraunhofer IGD

Darmstadt

Germany

Philipp Slusallek‖

DFKI & Saarland University

Saarbrücken

Germany

Abstract

With the advent of WebGL, plugin-free hardware-accelerated inter-
active 3D graphics has finally arrived in all major Web browsers.
WebGL is an imperative solution that is tied to the functionality of
rasterization APIs. Consequently, its usage requires a deeper un-
derstanding of the rasterization pipeline. In contrast to this stands a
declarative approach with an abstract description of the 3D scene.
We strongly believe that such approach is more suitable for the inte-
gration of 3D into HTML5 and related Web technologies, as those
concepts are well-known by millions of Web developers and there-
fore crucial for the fast adoption of 3D on the Web. Hence, in this
paper we explore the options for new declarative ways of incor-
porating 3D graphics directly into HTML to enable its use on any
Web page. We present declarative 3D principles that guide the work
of the Declarative 3D for the Web Architecture W3C Community
Group and describe the current state of the fundamentals to this ini-
tiative. Finally, we draw an agenda for the next development stages
of Declarative 3D for the Web.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.6 [Methodology and
Techniques]: Standards—Languages

Keywords: Declarative 3D, HTML5, DOM Integration, Polyfill

1 Introduction

The Web evolved from a text-based system to the current rich and
interactive medium that supports images, 2D graphics, audio and
video. These types of new media have made the Web experience
richer, more attractive to users, etc, than ever before, and opened
up possibilities for new types of applications and usage. The major
media type that is still missing is 3D: synthetic, possibly photore-
alistic images in 3D with animation, as smoothly integrated in the
everyday Web experience as images or video. Just as the appear-
ance of images or video could open new application possibilities,
access to the 3D on a Web site would make it possible to include
realistic models of 3D objects – from models of buildings to repre-
sentation of the human body or the sceneries for computer games.
With WebGL [Marrin 2012], a JavaScript binding for OpenGL ES

∗e-mail:jacek.jankowski@inria.fr
†e-mail:sressler@acm.org
‡e-mail:kristian.sons@dfki.de
§e-mail:yvonne.jung@igd.fraunhofer.de
¶e-mail:johannes.behr@igd.fraunhofer.de
‖e-mail:slusallek@cs.uni-saarland.de

Final draft accepted to the 18th International Conference on 3D Web Tech-

nology (Web3D13), Jun 2013, San Sebastian, Spain

Figure 1: The position of the Declarative 3D approach in the cur-
rent Web graphics technology ecosystem.

2.0, this seems feasible; however, the goal would be to achieve the
same smooth inclusion of 3D content in a Web page like we expe-
rience today with images or SVG-based 2D graphics.

Although some of these goals could also be achieved by impera-
tive means (e.g., through the usage of WebGL), developments of
3D models have a long tradition of using declarative approaches,
which is also in line with some of the fundamental principles of
Web development. It is therefore important to explore how the ex-
periences accumulated in two different communities, namely the
Web Development and Computer Graphics communities, can be
capitalized upon to achieve the long term goal of using 3D on the
Web the same way as we do with 2D graphics and video today.
Moreover, while imperative graphics APIs are powerful and neces-
sary, a Declarative 3D approach can provide web authors an easy
way to add interactive high-level declarative 3D objects through the
HTML Document Object Model (DOM) allowing them to easily
create, modify, share, and experience interactive 3D graphics using
HTML documents. Figure 1 depicts the position of the Declarative
3D approach in the current Web graphics technology ecosystem.

It is arguable that the emerging support for an imperative 3D API
for the Web is useful but insufficient for broad acceptance and us-
age of 3D on the Web. A declarative approach that offers qualified
concepts and that is tightly integrated with current web technolo-
gies, such as JSON or XML for scene construction, DOM for scene
manipulation, and CSS for styling, is necessary to support a fast
adoption and broad use of interactive 3D graphics by the millions
of Web developers. The provided concepts must lift the hardware-
oriented imperative application programming interfaces to an ex-
pressive and more easily usable level. Therefore, not the low-level

data structures of existing GPU layers must be in the center of the
design but high-level elements and items like 3D objects, transfor-
mations, material descriptions, and lights. Instead of teaching Web
developers 3D graphics APIs, the goal is to bring 3D graphics to
the point where it is natural for Web developers to just make use
of it. While this might not be feasible for every possible use of a
low-level API, it still can cover the vast majority of use cases.

The Declarative 3D for the Web Architecture W3C Community
Group (Dec3D) [W3C Community Group 2013] was thus founded
to suggest and create methods to add high-level declarative 3D ob-
jects to the HTML DOM [W3C 2005], so users can share and ex-
perience interactive 3D contents. Moreover, this not only allows
creating new content from existing content but also to index and
search 3D content. The core mission is to determine the require-
ments, options, and use cases for the integration of interactive 3D
graphics into the Web technology stack in a declarative way, which
hopefully will provide a foundation for future standardization.

The group thus aims at presenting common use cases that define
how 3D might intersect and interact with HTML5, DOM events,
CSS, SVG, GeoLocation, Augmented Reality, Efficient XML Inter-
change (EXI) [W3C 2011] and other key working groups, whereas
certain complex data types (e.g., transformation matrices) and com-
putations are also of mutual interest. In this regard, this paper
presents the current state and efforts concerning Dec3D.

2 Declarative 3D Principles

Here we describe declarative 3D principles, where the following
goals should guide the development of DOM-based 3D graphics.

Following the Established Principles of the Web Declarative
3D is being developed to significantly lower the barrier for author-
ing 3D content for Web sites by duplicating the key features that
enabled the growth of the early Web and its further success.

Separation of structure from content Underlying the Web from
its earliest days was the separation of structure from content.
The concept of a paragraph specified by the <p> tag was sep-
arate from its content. Declarative 3D is attempting to bring
the same separation to 3D graphics inside of web pages. The
concepts such as definitions of 3D objects, transformations,
materials, etc. should be implemented in a declarative 3D de-
scription as an extension to HTML5 [Hickson 2012] using any
existing or future extension mechanism.

Separation of content from style One of the principles of the cur-
rent Web is also the separation of content and style, most no-
tably through CSS. The successful integration of SVG [W3C
2012b] with HTML was made much easier due to the fact that
SVG was already following this principle. The objective here
is to extend the use of CSS for styling 3D graphics. One ex-
ample can be the use of the latest CSS3 3D Transforms [W3C
2012a] to allow manipulating not only 2D but also 3D objects.

Use of the Document Object Model The DOM [W3C 2005] is a
platform- and language-neutral interface that allows programs
and scripts to dynamically access and update the content,
structure and style of Web documents. Declarative 3D should
use the DOM API to examine and modify elements on the 3D
scene and their attributes by simply reading and setting their
properties. As the DOM provides access to user actions (e.g.,
pressing a key or clicking a mouse button), it should also be
used as a main interface to interact with 3D contents.

Embedded 3D graphics should reuse existing W3C techniques,
specifically from HTML5 and SVG, as far as possible and propose

extensions only where specific features are necessary or provide
significant benefits. Where new concepts are introduced their rela-
tion to and effects on existing Web standards should be analyzed,
evaluated, and discussed with the respective W3C working groups.

3D Content Creation and Reuse While the creation of original
3D geometry and appearances still requires 3D specific know-how,
the reuse, configuration, and manipulation of such content should
be made similarly easy as for 2D Web content now. The solu-
tion should hide internal data structures and algorithms and provide
users convenient ways to edit and manipulate such scenes. A key
success factor for Declarative 3D on the Web will be the ability to
generate new or reuse existing content. This requires that suitable
exporters and converters can be built. However, as 3D on the Web
is supposed mainly as a delivery mechanism, it is not necessary to
include the ability to semantically represent all 3D features.

Platform Independence 3D content needs to be described in a
way that does rely neither on a specific render API such as OpenGL
or DirectX nor on a specific rendering technique such as rasteriza-
tion or ray tracing only (cp. e.g. [Rubinstein et al. 2009; Schwenk
et al. 2012]). This should allow for content to be portable across
web browsers, rendering techniques, and hardware platforms, while
taking advantage of available features wherever possible. The re-
sults of rendering content under such different environments should
be highly predictable.

Efficiency and Scalability Interactive real-time 3D graphics en-
ables new forms of interactivity on the Web but also adds signifi-
cant new requirements on user agents. A key requirement for the
selected technology therefore is the possibility to implement it effi-
ciently (cf. e.g. [Trevett 2012]). Native implementations allow uti-
lizing all (battery) resources more efficiently while leveraging het-
erogeneous hardware. Thereby, the CPU time can be used for the
application instead for rendering, collision, scene-housekeeping,
etc., which is esp. critical for mobile devices. Since 3D scenes can
become rather large, any solution should target scalability in the
sense that 3D content should run across different platforms (from
mobile devices to high-end graphics hardware) with predictable
performance. Mechanisms should be in place to handle cases where
the performance provided by a user agent on some platform is not
sufficient, e.g. by allowing for switching to different content (e.g.
lower LOD) or provide alternate methods of delivering the content
(e.g. server-based rendering delivered via streaming video).

Security and Digital Rights Management Secure delivery of
Web content is a general problem and not specific to 3D data. How-
ever, the economic value of 3D data might make the problem more
acute. Any proposed solution should therefore be based on a gen-
eral approach to secure Web content. However, we first need to
collect use cases, extract requirements and examine how far exist-
ing methods (e.g. [Koller and Levoy 2005]) and standards can be
transferred to the proposed architecture. It is already demonstrated
that the application of XML Encryption and Signature is needed for
document fragments as well as full documents, since high-fidelity
or sensitive portions of 3D models often need special protections.

Accessibility and Usability Accessibility improvements serve
all users, not just people with disabilities. A problematic aspect of
many 3D graphics approaches however is that user navigation and
interaction is implemented inconsistently. Therefore, users familiar
with one approach are impeded when navigating or interacting with
other 3D scenes and models. Examination of relevant Web Accessi-
bility Initiatives (WAI) principles might provide significant benefit.

Figure 2: From left to right: walktrough of Roman heritage site; cultural heritage object explorer with metadata; restored virtual synagoge.

Conversely, use of declarative 3D graphics models might provide
major benefits when describing the accessibility features and con-
straints of real-world objects and locations. Declarative 3D goals
and potential solutions may achieve significant benefits if they are
harmonizable with WAI imperatives.

Leveraging Web Development Infrastructure The Web has
become the new application development platform for our time.
Countless rich internet applications are being created at a dizzy-
ing pace. The “apps” world for mobile applications has also be-
come a huge phenomenon. One important enabling technologies
is JavaScript [Crockford 2008], which has evolved from a toy lan-
guage into a robust and richly nuanced tool that is the basis for
much of the recent explosion in Web applications. Declarative 3D,
by living within the structure of Web apps is poised to leverage the
huge collection of tools and infrastructure that already exists such
as jQuery [Resig 2012] etc. The ability to take existing Web de-
buggers, editors, and viewers and use these tools to create, edit, and
debug 3D content is a tremendous benefit and just begins to scratch
the surface of development tools, created for Web application de-
velopment, but which we can use for 3D content development.

3 Declarative 3D Frameworks

As already mentioned, the Declarative 3D Community Group
[W3C Community Group 2013] has been formed to determine the
requirements, options, and use cases for the declarative integra-
tion of interactive 3D graphics capabilities into the Web technol-
ogy stack, which will provide a foundation for future standardiza-
tion. While this standardization is our goal, we still need platforms
allowing for the experimentation and evaluation of our design de-
cisions (3.1). We also need to reach out to Web developers who
could provide us with valuable feedback as early as possible. From
the evaluations we extract the essential features (3.2) for a declar-
ative approach. Finally, we check the level of integration we can
achieve, emulating these features using existing technologies (3.3).

3.1 Evaluation platforms

With X3DOM [Behr et al. 2009] and XML3D [Sons et al. 2010],
two evaluation platforms are available to support the ongoing dis-
cussion in the computer graphics and Web communities how an
integration of HTML and declarative 3D content could look like.

Fraunhofer IGD’s X3DOM [Behr et al. 2009; Behr et al. 2012b]
is a JavaScript-based open-source framework for declarative 3D
graphics in HTML5 that aims at extending the HTML DOM tree
with declarative 3D objects while employing modern Web tech-
nologies like CSS3, Ajax, DOM scripting, as well as WebGL and
– as fallback – Adobe’s Flash 11 with Stage 3D [Adobe 2013]
for GPU-accelerated rendering. The proposed 3D elements are

mostly based upon the open ISO standard X3D [Web3D Consor-
tium 2011], though X3DOM introduces a special HTML profile
that basically extends the X3D Interchange profile. Additionally,
instead of implementing the X3D pointing device sensor compo-
nent, X3DOM simply uses, and appropriately extends, the HTML
UI/Mouse events such that 3D pick events are likewise supported.

Furthermore, to overcome various problems that come along when
embedding 3D mesh data, which typically consists of several
megabytes of vertex attribute data, directly into the DOM tree, effi-
cient 3D mesh encodings are being developed that allow separating
the node structure from the raw vertex data [Behr et al. 2012b].
In this regard, Figures 2 and 7 show several X3DOM applications
from the cultural heritage and engineering domain, where the abil-
ity to efficiently handle big 3D data sets is of high importance.
Based on this work, 3D transmission formats are now also a ma-
jor topic at the Khronos Group [Trevett 2012], where it is similarly
argued that raw 3D data, just like image, video or audio data, needs
to be externalized from the HTML document.

It is also worth mentioning that the Web applications shown in
Figures 2 and 7 were not realized by graphics programmers, but
mainly by Web developers using standard DOM scripting as well
as JavaScript frameworks like jQuery [Resig 2012]. For example,
to switch to a certain viewpoint when the user clicks onto the arrow
button in the walkthrough application shown in Figure 2 (left), the
application developer simply needs to update the ’bind’ attribute of
the ”viewpoint” tag by calling its setAttribute method. Likewise,
when selecting an element in the browser-based CAD and product
structure viewer shown in the middle of Figure 7, the corresponding
parts in the tree view are highlighted and vice versa.

XML3D [Sons et al. 2010] is a result of collaboration of DFKI and
Intel VCI. Similarly to X3DOM, it employs CSS3, DOM scripting,
and DOM events. In contrast to X3DOM, XML3D is designed as
an extension to HTML5 from scratch. It does not define a scene-
graph, but uses the DOM tree structure for parent child relations
and second level references e.g. via CSS to (re-)use resources such
as geometry data, material descriptions or animation data. These
resources are not necessarily in the same document, but can also
come from external documents in various formats, e.g. as JSON.

This generic and consistent handling of resources allows fine-
granular composition of data sources. It can be combined with
Xflow, a declarative data flow component [Klein et al. 2012] that
allows for dynamic meshes, morphing, animation of shader param-
eters, image processing and Augmented Reality. The data flow
computation can be mapped to hardware, e.g. by composition of
WebGL shaders or by exploiting available APIs such as Web Work-
ers [World Wide Web Consortium 2012] or River Trail [Herhut
et al. 2012]. Figure 3 shows a XML3D scene with nine charac-
ters, skinned and animated with Xflow. There are two implemen-
tations of XML3D: the native implementation based on a modified

 <h1>

<xml3d>

<mesh>
<light>

<data compute=“…” >

<html>
<input>

<div>

<texture>

<mesh>

Figure 3: A highly dynamic declarative 3D scene with nine ani-
mated and skinned characters. The calculation is either performed
with classical sequential JavaScript or in parallel exploiting Intel’s
River Trail proposal for parallel data computations in JavaScript.

Chromium browser, and xml3d.js [Sons et al. 2013], a Polyfill im-
plementation based on WebGL and JavaScript.

The X3DOM and XML3D platforms are available under an Open
Source license and used in many national and international research
and industrial projects. From the user feedback and use cases we
have collected from both evaluation platforms, we were able to de-
rive the essential features, that both approaches have in common
and that we propose for a Dec3D standard.

3.2 Declarative 3D Essentials

The community group identified 15 key concepts of DOM-based
Dec3D. In this section we briefly outline our proposed essential
elements for an upcoming standard.

A start element (1) marks the transition point from HTML box lay-
out to 3D transformations. This element itself is integrated in the
flow layout, fully styleable with CSS and behaves similar to e.g.
the <canvas> element. Within the 3D space we require a hierar-
chy (2) for 3D objects. HTML offers elements to structure doc-
uments hierarchically using elements such as <div>, ,
<section>, etc. These elements could be reused. On the other
hand, HTML5 recently extended the set of structural elements to
allow a more granular definition of document semantics. It could
be useful to do the same for 3D scenes. Still open is the question,
if the reuse of sub-graphs should be supported. This is a common
feature in X3D and can also be found in SVG. On the other hand,
having multiple paths to one element introduces issues, e.g. with
CSS inheritance.

CSS 3D Transforms [W3C 2012a] should be used to define trans-
formations (3) on the hierarchical structure as well as on other 3D
elements. This example illustrates the three following concepts:

<div>

<dec3d style="border: 1px solid black;">

<div style="transform: scale3d(2, 2, 2);">

...

</div>

</dec3d>

</div>

In general, a tight CSS integration (4) is a major concept: existing
CSS properties should be used where applicable (e.g., transform,
opacity, color, etc.). In addition, a set of 3D-specific CSS properties
(e.g. for defining the appearance) needs to be defined. However,

Figure 4: The proposed Declarative 3D “Polyfill” Runtime Archi-
tecture.

custom CSS properties are not yet supported by any Web browser,
though finally this seems to change now [W3C 2013].

For real-time interactive 3D graphics systems an event (5) model
is essential. The Dec3D standard should leverage the DOM Event
model where applicable. Not only standard DOM UI Events such as
‘mouseover’ and ‘click’ (with appropriate extensions for 3D scenes
as already discussed in [Behr et al. 2011]) shall be supported, but
also new events need to be defined to provide 3D-specific context
information. In this regard, the Browser API should expose conve-
nience functions and special Dec3D base types (6) consisting of a
lean set of complex data types for 2D/3D graphics. In general, we
aim a common set of base types usable not only for Dec3D, but also
for WebGL API, Audio API, SVG, 3D Transforms etc.

Similarly, generic data containers (7) should be based on TypedAr-
rays [Khronos 2012] with appropriate interfaces for efficient mod-
ification of the data. These containers should be general enough
to support meshes, animations, shaders, etc. This concept is very
close to our efforts regarding external data containers (8) and their
efficient transmission [Behr et al. 2012b; Trevett 2012]. Given that
the generic data containers are close to vertex buffer objects in re-
cent graphics APIs, we aim 3D geometry definitions (9) close to
OpenGL primitives.

Dec3D should support highly dynamic scenes. Using the DOM
API to modify the scene data is not sufficient for many use cases,
e.g. dynamic meshes, image processing, compression, etc. Thus,
we need a concept to support efficient data processing that allows
to map computations to available hardware. These should be ex-
pressed as operators (10) on the data containers above.

Besides this, we further distinguish between essential Dec3D DOM
Elements, where the focus lies on a minimalistic element set, as
well as more comprehensive Dec3D DOM Elements (see middle
of Figure 4), which build on top of those with the focus on us-
ability and which for convenience could build on existing scene-
graph standards such as X3D [Web3D Consortium 2011] or COL-
LADA [Arnaud and Barnes 2006].

Essential DOM elements include a basic set of pre-defined
shaders (11), which should be enough for typical use cases. Ad-
vantages are that they do not entail timing attack issues and that
they can adapt to any target device. However, the design should
not obstruct programmable shaders in the future. HTML elements
such as , <video>, and <canvas> can be used as tex-
tures (12), whereas elements such as <svg> and <html> could

Figure 5: LOI 3 in the native XML3D implementation: debugging
of a 3D scene using the Chrome developer toolbar. Note also that
materials are attached to meshes using the ’shader’ CSS property.

serve as interactive textures – once the corresponding security is-
sues are resolved.

Lights (13) are shader parameters in OpenGL/ WebGL [Marrin
2012]. In contrast, for Dec3D we aim a representation to provide a
intuitive way to define lights (and thereby also shadows) and to not
obstruct more advanced future concepts. Likewise, viewpoints (14)
can serve as links to certain points of interest within the document.
However, it is still discussable if some pre-defined camera naviga-
tion (15) modes – to get directly started without having to modify
the camera matrix with a special script – should be part of the es-
sential profile.

3.3 Level of Integration and Polyfill Approach

We also propose a measure for the Level of Integration (LOI) for
3D graphics into the W3C technology stack (DOM, CSS, etc.) to
explain existing and possible integration levels (Figure 6). Level 0
is the classical integration using plug-ins. Many X3D implementa-
tions as well as Adobe’s Flash and Unity 3D use the plug-in model
to integrate their rendering engine into the browser. LOI 1 provides
a dedicated element in the DOM in combination with an API. Cur-
rently WebGL and the <canvas> provide this level of integration.
The next level (LOI 2) has the scene description not in JavaScript
but integrated in the DOM. Levels 3 and 4 provide an even better in-
tegration with CSS and easy debugging of 3D scenes. This requires
having a set of 3D-specific CSS properties or even a full shader
description via CSS as well as a deeper integration into debugging
tools like Chrome Developer Tools or Firebug (for an example see
Figure 5 and [Sons and Slusallek 2012]).

Using existing APIs in the browser, we can emulate native Dec3D
functionality up to level 2, with some initial support of existing CSS
properties. Integration levels 3 and 4 are currently not yet achiev-
able by a JavaScript implementation, because the required APIs are
missing: it is not possible to introduce new CSS properties or to ex-
tend developer tools by an API, a higher level of integration requires
additional APIs in user agents. After discussions with browser ven-
dors (namely Firefox and Chrome), who made it clear that inte-
gration of the desired extensions natively into their frameworks is
not currently their priority, we decided to consider a so-called Poly-
fill approach for the further development activities. Nevertheless,
communicating and requesting additional and missing features like
custom CSS properties or CSS monitoring is necessary.

Figure 6: Levels of integration: current browser APIs only allow
integrating with DOM and DOM Events, but not yet fully with CSS.

A Polyfill is a downloadable piece of code, which provides facilities
that are not natively built-in to a Web browser [Sharp 2010]. For
example, many features of HTML5 are not supported by versions
of Internet Explorer older than version 8 or 9, but can be used by
web pages if those pages install a so-called Polyfill. Polyfills can
also be used to add entirely new functionality to browsers.

Polyfill-based approaches allow deriving hard requirements for re-
lated and utilized W3C standards and user agent (UA) APIs imme-
diately. This leads to much more evolving concepts and solutions in
contrast to an overall declarative 3D specification. In the following
we hence list our most important UA requirements.

DOM The Polyfill Layer must be able to access and monitor
changes in related DOM elements. This can be achieved us-
ing the now deprecated DOM Mutation Events as well as the
new MutationObserver1 objects.

Events The UA must support registration, firing, and extending
UI events. This is mainly done through dynamic property
changes in the JavaScript object, which currently represent
the event for performance reasons.

Custom CSS properties The goal is to support scene manage-
ment though custom CSS properties. Unfortunately, this was
not possible in the last years, but may change with the new
CSS Custom Properties specification [W3C 2013].

CSS 3D Transforms The CSS 3D Transforms module [W3C
2012a] is now supported in all major browsers, but the meth-
ods to monitor final matrix changes are limited right now and
should be further extended for optimal performance.

TypedArrays TypedArrays [Khronos 2012] were first introduced
with the WebGL specification but are now an established
method to process large portions of typed data efficiently.

Generic GPU access For client-side rendering the Polyfill Layer
has to access the GPU functionality almost directly. Here,
WebGL is there a perfect candidate and Flash 11/Stage3D a
second fallback option.

To sum up, the X3DOM and XML3D experimental declarative 3D
Web publishing frameworks are designed to explore different op-
tions for adding 3D graphics to HTML. Here, Figure 4 depicts our
proposed Declarative 3D Polyfill Runtime Architecture, though we
would like to stress that the whole integration model is still evolving
and open for discussion.

1https://dvcs.w3.org/hg/domcore/raw-file/tip/

Overview.html#mutation-observers

https://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html#mutation-observers
https://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html#mutation-observers

Figure 7: From left to right: web-based design review application with annotation markers; interactive explosion of CAD model on iPad;
lightweight web-based viewer for 3D CAD data; visualization and interactive exploration of simulation data by using extended mouse events.

4 Declarative 3D Agenda

In this section we shape the agenda and identify upcoming research
issues for the next development stage of Dec3D. During the 1st Intl.
Workshop on Declarative 3D [Behr et al. 2012a] as well as during
more informal meetings at Web3D and SIGGRAPH in 2011/2012,
the members and supporters of the Declarative 3D W3C Commu-
nity Group agreed upon the following topics to make the effort suc-
cessful and for the W3C to adopt/develop a Dec3D standard.

Encourage Participation All relevant stakeholders, e.g. devel-
opers, designers, researchers, 3D artists, industry professionals,
representatives of standards organizations, accessibility experts,
and user-agent implementers, are encouraged to participate in this
group. Participants should be willing to actively develop and do-
nate materials towards the group’s deliverables, as well as attend
the group’s teleconferences and face-to-face meetings.

Clear Definition of Use Cases and Requirements The group
needs to agree on a collection of relevant use cases, where embed-
ding 3D data in HTML using a declarative approach provides sig-
nificant benefit. Here, declarative approaches esp. seem relevant
for the industry, since they tend to think in formats (such as STL,
STEP/IGES or CATIA) not in APIs. Each use case should explore
how publishers and consumers benefit from Dec3D. From these use
cases, the group needs to derive and prioritize the different required
dimensions for the Dec3D technical specification [Jankowski 2012;
Le Feuvre 2012].

Clear Technical Specification The next step is the creation of
the clear, detailed and extensible technical specification of the im-
plementation concepts and features necessary to cover a majority
of useful requirements. Measurable properties need to be defined
to quantitatively and/or qualitatively evaluate the achieved solution,
document the pros and cons of each, and demonstrate that, based on
the above analysis, there is a good chance of success in creating a
W3C standard for Declarative 3D for the Web.

Outreach and Exemplar Applications The group needs to fur-
ther continue its outreach activities through the high quality demon-
strations of the Declarative 3D philosophy using the open-source
frameworks X3DOM and XML3D. Therefore, several applications
have to be identified, each requiring and demonstrating different
capabilities of Dec3D. For example, one application could require
huge 3D datasets, which are impractical for inclusion directly into
the DOM; another could require real-time control of an external
system; another could integrate with a complex data base; another
an illustration of complex data (information visualization) without
a physical analog, and yet another a more traditional scientific vi-
sualization. Key to selection of these applications is the use and
demonstration of a more declarative 3D requirement.

W3C Working Group Proposal Finally, the Community Group
should deliver reports documenting its progress, any conclusions
it arrived at with respect to the standardization of Declarative 3D
for the Web and, if reaching a positive conclusion, recommending
a standardization approach as a basis for a future W3C working
group on the same topic.

5 Conclusions

While WebGL, a 3D imperative graphics API in the Web context,
is getting more and more traction, we are still missing an easy way
to add interactive high-level declarative 3D objects to an HTML
document to allow anyone to easily create, share, and experience
interactive 3D graphics, with possibly wide ranging effects similar
to those caused by the broad availability of video on the Web. The
main motivation is thus to make it easy to add 3D graphics to Web
pages by bringing 3D to the Web developers and not vice versa.
This can be achieved by fully integrating 3D content into HTML5
documents, where interactive 3D graphics is a first class DOM ob-
jects. Moreover, by reusing existing Web technology wherever pos-
sible, no new concepts are added unless absolutely necessary.

Another objective of this position paper on Declarative 3D for the
Web is to evaluate the options for a successful standardization of
a declarative approach to interactive 3D graphics as part of HTML
documents. The idea is to collect suitable use cases, derive require-
ments from them, and then find the essential set of features and con-
cepts that enables broad uptake by authors and users of interactive
3D on the Web. We are absolutely aware that our goal is ambitious
and it will take some time to implement these features. Therefore,
we call for more participation from the Web3D and W3C commu-
nities that we believe is crucial to achieve our common and ultimate
goal: 3D for everyone and everywhere.

Acknowledgements

The research presented in this paper has been supported by the EU
projects V-Must (http://v-must.net), VERVE (http://
www.verveconsortium.eu) and FI-CONTENT, the BMBF
project EMERGENT, the Intel Visual Computing Institute, the
SFI’s Lion2 and EI’s Copernicus (http://copernicus.
deri.ie) projects, and the Villes Transparentes project.

References

ADOBE, 2013. Adobe flash player 11.
http://www.adobe.com/products/flashplayer.html.

ARNAUD, R., AND BARNES, M. 2006. Collada. AK Peters.

http://v-must.net
http://www.verveconsortium.eu
http://www.verveconsortium.eu
http://copernicus.deri.ie
http://copernicus.deri.ie

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM – a DOM-based HTML5/ X3D integration model. In
Proc. Web3D 2009, ACM Press, New York, USA, 127–135.

BEHR, J., JUNG, Y., DREVENSEK, T., AND ADERHOLD, A.
2011. Dynamic and interactive aspects of X3DOM. In Pro-
ceedings Web3D 2011, ACM Press, New York, USA, 81–87.

BEHR, J., BRUTZMAN, D., HERMAN, I., JANKOWSKI, J., AND

SONS, K., Eds. 2012. Proceedings of the 1st Intl. Work-
shop on Declarative 3D for the Web Architecture (Dec3D2012
at WWW2012), vol. 869 of CEUR Workshop Proceedings.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and incremental
delivery of declarative 3d scenes on the web. In Proc. Web3D,
ACM, New York, NY, USA, 17–25.

CROCKFORD, D. 2008. JavaScript: The Good Parts. O’Reilly.

HERHUT, S., HUDSON, R. L., SHPEISMAN, T., AND SREERAM,
J. 2012. Parallel Programming for the Web. In Proceed-
ings of the 4th USENIX conference on Hot topics in parallelism,
USENIX Association, Berkeley, CA, USA, HotPar’12.

HICKSON, I., 2012. HTML5 (W3C Working Draft).
http://www.w3.org/TR/2012/WD-html5-20120329/.

JANKOWSKI, J. 2012. Writing effective use cases for the declara-
tive 3d for the web architecture. In Dec3D’12, CEUR-WS.

KHRONOS, 2012. Typed array spec. http://www.khronos.
org/registry/typedarray/specs/latest/.

KLEIN, F., SONS, K., JOHN, S., RUBINSTEIN, D., SLUSALLEK,
P., AND BYELOZYOROV, S. 2012. Xflow: declarative data pro-
cessing for the web. In Web3D, ACM Press, 37–45.

KOLLER, D., AND LEVOY, M. 2005. Protecting 3d graphics con-
tent. Commun. ACM 48, 6, 74–80.

LE FEUVRE, J. 2012. Towards declarative 3d in web architecture.
In Dec3D’12, CEUR-WS.

MARRIN, C., 2012. WebGL specification. https://www.

khronos.org/registry/webgl/specs/latest/.

RESIG, J., 2012. jQuery. http://jquery.com/.

RUBINSTEIN, D., GEORGIEV, I., SCHUG, B., AND SLUSALLEK,
P. 2009. RTSG: Ray Tracing for X3D via a Flexible Rendering
Framework. In Proceedings Web3D 2009, ACM, New York, NY,
USA, 43–50.

SCHWENK, K., JUNG, Y., VOSS, G., STURM, T., AND BEHR,
J. 2012. CommonSurfaceShader revisited: Improvements and
experiences. In Proceedings Web3D 2012: 17th Intl. Conf. on
3D Web Technology, ACM Press, New York, USA, 93–96.

SHARP, R., 2010. What is a polyfill? http://remysharp.

com/2010/10/08/what-is-a-polyfill/.

SONS, K., AND SLUSALLEK, P. 2012. Demo: Xml3d interactive
3d graphics for the web. In Dec3D’12, CEUR-WS.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND

SLUSALLEK, P. 2010. Xml3d: interactive 3d graphics for the
web. In Web3D ’10, ACM.

SONS, K., SCHLINKMANN, C., KLEIN, F., RUBINSTEIN, D.,
AND SLUSALLEK, P. 2013. xml3d.js: Architecture of a Polyfill
Implementation of XML3D. In Software Engineering and Ar-
chitectures for Realtime Interactive Systems (SEARIS), 2013 6th
Workshop on. to appear.

TREVETT, N. 2012. 3d transmission format. In Seventh AR Stan-
dards Community Meeting Talks.

W3C COMMUNITY GROUP, 2013. Declarative 3D for the
Web Architecture. http://www.w3.org/community/

declarative3d/.

W3C, 2005. Document Object Model (DOM). http://www.

w3.org/DOM/.

W3C, 2011. Efficient xml interchange (exi) format.
http://www.w3.org/TR/2011/REC-exi-20110310/.

W3C, 2012. Css 3d transforms. http://dev.w3.org/csswg/css3-3d-
transforms/.

W3C, 2012. Svg. http://www.w3.org/Graphics/SVG/.

W3C, 2013. Css custom properties for cascading variables module
level 1. http://dev.w3.org/csswg/css-variables/.

WEB3D CONSORTIUM, 2011. Extensible 3d (X3D). http://

www.web3d.org/x3d/specifications/.

WORLD WIDE WEB CONSORTIUM, 2012. Web Workers – Editor’s
Draft. http://dev.w3.org/html5/workers/, March.

http://www.khronos.org/registry/typedarray/specs/latest/
http://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
http://jquery.com/
http://remysharp.com/2010/10/08/what-is-a-polyfill/
http://remysharp.com/2010/10/08/what-is-a-polyfill/
http://www.w3.org/community/declarative3d/
http://www.w3.org/community/declarative3d/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.web3d.org/x3d/specifications/
http://www.web3d.org/x3d/specifications/

