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Abstract

Numerical simulations of the complex Ginzburg-Landau equation in one spatial

dimension on periodic domains with sufficiently large spatial period reveal per-

sistent chaotic dynamics in large parts of parameter space that extend into the

Benjamin-Feir stable regime. This situation changes when nonperiodic bound-

ary conditions are imposed, and in the Benjamin-Feir stable regime chaos takes

the form of a long-lived transient decaying to a spatially uniform oscillatory

state. The lifetime of the transient has Poisson statistics and no domain length

is found sufficient for persistent chaos.
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1. Introduction

Many large-aspect-ratio pattern-forming systems exhibit spatio-temporal chaos.

Properties of this state have been investigated both experimentally and numer-

ically over a number of years. A prototypical example is provided by Rayleigh-

Bénard convection [2, 8]. In domains of sufficiently large aspect ratio this system

exhibits apparently persistent spatio-temporally disordered states. Of particu-

lar interest in the present work is spiral defect chaos [14] which coexists, in

appropriate Rayleigh and Prandtl number regimes, with stable straight rolls
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[4]. This state, first discovered experimentally [14], has been reproduced not

only in numerical simulations of model equations such as the Swift-Hohenberg

equation coupled to a large scale flow [21] and other order parameter equa-

tions [7, 12] but also in simulations of the full Boussinesq equations describing

Rayleigh-Bénard convection [16]. However, neither experiment nor numerical

simulation of partial differential equations in large two-dimensional domains [15]

can unambiguously confirm that states of this type are indeed attractors of the

system rather than long-lived super-transients that may eventually decay to the

competing roll state [8]. At present questions of this type can only be answered

in simpler, one-dimensional systems, and even here with the greatest difficulty.

It is hoped that studies of these simpler systems may shed light both on the

nature of the transition to persistent spatio-temporal chaos and on its properties

in more realistic systems.

The importance of this issue is highlighted by recent experimental studies

of turbulent Taylor-Couette flow [3] and turbulent pipe flow [11] both of which

suggest that the turbulent state characteristic of these systems may in fact be

a long-lived transient. In contrast to Rayleigh-Bénard convection both these

systems are quasi-one-dimensional, with only one extended dimension. The

fundamental question of interest is whether there is a critical Reynolds number,

or equivalently domain length, beyond which spatio-temporal chaos becomes

persistent, i.e., beyond which spatio-temporal chaos becomes an attractor of

the system. In other systems of this type, such as reaction-diffusion systems

[19, 20], detailed simulations have revealed that observed spatio-temporal chaos

in one spatial dimension has a lifetime that increases exponentially with domain

length but apparently remains finite for all domain lengths. In these systems

spatio-temporal chaos appears therefore to be a super-transient and is never

an attractor. The recent papers on turbulent shear flows [3, 11] suggest that

a similar conclusion may apply to these more complex flows as well. In all

these systems the trajectory in the system phase space eventually finds its way

close to the stable manifold for the competing homogeneous (laminar) state and

spatio-temporal chaos ceases abruptly. For a recent review of chaotic transients
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in other systems, see [18].

In the present paper we investigate the persistence of spatio-temporal chaos

in another system in one spatial dimension, the complex Ginzburg-Landau equa-

tion. This equation, hereafter CGLE, is a prototype equation describing the

evolution of an oscillatory instability in spatially extended driven dissipative

systems [1, 9] that exhibits spatio-temporal chaos whose properties have been

extensively studied over a number of years [5, 6]. The equation includes the

effects of diffusion and dispersion as well as nonlinear saturation and frequency

adjustment, and in one spatial dimension takes the form

At = µA + (1 + iλ) Axx − (1 − ia) |A|2A. (1)

On the real line, or with Neumann boundary conditions (hereafter, NBC) Ax (0) =

Ax (L) = 0, this equation admits the Stokes (or flat) solution

A (x, t) = A0e
iΩt, (2)

where |A0|2 = µ and Ω = µa. This solution is linearly stable for all µ in the

parameter region aλ < 1. In the following we call this region the Benjamin-Feir

(hereafter, BF) stable region and the boundary aλ = 1 the BF boundary, and

focus on the dynamical behavior in this region. For other types of boundary

conditions this flat state is absent.

As discussed in [1, 9] in parts of the BF stable region chaotic dynamics in the

form of either defect chaos or phase turbulence [5, 6] coexist with the stable flat

state provided the equation is solved on large domains with periodic boundary

conditions (PBC). We show in this paper that this is not the case when the

PBC are replaced by NBC. This should not come as a complete surprise: PBC

permit the propagation of waves and hence connect the behavior at the two ends

of the periodic box, but this is not the case for NBC. The latter pin the pattern

at the boundary and in so doing not only disconnect the behavior at the two

boundaries but also introduce additional dissipation generated from any small

scales required to satisfy the boundary conditions.

In the following we scale (1) to set µ = 1; the system is then fully charac-
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terized by the parameters (a, λ) together with the domain size L. We examine

the dependence of the evolution of the system in the BF stable regime on the

domain length L in the presence of Neumann boundary conditions.

2. Numerical Results

Figure 1 shows typical space-time plots obtained by time-integration of

Eq. (1) with NBC in a domain with L = 60 from an initial state of small

amplitude random noise. The figure shows that with NBC the chaotic state

eventually decays to the flat state given by Eq. (2). Thus in contrast to the

PBC case chaotic behavior is now transient. To determine when the transition

to nonchaotic behavior occurs we introduce the complex amplitudes An(t) such

that

A (x, t) =

N
∑

0

An (t) cos
nπx

L
(3)

and define the end of the chaotic transient using the energy condition

1

100
|A0|2 >

N
∑

n=1

|An|2. (4)

The time T when this condition is satisfied for the first time provides a measure

of the length of the transient behavior. We find empirically that once this

condition is satisfied the solution eventually approaches the flat state. This is

not necessarily the case for higher thresholds. For example, a 10% threshold

does not guarantee that the system does not return to a chaotic state as time

integration proceeds. Figure 2 shows the evolution of the mode energies (for the

realization shown in Fig. 1) as well as the solution at t = T . Figures 2(b) and

2(c) indicate that the solution at this time is not flat and that some residual

spatial structure still remains, although with further integration this state does

relax to the flat state and does so on a O(L2) diffusion time scale. This phase of

the evolution is dominated by the slowest decaying mode cosπx/L, and we do

not wish to include this phase of the evolution in our measure of the transient

time T .
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Figure 1: Space-time plots for Eq. (1) with NBC in the BF stable regime a = 1.9, λ = 0.45 on

a domain of length L = 60. The upper panel shows Re(A) while the lower panel shows |A|.

The transient time T , as defined by the condition (4), is T = 1198; this time overestimates

the duration of visible chaos. Computations use 512 gridpoints.
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Figure 2: (a) The time-dependence of the energy stored in each of the first five modes (n =

0, 1, 2, 3, 4 from top to bottom, at large times) for the evolution shown in Fig. 1. The time T at

which the criterion (4) is satisfied for the first time is indicated by the solid line (T = 1198).

(b) The profiles of ReA (x, T ) (solid line) and ImA (x, T ) (dashed line). (c) The profile of

|A (x, T ) |.
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Figure 3: Probability density function for the transient time T in a domain of size L = 100

with a = 1.9, λ = 0.45. The mean transient time T̄ is shown with a vertical line. Data

have been collected from 1000 independent simulations and the results then binned with a bin

width of T̄ /10 to generate the distribution function.
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Figure 4: Probability that defect chaos persists beyond time t for a range of domain lengths

L. For each L at least 100 realizations have been computed and these results are shown by

the symbols. Straight lines show a least squares fit to Eq. (5). On appropriate time scales

exponential scaling is present at L = 50 as well. The deviations present for L = 120 are not

statistically significant.

In Fig. 3 we show the distribution of transient times T in the case L = 100,

a = 1.9 and λ = 0.45. The average transient time T̄ is marked with a vertical

line. The distribution is broad with a wide tail extending to large transient

times. Defining P (t, L) to be the probability that a defect chaos state exists

for a time longer than t in a domain of length L we can display this data in a

different way, as shown in Fig. 4. The data for each L now fall on a straight

line indicating that the distribution has a Poisson tail. Further, if we assume

P (t, L) = exp

(

− t − t0
τ (L)

)

(5)

we can compute the time t0 of the initial growth phase and also τ(L), the

characteristic decay time of the defect chaos state. This fit is indicated by the

straight lines in Fig. 4 for a range of domain sizes. As shown in Fig. 5 the
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Figure 5: The characteristic decay time τ(L) for a range of domain lengths L when a = 1.9

and λ = 0.45. The least squares fit indicates that τ(L) = exp(AL + B), where A = 0.066 and

B = 3.036.

characteristic decay times τ(L) have an exponential dependence on the domain

length L. The length of the initial growth phase, t0, depends on the realization

of the small amplitude noise used to initialize the computations. Our results

show a general trend with t0 increasing with the domain size.

To test the exponential dependence of τ(L) further a second set of numerical

experiments was conducted at many domain lengths, but with only 20 experi-

ments at each L. Once again, the initial condition for each simulation is small

amplitude random noise. Figure 6 shows the average transient time T̄ (L) for

these realizations as well as the computed characteristic decay time τ(L) de-

termined from the fit in Fig. 5. The fit is very good, except at the smallest

domain lengths. In these cases the small domain restricts the formation of a

defect chaos state and we should not expect the fit to hold.
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Figure 6: Average transient time T̄ (L) (with error bars of one standard deviation) for a range

of domain lengths L when a = 1.9 and λ = 0.45. Also included is the characteristic decay

time τ(L) from Eq. (5) using the fit given in Fig. 5.
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3. Defect formation

When the CGLE displays defect chaos on infinite or large periodic domains

simulations show that defects are created uniformly in space, owing to transla-

tion invariance. As a result we can average in time to compute the rate per unit

length at which defects are created. However, on a finite domain with NBC de-

fects are no longer created uniformly in space and moreover the defect creation

process is transient since for long times the solution becomes flat. Nevertheless,

near the BF boundary defect chaos is observed for a significant length of time

before vanishing abruptly, and a reliable defect creation rate can be computed

to characterize this part of the evolution.

Whenever |A(x, t)| falls below the threshold value 0.001 at a gridpoint we

declare that a defect has formed. This criterion is reasonable since away from

defects |A| remains bounded well away from zero [5]. With PBC the production

rate appears to be constant and independent of the imposed period provided

this is not small. For example, when a = 1.9, λ = 0.45 the production rate is

2.27×10−5 defects per time unit per unit length. Further, we find that |A| only

remains below the threshold value for a short length of time, typically 0.01 time

units.

In Fig. 7 we show the rate at which defects form as a function of position in

numerical simulations with NBC in a domain of length L = 200. The calculation

has been run for approximately 67τd, where τd ≡ L2/2
√

1 + λ2 is the horizontal

diffusion time; such long times are required to obtain reliable statistics. The data

show that the defect production rate falls to zero at each boundary, suggesting

a fit to the function

f (x) = b1 tanh (x/b2) tanh ((L − x) /b2) . (6)

In the case of Fig. 7 the fit yields the values b1 = 2.257 × 10−5, b2 = 2.31. We

interpret b2 as the width of each boundary layer and b1 as the production rate in

the central part of the domain. Table 1 shows the boundary layer calculations

for a series of runs in different domain lengths. From these results it is clear
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Figure 7: Defect production rate as a function of location in a domain of length L = 200 with

NBC, when a = 1.9 and λ = 0.45. Defects have been binned into 64 spatial bins, of equal

width, and the rate of defect production in each bin is plotted. The solid line shows the fit to

the envelope function in Eq. (6).
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L b1 (×10−5) b2 Time/τd

200† 2.257 2.31 ± 0.46 67

300 2.249 2.65 ± 0.43 48

400 2.287 2.65 ± 0.20 165

Table 1: Fitting parameters b1 and b2 in Eq. (6) for long simulations in domains with NBC

and a = 1.9, λ = 0.45. The † marks a run resulting in a flat state.

that the boundary layer thickness is independent of the domain length and that

the defect production rate away from the boundaries is essentially the same as

when PBC are used.

4. Non-chaotic regime

Thus far we have focused on situations for which simulations of Eq. (1) with

PBC and a large enough spatial period result in persistent chaotic dynamics

[6]. Outside this regime solutions approach a nonchaotic state that may be

flat or take the form of a long wavelength traveling wave [5], depending on

the realization of the small amplitude noise used to initialize the computation.

When NBC are imposed in this regime the final state is flat, but in contrast to

the behavior examined above the typical transient time now grows algebraically

with L: τ = τ0L
α. Figure 8 shows that for a = 1.0, λ = 0.45 the fitting

parameters are τ0 = 0.145, α = 2.045. This is almost exactly the L2 behavior

we would expect from a diffusion-like process. Thus in this regime chaotic

dynamics do not take hold and we observe the decay of the random initial

condition by diffusion. The same diffusive behavior is observed in the presence

of PBC as well.

5. Discussion and Conclusions

The CGLE on large spatially periodic domains exhibits phase turbulence

and defect chaos in certain regions of parameter space. These regions cross

the BF instability boundary indicating the presence of a parameter regime in
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Figure 8: Average transient time τ as a function of the domain length L when a = 1.0 and

λ = 0.45. For each domain length 50 runs with NBC have been computed. The mean is

shown together with ±σ error bars. The best fit τ = 0.145L2.045 (solid line) is also included.
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which these chaotic states coexist with a stable spatially uniform oscillation, the

Stokes solution.

In this paper we have seen that this picture of the parameter plane is drasti-

cally modified when the boundary conditions are changed to Neumann boundary

conditions, a possibility explicitly excluded from consideration in [1]. We have

seen that the presence of NBC renders the chaotic state metastable, with the

Stokes solution playing the role of the “ground state”. All our simulations even-

tually reach this ground state and we have measured the length of the transients

required to reach this state as a function of the domain length L. Our computa-

tions suggest that this time diverges exponentially with increasing L. We have

found no evidence for the existence of a critical length Lc such that defect chaos

persists for all time once L > Lc. Thus in the BF stable regime finite domain

effects always influence the long-time behavior of this system. This is consistent

with work on the Kuramoto-Sivashinsky equation where the turbulent lifetime

has also been found to grow exponentially with the system size [17]. Similar

behavior has been observed in numerical lattice models of turbulence [10], ex-

periments on turbulence in pipe flow [13] and more recently in Taylor-Couette

flow [3]. In all cases turbulence appears to be a long-lived transient with life-

time that increases rapidly with the control parameter (Reynolds number in

this case). In pipe flow the typical decay time τ is observed to be exponential

in the Reynolds number, while super-exponential growth of the decay time is

found in Taylor-Couette flow and lattice models of turbulence.
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