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Abstract
We present a method for reconstructing surfaces from point sets. The main novelty lies in a structure-preserving
approach where the input point set is first consolidated by structuring and resampling the planar components,
before reconstructing the surface from both the consolidated components and the unstructured points. The final
surface is obtained through solving a graph-cut problem formulated on the 3D Delaunay triangulation of the
structured point set where the tetrahedra are labeled as inside or outside cells. Structuring facilitates the surface
reconstruction as the point set is substantially reduced and the points are enriched with structural meaning related
to adjacency between primitives. Our approach departs from the common dichotomy between smooth/piecewise-
smooth and primitive-based representations by gracefully combining canonical parts from detected primitives
and free-form parts of the inferred shape. Our experiments on a variety of inputs illustrate the potential of our
approach in terms of robustness, flexibility and efficiency.

1. Introduction

Reconstructing surfaces from defect-laden point sets is still
one of the major challenges in geometry processing, com-
puter vision and robotics. Driven by technological advances
on sensors, data are progressively evolving in terms of scale
and accuracy, ranging from defect-free point sets repre-
senting a single object, e.g., a statue, to large defect-laden
point sets describing complex environments such as urban
scenes [MWA∗12]. This evolution motivates new surface re-
construction methods incorporating more structural and se-
mantical considerations.

1.1. Previous work

Many different approaches have been proposed in the lit-
erature for reconstructing surfaces. In our context we di-
vide these approaches into two main categories: smooth and
primitive-based.

Smooth and piecewise-smooth reconstructions.
Smooth approaches recover C1-surfaces using either im-
plicit or explicit representations. Implicit methods indirectly
describe surfaces using level-sets [KBH06, HK06, LB07].
They commonly rely on two key elements: (i) a 3D
function computed from the input points allowing to both
approximate and smooth the surface, as signed distances
or radial basis functions, and (ii) a solver for extracting the
surface, e.g., linear least squares or graph-cuts. Implicit

Figure 1: Empire State Building. Our method structures
defect-laden point sets from a configuration of planar prim-
itives (bottom close-ups) while preserving the details every-
where else (top close-ups). The resulting model is a hybrid
surface combining structures, accuracy and low complexity.

methods are effective solutions but most of them require
specific additional attributes associated to point locations
such as oriented normals, lines of sight or measurement
confidences. Explicit methods reconstruct surfaces using
mesh-based structures such as Delaunay triangulations.
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Relying on the idea that points close to the surface are also
close in space, these methods provide convincing results
when the sampling is dense enough and hampered with only
little amount of noise [ABK98, LPK09]. Several methods
have been proposed to preserve sharp features by either
preliminarily detecting smooth regions [FCOS05] and sharp
crease [SYM10] or inserting local shape priors into the
reconstruction process [GSH∗07].

Primitives-based reconstructions. Methods based on
detected primitives have become popular in recent years. Ef-
ficient algorithms are now available for detecting geomet-
ric primitives [SWK07] and for readjusting them according
to global relationships such as as coplanarity, coaxiality or
parallelism [LWC∗11]. Primitive-based methods are a rele-
vant alternative to smooth reconstructions when the inferred
surfaces contain many canonical parts such as planar com-
ponents, and for large data sets as dealing with primitives
may improve computational efficiency. Planar primitives are
most commonly used. Chen et al. [CC08] and Chauve et
al. [CLP10] use an arrangement of planes for approximating
surfaces, which provides a rich solution space but only when
all planes are perfectly detected. Missing planes may be
completed by ghost components [CLP10], but this comes at
the price of a lower surface accuracy. Vanegas et al. [VAB12]
propose a method for reconstructing urban structures from
laser range scans under the restrictive Manhattan-World as-
sumption. Lafarge and Mallet [LM12] reconstruct buildings
from Lidar scans by arranging planar and quadric surfaces,
albeit this method is limited to 2.5D reconstructions. Schn-
abel et al. [SDK09] reconstruct surfaces while filling holes
from incomplete point sets through graph-cut based primi-
tive extension by assuming that each hole can be entirely de-
scribed by primitive arrangments. Note also that some meth-
ods recover structures from surfaces [CSAD04] and Multi-
View Stereo (MVS) images [LKBV13]. The latter methods
however require to preliminarily extract an accurate mesh
from the input point set.

1.2. Motivations

Primitive-based methods are particularly attractive when
dealing with large scans containing canonical parts, but in
general they remain less robust than smooth solutions. The
first concern lies into the restrictive representation, as a com-
plex scene can rarely be entirely described by a set of canon-
ical primitives. The second concern lies into the reliability of
the primitive detection step: an ideal primitive and primitive
adjacency extraction with no under- nor over-detected parts
cannot be guaranteed.
A common solution consists of inserting prior knowl-
edge into the reconstruction procedure. Examples of such
knowledge are a Manhattan-world assumption [VAB12]
or the presence of symmetries [MPWC12]. These assump-
tion models may greatly improve the reconstructions for
specific types of scenes, but usually render the recon-

struction algorithm more complex and parameter-dependent.
Another solution is to interactively complete or correct
primitive-based methods, such as a user-assisted snapping
approach [ASF∗12].
The proposed solution consists of not reconstructing the
entire scene with primitives, but instead relying on robust
smooth reconstruction for the non-canonical parts of the
scene. We provide a flexible hybrid framework able to re-
construct altogether canonical parts by primitives and non-
canonical part by free-form surfaces. Only planar primitives
are considered. This choice is motivated by our application,
i.e. the reconstruction of urban structures where non-planar
primitives are relatively marginal compared to reverse en-
gineering applications [AP10]. Our experiments show that
this approach robustly generates faithful surfaces in spite
of the limitations of primitive-based representations and of
the defect-laden configurations of detected primitives. Such
a hybrid framework suggests that it is possible to cumu-
late some advantages of both worlds (primitive and smooth),
which are robustness, scalability and compaction.

Figure 2: Church model reconstructed by different methods.
Note that the variational shape approximation (VSA) method
(middle left) has been applied from the smooth model (left).
The primitive-based model (right) recovers and completes
the building structure but requires 15 minutes of snapping-
based user interaction.

1.3. Contributions

Our surface reconstruction algorithm provides the following
contributions:

• Structured point set: The input point set is not used di-
rectly for reconstructing the inferred surface. Similarly in
spirit to the concept of data consolidation [ZSW∗10] for
rectifying point sets with missing regions, the input point
set is first analyzed by detecting planar primitives. From
these primitives we extract a structure deriving from their
adjacency relationships, and re-sample the primitives such
that the structural elements, including sharp features, are
preserved under a Delaunay triangulation.

• Efficient min-cut formulation. We propose a new efficient
min-cut formulation which combines structure, geome-
try, and visibility considerations in order to guarantee
intersection-free, 2-manifold surfaces as outputs.

• Hybrid surface. The final reconstructed surface combines
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both structured canonical parts idealizing the planar el-
ements, and free-form parts representing either the non-
planar elements of the inferred scene or the undetected yet
canonical parts of the scene. Even in presence of under-
detection the reconstruction is handled gracefully as no
parts are missing. On under-detected areas the final re-
construction is simply less structured and non-idealized.

Our algorithm requires as input a raw point set and a set
of planar primitives preliminarily detected from this point
set. The primitive extraction is performed by common proce-
dures such as RANSAC [SWK07], region growing [LM12]
or Gaussian sphere projection [CC08]. Primitives are de-
tected under tolerance ε, which means that there are no out-
liers within ε distance to the primitives.
As depicted by Fig.1, we adopt a two step strategy. First,
the input point set is structured from the extracted primitives
(Section 2). Second, the surface is reconstructed from the
structured point set using a min-cut formulation over a 3D
Delaunay partitioning of the space (Section 3).

2. Structuring

Given a configuration of planar primitives extracted under a
tolerance ε, the structuring process turns the input point set
into another point set in which each point is associated to
one of the four structural types, i.e., planar, crease, corner
and clutter, as depicted by Fig. 3. A point labeled as planar
(resp. crease and corner) is associated to one (resp. two and
three or more) planar primitives. The structuring process acts
on three key points:

• Meaning insertion: Each point is enriched with structural
information related to its associated extracted primitives
(zero, one or more) and their adjacencies. This informa-
tion is used in subsequent reconstruction processes.
• Structure preservation under space partitioning: Points

are sampled so that the structures induced from the ex-
tracted primitives are preserved when subdividing the
space with a partitioning scheme, here a Delaunay 3D-
triangulation.
• Simplification: The point set is re-sampled on canonical

parts using the primitives, without losing the details on the
free-form parts which are kept untouched.

Plane anchors. The first step of the structuring process
consists in replacing the points fitted to the primitives by an
ideal layout of points, both light and preserving the prim-
itive surfaces in the Delaunay triangulation. To do so, an
occupancy binary 2D-grid projected in the planar primitive
is created. The width (side length) of a unitary square sur-
face element of the grid is denoted by Lp. A surface element
of the grid is marked occupied if at least one fitted point
orthogonally projects within its domain or, subsequently, if
it is surrounded by only occupied elements. The centers of
all occupied elements form the new layout of points whose
structural type is planar.

Figure 3: Structuring principle. Plane anchors (blue),
creases (red) and corners (yellow) are positioned in the new
point set to describe the main structures of the building. The
other components such as windows or doors are defined as
clutter points (grey).

In order for the detected planes to appear in the final model,
the width Lp must be chosen so that the subsequent Delau-
nay triangulation will link the planar points with triangles.
This linking condition is guaranteed when the equatorial cir-
cumsphere of these triangles is empty in spite of the presence
of outliers. As illustrated by Fig. 4, this condition is matched
when Lp <

√
2 ε. In other words, the lower the tolerance ε,

the denser the layout of planar points. Note that weighted
Delaunay triangulation [CDR07] could be considered for ob-
taining a sparser layout of points. However it would require
a complex analysis of the outlier positions to guarantee the
existence of the facets supporting the primitive.

Figure 4: Plane anchor sampling. Inliers to the planar prim-
itive (blue dots) are removed from the point set and new
points are created on the plane so that the induced facets ex-
ist in the Delaunay triangulation. The distance Lp between
two successive added points is determined in function of the
tolerance ε so that the equatorial circumsphere of an in-
duced facet stays inside the ε-domain of the primitive. The
right layout represents the critical case where the condition
is not valid anymore.

Creases. Creases are created between adjacent primitives
in order to consolidate their connection. The adjacency re-
lationship between two primitives is defined using the K-
nearest neighbor (KNN) graph of the input points. Two prim-
itives are said adjacent if at least two points fitted each to
one of the two primitives are mutual neighbors in the KNN
graph. Crease points are sampled uniformly along the inter-
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section line of each pair of adjacent primitives. First, an oc-
cupancy 1D-grid supporting the intersection line is created,
the length of an element being denoted by Lc. A crease is
then generated at the center of a 1D-grid element if the ball
of radius Lc contains at least one inlier point of each incident
primitive.
Crease points and corresponding planar points will be linked
in triangles by the subsequent Delaunay triangulation if their
circumspheres stay in the ε-domain of the two primitives
(pink area on Fig. 5). By denoting θ, the angle between the
two adjacent primitives, and hc the distance between the in-
tersection line and the first row of planar anchors, this link-
ing condition requires placing the crease points so that{

Lc = 2ε

hc = ε× cos θ

2
(1)

Note that when the angle between the two primitives is close
to 180◦, the placement of the first row of anchor points be-
comes unstable. Although coplanar primitives are rarely ad-
jacent in practice, we prevent this problem by disconnecting
from the adjacency graph adjacent primitives with an angle
close to 180◦ (> 170◦ in all examples shown).

Figure 5: Crease sampling. Crease points are sampled
along the intersection line of two adjacent planar primitives,
separated by the distance Lc and positioned at the distance
hc from the planar anchor points. The existence of the crease
facets (yellow triangles) in the Delaunay triangulation is
guaranteed when their circumspheres (red spheres) stay in
the ε-domain of the two primitives (right). This leads to con-
dition the choice of Lc and hc according to ε and θ.

Corners. Points are also positioned at the structure
corners. The 3−cycles are first detected from the primitive
adjacency graph. The potential n−cycles with n ≥ 3 are
then extracted from the detected 3−cycles. For n = 3, the
corner location is computed as the intersection of the three
planar primitives. For n > 3, it is computed as the barycenter
of the points contained in its associated 3-cycles.

Clutter. The input points which have not been detected
as belonging to planar primitives are inserted into the struc-
tured point set with the label clutter. Optionally, the small
isolated components of clutter points may be removed us-
ing a clustering procedure based on the Euclidean distance

to neighbors. We use this option to remove outliers and non-
significant components from the structured point set.
The point set structuring is controlled by the tolerance pa-
rameter ε. As illustrated by Fig.6, increasing ε progressively
structures the point set while reducing the amount of clutter
points. When the point sets are ideally and fully structured
(e.g., second and fourth examples in Fig. 6), the surface can
be straightforwardly extracted by a polygonalization proce-
dure. However, such cases rarely occur from real-world data
as free-form elements and under/over-detections of primi-
tives and adjacencies are common. A robust procedure is re-
quired for extracting the surfaces from structured point sets.

Figure 6: Smooth cube structured with different ε-values.
Increasing ε progressively structures the input point set (top
left) while maintaining a coherent reconstructed surface. In
the third example, both primitives and adjacencies have been
randomly corrupted (5 primitives and 6 adjacencies are re-
moved, and 3 wrong adjacencies depicted as blue segments
are added). While under- and over-detection of primitives
and adjacencies reduce the quality of the structuring, by ei-
ther omitting or overly creating creases and corners, this
does not fully hamper the reconstruction thanks to the free-
form components.

3. Surface extraction

The surface extraction step relies on the structured point set.
The general framework builds on the creation of a space par-
tition from which each volume element is labeled either in-
side or outside the inferred surface.

3.1. Labeling Delaunay tetrahedra

The space subdivision is obtained by constructing a 3D De-
launay triangulation from the structured point set. This par-
titioning procedure provides us with several relevant prop-
erties. Constructed from the structured point set, the trian-
gulation preserves the structures both in terms of geometry
(tetrahedra do not intersect the surfaces induced from the
primitives) and in terms of meaning (each vertex of the 3D-
triangulation inherits from a structural type assigned during
structuring). As illustrated by Fig. 7, the partitioning also has
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the advantage of being light as in general the structured point
set comprises fewer points than the input point set.
In order to extract the surface from the 3D Delaunay tri-
angulation, a min-cut formulation is used to find the in-
side/outside labeling of the tetrahedra and to deduce the sur-
face as the interface between inside and outside. This graph-
cut method has been commonly used in surface reconstruc-
tion either from regular space partitions [HK06, LB07] or
from data-driven partitions [LPK09]. This method guaran-
tees a hole-free† and intersection-free surface, as well as low
computation times.

Figure 7: Delaunay-based space partition. The Delaunay
triangulation from the structured point set (right) provides
a lighter space partition than from the input point set (left).
Note that, in practice, the 8 bounding box points are also
inserted in the partition.

Let us consider a graph (C,F). C = {c1, ...,cn} is the set
the cells (or tetrahedra) induced by the 3D Delaunay tri-
angulation, corresponding to the nodes of the graph. F =
{ f1, ..., fm} is the set of triangular facets existing between
two cells of the Delaunay triangulation, representing the
edges of the graph. A cut in the graph (C,F) consists in
separating the set of cells C in two disjoint sets Cin and Cout
such that C = Cin +Cout and Cin∩Cout = ∅. The set of edges
between Cin and Cout corresponds to a set of triangular facets
forming a surface S ⊂ F .
In order to measure the quality of the surface S induced by
the cut (Cin,Cout), we introduce a cost function C of the form

C(S) = ∑
fi∈S

a( fi) Q( fi)+ ∑
ck∈Cin

Pout(ck)+ ∑
ck∈Cout

Pin(ck)

(2)

† The obtained surface is either boundary-free, or is composed of
surface components with a single boundary which coincides with
the graph boundary

where Q( fi) is a non-negative quality function of the facet
fi weighted by its area a( fi). The product a( fi) Q( fi) rep-
resents the weight put on the edge fi in the graph. Pin and
Pout are prediction functions penalizing unexpected cell la-
bels according to visibility considerations. They allow the
insertion of weights between the nodes of C and two artifi-
cial nodes called the source and the sink so that the optimal
surface is not reduced to the trivial empty solution. These
functions act as a data term in the conventional energy for-
mulations. The optimal cut minimizing the cost C(S) is ob-
tained using the max-flow algorithm [BK04].

3.2. Visibility prediction

One of the key components of the min-cut formulation con-
sists in efficiently weighting the edges between the nodes
of the graph and both the source and the sink. To avoid the
shrinking bias, the existing solutions usually rely on insert-
ing a balloon force [LB07] or restricting the configuration
space [HK06]. Visibility information are also used [LPK09]
where each input point is associated to a line of sight and
a visibility confidence coefficient. Both domain restrictions
and a force attracting the surface to be close to points with
a high visibility confidence are then imposed. This solution
is however particularly time-consuming, and the attraction
force tends to create spurious bumps on surfaces, especially
in the presence of noise.
We propose a visibility-based approach consisting in detect-
ing patches by shooting rays. This solution is both fast and
robust to noise and outliers.

Patch detection. Visibility patches are first detected from
the input point set. Rays are shot from a user-selected set of
sides of the bounding box, which, in practice, corresponds
to the scanning directions. The ray directions are chosen as
being orthogonal to the selected sides of the box. The spatial
density of the points is analyzed in the cylindrical domain
of radius Rv along the ray. The user-specified parameter Rv
must be large enough to prevent the ray from penetrating
inside holes due to missing data. We set as default value
Rv = 2d̂ where d̂ denotes the average distance between the
4-nearest neighbors computed from the input point set. This
assumes a uniform sampling of the input point set. The first
significant peak of the spatial density is detected when the
point density becomes greater than 0.5πR2

v d̂−2, i.e., when
the density exceeds half the average density estimated in the
input point set. A visibility patch is created at the peak loca-
tion under two conditions: (i) the point distribution is locally
planar on this patch, as performed by [KTB07], and (ii) the
angle between the ray and the local plane is not too large (in
practice, we limit this angle to 45◦).

Label prediction. The visibility patches and their asso-
ciated rays are then embedded into the 3D Delaunay trian-
gulation. Each Delaunay tetrahedron crossed by one of the
visibility rays is potentially predicted as inside or outside ac-
cording to its position with respect to the visibility patch, as
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illustrated by Fig. 8. An uncertainty margin Mv is computed
so that the cells located close to the visibility patch are not
predicted. The cells located before Mv are predicted as out-
side, whereas the cells located after Mv in a depth tolerance
dv are predicted as inside. In our experiments, Mv and dv are
fixed such that Mv = 2dv = max(Rv,2ε).

Figure 8: Visibility prediction. Rays are shot from the input
point set (top). A visibility patch is detected at the first high
point density (middle) detected along the ray (under two ad-
ditional conditions mentioned in the text). By embedding the
visibility patches and their rays in the triangulation, a label
prediction is assigned to the cells crossed by the rays accord-
ing to their position with respect to the patch, an uncertainty
margin Mv, and a depth tolerance dv (bottom). Cells c1 to
c5 (respectively c9 and c10) are predicted as outside (resp.
inside). The other cells have no prediction.

By denoting Pout (resp. Pin) the set of cells predicted as
outside (resp. inside) over all detected visibility patches, the
prediction functions can be formulated as{

Pout(ck) = β ·1{ck∈Pout}
Pin(ck) = β ·1{ck∈Pin}

(3)

where 1. denotes the characteristic function, and β denotes
a positive value greater than 1. Note that we impose Pout ∩
Pin = ∅. In other words, if a cell is predicted as both outside
and inside by two different visibility patches, we reject the
cell from both Pout and Pin. This operation allows reducing
the prediction errors. As illustrated by Fig. 9, the visibility
patches are correctly detected, even in presence of a signifi-
cant amount of noise and outliers.

3.3. Surface quality

Function Q measures the quality of a facet by taking into ac-
count its structural meaning and its geometry. As each vertex
of a facet is characterized by a structural type, i.e., planar,
crease, corner or clutter, and is potentially associated to one
or more planar primitives, the plausibility of a facet can be
checked by combining the information of its three vertices.
Different groups of configurations can be distinguished:

Figure 9: Visibility patches are represented by bi-colored
disks (blue for outside, red for inside). The visibility patch
detection is more selective in the presence of defect laden
data. The number of cells predicted as IN remains high even
with a non-negligible amount of outliers and noise.

• Structurally-coherent facets, denoted by S-coherent
facets, have their three vertices in coherence with the
structural relations induced during the point set structur-
ing. As illustrated by Fig. 10, it corresponds to facets de-
scribing planar components, creases, and corners.

• Free-Form-coherent facets, denoted by FF-coherent
facets, are plausible in the scene as a portion of a free-
form shape. The type of their vertices is clutter, and po-
tentially planar when the facet is used to connect a free-
form part to a structure.

• Incoherent facets constitute all the remaining cases, i.e.,
all facets neither S-coherent nor FF-coherent. These
facets may break the structures, for example, by linking
two planar vertices associated to different primitives.

Function Q is then expressed as a penalization score of the
form:

Q( fi) =


0 if fi S-coherent
g( fi) if fi FF-coherent
γ if fi incoherent

(4)

where γ is a positive value greater than 1 so that incoher-
ent facets are highly penalized. g( fi) is a function measuring
the geometric quality of a free-form-coherent facet. It is de-
fined by using the β-skeleton criterion [ABE98]. The princi-
ple consists in favoring the facets incident to tetrahedra with
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Figure 10: Facet coherence. Starting from a noisy input
point set (a, depicted with its structured point set in the
closeup), we reconstruct two models: one with many inco-
herent facets (b), and one with all facets either FF-coherent
or S-coherent (c). i, j and k each corresponds to a primitive
index in the FF-coherent and S-coherent facet description.

large circumspheres. g( fi) is formulated as

g( fi) = α−min(cos(φin),cos(φout)) (5)

where φin (respectively φout ) is the angle between the plane
supporting fi and the tangent of the inside (respectively out-
side) circumsphere of the inside (respectively outside) at the
intersection with fi. α is a parameter belonging to [1,2] and
relating to the smoothness of the free-form shapes.
By scoring the S-coherent facets to zero, we assume that the
structural components extracted during the data structuring
are very plausible, and should be part of the surface. FF-
coherent facets cannot benefit from such a favor as most of
them are geometrically irrelevant.

3.4. Model parameters

The general cost function C defined in Eq. 2 includes three
parameters α, β, and γ. β and γ have similar roles by strongly
penalizing unexpected configurations, i.e., the cells not la-
beled in accordance to the visibility prediction for β, and
incoherent facets for γ. In our experiments β is set to 105

such that the visibility prediction becomes a hard constraint.
When choosing to be more flexible with the visibility predic-
tion by attributing a much lower value, we may correct some

potential prediction errors due to good local geometry of the
facets. However such choice may favor solutions which skip
small components of the objects. γ is also set to a high value
(103 in all experiments shown) so as to prevent shrinking the
surface around sharp creases. Conversely, α is a soft param-
eter set to 1 by default. It is used to trade smoothness (and
robustness in presence of noise) for faithfulness.

3.5. Surface simplification with structure preserving

The complexity of the obtained hybrid surface depends on
both the free-form/canonical area ratio and the tolerance pa-
rameter ε fixing the size of the Structurally-coherent facets.
However the surface can be easily simplified by exploiting
the semantic information of the vertices. An edge-collapse
procedure is then specified by attributing either an edge
length based cost to the edges connecting two identical pla-
nar or crease vertices, the created vertex being determined
by the edge mid-point, or an infinite cost value to the other
edges. As illustrated by Fig. 11, this procedure allows us to
reduce the complexity without any loss of accuracy as the
free-form components are preserved.

Figure 11: Surface simplification. Our edge collapse proce-
dure exploits the structural type of vertices so that the sur-
face is simplified without loss of accuracy (see close-ups).

4. Experiments

The algorithm has been implemented in C++, using the
Computational Geometry Algorithms Library [CGA12]
which provides the basic geometric tools for the analysis of
point clouds and for 3D Delaunay triangulation. The planar
primitives are extracted using either a RANSAC implemen-
tation [SWK07] on defect-laden point sets, or an efficient
region growing procedure [LM12] on noise-free point sets.

Flexibility. The algorithm has been tested on a variety of
data ranging from simple objects (Distorted cube, Fig. 10)
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Figure 12: Statue of Liberty. The extracted primitives mainly
corresponds to planar components of the basement of the
statue and to some parts of the dress. Our algorithm struc-
tures these elements while accurately reconstructing the
free-form parts such as the face. The Hausdorff distance
to the input points is nearly zero at free-form locations,
and is lower than ε otherwise. The Hausdorff distance mea-
sured over the Poisson reconstructed surface [KBH06] (oc-
tree depth=10) is higher almost everywhere.

to large urban scenes (Fig. 16) through complex buildings
(Church and Empire State). Different types of acquisition
systems have been used to generate the input point sets, rang-
ing from terrestrial laser to MVS imagery through airborne
Lidar. The hybrid surface we produce brings flexibility and
allows the modeling of urban scenes in a general context.
As illustrated by Fig. 16, the details such as facade orna-
ments or roof superstructures (chimneys, dormer-windows..)
are captured whereas the principal structure of the scene is
recovered under the user-specified tolerance ε. Even if the al-
gorithm is devoted to reconstruct urban scenes and cultural
heritage buildings, it is also suited to reconstruct mechan-
ical parts, by hybrid surfaces combining canonical as well
as free-form parts. On models such as the blade comprising
semi-sharp creases, the reconstructed surface may contain
either truly sharp creases for high error tolerance or planar
parts connected by smooth free-form parts for low error tol-
erances (Fig. 15).

Robustness. The algorithm is designed to generate con-
sistent results even in case of defect-laden primitive de-
tection. Through the hybrid aspect, the reconstructed sur-
face remains coherent even in high under-detection situa-
tions where only a few primitives are detected. In pres-
ence of noise, the canonical parts are nicely preserved, al-
beit the free-form parts are hampered with noise. In partic-
ular, the main planar components, i.e. the walls, are struc-
tured on MVS2 and MVS3 models in Fig. 16 whereas the de-
tails above the tolerance ε, i.e. the ornaments, are recovered.

Figure 13: Fandisk. Even if our solution is dedicated to ur-
ban reconstruction, it is also suited to model mechanical ob-
jects, assuming the curve parts can be approximated by sets
of planes. The method provides noise and outlier robustness
through the robust primitive extraction strategy.

Note that these two models are very challenging in our con-
text as they are usually dedicated to reconstruction methods
exploiting photo-consistency information. Noise robustness
usually comes at the price of selecting a high ε value mak-
ing the model more simplified. The algorithm also performs
well in presence of outliers and heterogeneous point densi-
ties (see Fig. 14) without, however, being able to ignore a
huge amount of outliers (see Fig. 13, right case).

Figure 14: Maya temple. A defect-free (top) and a defect-
laden (bottom, outliers +10%, variable point density rang-
ing from a factor 1 to 50 from left to right) point sets are
generated from a mesh (bottom right). The obtained hybrid
surfaces are close to the original mesh in terms of accuracy
and structure. The Poisson surfaces are less accurate, espe-
cially from the defect-laden input, and have no structure. The
use of a shape recovery algorithm [CSAD04] from the Pois-
son surface provides a rough structured mesh while, how-
ever, amplifying the geometric error to Ground Truth.

Performances. Running times are provided in Fig. 16 and
15 on two models as a function of ε. Our algorithm takes an
order of 30 seconds to reconstruct a surface from one million
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points with a high ε-tolerance, after consuming few seconds
to extract the planar primitives. The surface extraction step is
often both more time and memory consuming than the struc-
turing step. The running times strongly depend on the struc-
turing level of the input point set. For instance, the Church
model in its highly structured version is obtained six times
faster than without structuring it, and requires five times less
memory. The performances from the airborne Lidar scan are
lower due to the disproportion between the low point density
(< 2pts/m2) and the large scene area (1km2), which makes
the structuring relatively inefficient.

Figure 15: Impact of ε. When ε is close to zero, few prim-
itives are detected; the obtained surfaces being similar to
smooth reconstructions. Increasing ε progressively struc-
tures the surface while preserving the details over an ε tol-
erance. The computation time decreases as the structured
point set becomes lighter. For smooth shapes, i.e. Blade, the
Hausdorff distance to the input point set increases relatively
proportionally to ε. In case of urban scenes, i.e. Church, the
distance evolves in function of the different urban scales, the
stagnation around ε = 1 occurring after that the minor ele-
ments as windows or doors have been digested in the major
components as walls or roof sections. The hybrid model at
ε = 0.2 is particularly interesting, competing well with exist-
ing approaches in terms of accuracy and running time (see
colored arrows).

Limitations. Our algorithm is not designed to reconstruct
non-manifold surfaces nor surfaces with complex occlusions
or invisible parts from the scanning directions. Our algo-
rithm is not suited to missing data (large holes in the input
point set) where the reconstruction problem is even more
ill-posed. The two main reasons are as follows. First, the
Delaunay-based space partitioning does not allow an optimal
or smooth interpolation of the surface on holes. Second, the

parameter Rv must be high to avoid that visibility rays pene-
trate inside holes. Increasing Rv however comes at a cost as
the set of predicted inside/ outside cells are then less consis-
tent, which in turn may skip some small parts of the surface.

5. Conclusion

We described an algorithm for reconstructing a surface from
a raw point set and a set of detected planar primitives
which may cover only a subset of the input points. Our ap-
proach first proceeds by extracting structuring relationships
between the primitives in order to identify sharp features and
adjacencies. It then consolidates the point set on planar areas
by re-sampling the detected primitives and sharp features,
and constructs a 3D Delaunay triangulation from both planar
and free-form areas. The final reconstructed surface is ob-
tained through a graph-cut method formulated on the graph
of the triangulation enriched with attributes derived from the
previous structuring step. In addition to being both feature-
preserving and efficient, the main strength of our approach
is its robustness to imperfect primitive detection: the recon-
structed surfaces gracefully range from perfectly canonical
for perfect primitive detection to purely free-form surfaces
in absence of primitive detection. Using a hybrid represen-
tations allow mixing canonical components and free-form
parts so as to improve the structure without loosing the fine
details on the free-form areas.

In its current form the user-specified error tolerance pro-
vides a way to vary the level of details, but we wish to re-
search on ways to construct a scale-space with smooth tran-
sitions between the scales. We also wish to extend this ap-
proach in order to deal with heterogeneous data such as tri-
angle soups and slices, in addition to point sets.
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