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Computational Intelligencevolume 17, Number 4, 2001

GRANULARITY IN RELATIONAL FORMALISMS — WITH
APPLICATION TO TIME AND SPACE REPRESENTATION

JEROMEEUZENAT
INRIA Rhone-Alpes, Montbonnot, France

Temporal and spatial phenomena can be seen at a more prdeisegranularity,depending on the
kind of perceivable details. As a consequence, the relationship between two objedifemdgpending
on the granularityconsidered When merging representations different granularity, this mayraise
problems. This paper presents general rules of granularity conversion in relation algebras. Granularity is
consideredndependently othe specific relation algebra, kbpvestigatingoperators for converting a
representation from one granularity to another and presenting six constraints that they must satisfy. The
constraintsare shown to bendependent andonsistentandgeneralresults about thexistence of such
operators are provided. The constraents used to generatiee uniquepairs of operators for converting
qualitative temporal relationshiggpward and downwardyom one granularity to another. Then two
fundamentalconstructors(product and weakening)are presentedhey permit the generation of new
gualitativesystems (e.gspace algebrdfom existing ones. Thegre shown to preservemost of the
properties of granularity conversion operators.

Key words:Granularity,space representatiotime representation, relatialgebra, intervahlgebra,
product, weakening.

1. INTRODUCTION

“Imagine that you are biking in a flat countryside. At some distance ahead of you
there is a truck parked. You are just able to say (a) that a truck (T) is parked beside a
house(H), it seemghat they touch each other. When yoame closer (byou are
able to distinguish a bumpdB) between them, and evencloser (c), you can
perceive the space between the bumper and the house.”

coarser

N
i B (2)
(b)
downward upward
(€)
B H

finer W

Figure 1. The same scene at three different granularities. It is taken as a spatial metaphor for geauiarity
used throughout the paper.

This example shows the description of Haenereality perceived at several levels
or granularities. It can beimilarly applied totime: imagine anagent gathering
calendar information on a network with a granularity of days. The agendatsiates
a particular person is in Grenobiiem Monday to Tuesday and in Bostdrom
Wednesday toFriday. If another agent, attached to a second person has the
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informationthat the two personwill meet on Tuesday, 6pm aris,how can the
apparently contradictorynformation be merged? Now the assistant of fingt

person has got more precise data: (s)he will be in Grenoble until Tuestidgnatin
the TGV train from 10am to 3pm, irParis from3pm to 7pmand in the plandrom

Paris to Boston from 11pm to 3am (local time) on Wednesday.

Another application concerns the generation of geographeps. When
considering a particuldield map, one can see that it generally contains several
maps:the precise one (the one you boughtynallermap ofthe samearea on the
cover which shows the main sites contained inrttagand an eversmallerone on
the back showing how the presem@p relates to the othemaps of the same
collection. Obviously theseapsare notmereprojections, at differenscales, of the
samehuge universamap. They are representations of tlsame reality,but the
representation process went througdhferent filters, which made somedetails
vanish, and through different formalisms, which transformed thepolygon
representing a particular town on tpeecisemapinto a point on the intermediate
one and then nothing on the coarsest one.

Different individuals, institutionsetc. use various granularities anupreover,
people communicate data expressed at different granularities. Hence it is
fundamental to guarantee the consistency of representations and processes
involving different granularities. As a matter falct, there could be @roblemif, in
the example of figure 1, someone at position (a) asked would you call what is
between H and T?” because at thgganularity, the description of the scemeuld
assume that there is nothing between H and T.

Temporal and spatial granularity is involved in the fusiokredwledge provided
by sources of different resolutioff®r instance, agents — human or computers —
communicatingabout thesamesituation). It can also be usddr structuring a
reasoning process by drawing inference at the righél of resolution (in the
example of figure 1from the standpoint of theobserver, the granularitya) is
informative enoughfor deciding that the truck driving wheel is on tleft of the
house). Granularity is applied in mampmains, likeplanning (Badaloni& 1994),
cadastral andligital representatior{Olivier& 1995; Papadias& 1995§eographical
information systems (Egenhofer&991; Grigni& 1995) program specification and
proof (Ciapessoni&993; Fiadeiro& 1994), databases  (Dyresong995,
Bettini& 1998b), and scene and storyunderstanding (Euzenat 1993,
Becher& 2000).

The study of granular knowledge representation tines to express how the
samephenomenon can be consistently expressed in diffenaniners at different
granularities. Being able to deal with granularity corresponds to being able to carry
out a set of operations:

e converting a representation from one granularity to another one (how could a

particular representation appear at a finer or coarser granularity?);

* testing the compatibility oftwo representationgis it possible thatthey

represent the same situation at different granularities?);

» |ocalizing the relative granularities oo representations (which of the two

given representations of a particular situation can be the coarser one?).

Granularity conversion can be achievéitrough operatorswhich, from a
situation expressed at a particular granularity, premiv it is perceivable at
another granularity.

Granularity is considered here in the context of relational formalismshen the
representation language is restricted to the representation of relatiohshipyy
betweenentities. Suchformalismsprovide only a qualitative representation of the
situation but theyare widespread athey cover relation algebrder dealing with
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time (Allen 1983; Vilain& 1986) and space (Gusgen 1989; Egenhofer& 1992;
Randell& 1992a). At the best of our knowledge, granularity in relation algebras has
never been studied in a systematic way before (Euzenat 1993; Euzenat 1995a). In
(Hobbs 1985), granularity is expresséetween logical theoriesand does not
depend on a structuring dimension lilk@e or space.The manyother contributions

that have dealt with time granularity have focussed on quantitative granalakhty

(see “Related work” below).

The present paper introduces a general framewink defining granularity
conversion operators in (extended) relation algebras and provides general results
about the existence of such operatoRurthermore, itproduces granularity
conversion operatordor the relation algebras cited above by applying this
framework. It also establishes specific resali®ut the uniqueness of operators for
particularformalismsand the distributivity of conversion over relation composition
(i.e. inference).

However, the results are restricted to homogeneous represen{agowken the
representation at each granularity is represented in the same language) and does not
account for vanishing objects. For instance, the bur(@eof figure 1, isnot visible
at (a) so ithas no relation with any other objects: we do not try to dewidat
happened to thdoumper but what happens to the relationshijggween the
remaining objects.

The paper is organized a®llows: A first section (82) provides the basic
definitions of theformalisms (extendedrelation algebra) thawill be used. Such
formalisms arevidely used inartificial intelligence(for instance, théllen’s interval
algebra is an extended relation algebra).

Then, the notion of granularity conversion operators in tiegsendedrelational
algebras is discussed (8Bjrst, the expected nature arfiokrm of such operators are
considered; then, a set of six constraints stated as relevant to graradasigrsion
is provided. These constraints are very important becausse acceptedthey
entails the other result$he firstgeneral resultabout existence andon-existence
of granularity conversion operators are then given: thezsmallalgebraswithout
trivial operators, and characterized situations, in which operators satisfying the
constraints can be designed.

The two following sectionsare devoted to the application of the general
constraints about granularity conversiontitoe and space relation algebras. The
application to time algebras (84) begins with the generation of the unique couple of
operators satisfying the core constraifisthe instant algebra. It then shows how
these results are directly transferred to the interval algebra with the help sikitne
constraint. As a result, the unique granularity conversion operators are provided for
two widely used formalisms. Additional results in this section concern the
relationship between conversion and compositioretz#tions which had nabeen
explored in the general framework.

The application to space representatifinmalisms(85) uses another method: it
provides constructors, Cartesian product and weakening, thatrar@aform one
algebra into anotheiTheseconstructorsare interestingpecause they can hesed
for generating space representation formalisms. The product constructor is shown to
preserveall the constraintsfor conversion operators (including the properties
relating conversion to composition). It is thus able to generate new algebras with
their granularity conversion operatorBhe weakening constructor only preserves
four out of six constraints, but it is shown that it can nevertheless generate valid
granularity conversion operators when weakening the interval algebra.

The results of 84have been published in (Euzenat 1995a) ifess general
context. The proofs of the propositions 4 to 10 (84) are provided expaustive

Granularity in qualitative space and time representation (9/12/01 23:31) 705
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check in (Euzenat 1994), those of propositions 11 to 13 ®)provided
axiomatically in(Euzenat 1994) and those of propositions 1, 21312, 13and 15
are given in appendix B.

2. RELATIONAL FORMALISMS

The model ofgranularity presented here applies to partictdemalismsthat will
be called extended relation algebras. They allow one to represent the sigia¢ion
in the introduction bymeans of suitable binary relationship®r instancethe fact
that the bumper touches the house in situafircan be expressed as the relation
“touch” between theentities B and H.These extended relation algebras are
introduced in the first part of the section. Each of them consists of a binary relation
algebra provided with a neighborhood relation. Such structures are heavily used for
representingime and space. In theemainder,exampleswill be provided in the
context of time representation.

2.1 Extended relation algebras

An algebra of binary relations (hereafter referred to as relation algé€laeski
1941) is a structure <A,[1*,1,0,1’,-> in which: <A[][11,0> is aBoolean algebra; * is
an associative internal composition law w(teft and right) unityelementl’, that
distributes ovef], = is an internal involutive unary operator, that distributes ayer
O and *. The extension considered here consists in adding a neighbatraotire
to such an algebra.

The present work is concerned with a particular type of relation algebvasich
A is the powerset of a generating §etlosed under - (hereaftd)y and JO are set

intersection/uniond{/C)). Such relation algebras are denoted by,~2,0,T.{},e,>.
If I is thought of as theet of possible binary relationmetween theentities of a
particulardomain,the use of sets of relations allows one to express the lack of
knowledge about the exact relationship between wmbties by expressing a
disjunction of possible relations. o is the compositietween theseelations and*
provides the converse relatiofheseoperations are applied to sets of relations by
distributing them on each element.

As an example, IF is reduced to three basic relations <, > and =, it is possible to
express that is before of equal tg by x{<=}y.

The concept ofrelation algebra isextended by considering aeighborhood
structure on the generating ¢Blokel 1988, Freksa 1992). AeighborhoodN is a
binary reflexive and symmetrical relation over thelsdt is usually represented as a
non-oriented graph between thelations. Two qualitative relationsetween two
entities are calledonceptual neighbori they can be transformed one irdaother
through a continuous deformation of the situatigiteksa 1992). Aconceptual
neighborhood is a set of relations whose elements constittbarected sub-graph
of the neighborhood graph (figure 2).
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DEFINITION (conceptual neighborrelationship): The conceptual neighbor
relationship is a binary relation on a sef” of relations such thanN(r,r') if and
only if the continuous transformatiod of a situation involving an entitx in
relationshipr with another entity can put them in relatiort without any transition
through other relations.

The notation NX(r) is usedfor denoting the set of's neighbors.The graph of
figure 2a represents the graph aafnceptual neighborhood\;' between instants
(the only one-dimensional continuous deformation is translation of one instant). The
graph of figure 2b represents the conceptgibhborhoodN;; for the deformation

corresponding to thehift of one endpoint of one of the two intervdls far as it
remains a valid interval, i.e. the beginning is strictly before the end). tytorerally,
the deformation corresponds to movindirait. Throughout thepaper, theonly

transformation considered, A, is the continuoosve of alimit (called A-

neighborhood in (Freksa 1992)). Theconsequences ofthis restriction are
acknowledged when important.

The general notion(i.e. not bound to garticular representation) a@onceptual
neighborhood has not bedormally defined sofar. It hasinitially been put forth
informally by providing a few examples afontinuous transformations thatake
sense.The generalization is howevejustified because the idea has befund
useful in variouscontexts (e.g. transitivity table compactiofFreksa, 1992) or
transitivity table computation (Randell& 1992bijr various representations of
space and time.

In the following, we shall focus on extended relation algebras. They are made of a
relation algebra generated by a Egbrovided with a neighborhoockelation. Two
examples of suclextendedrelation algebras usefdr representingime are given
below.

1.2 Instant (point) algebra

An instant is a durationless temporal enfiyso calledtime point, by analogy
with a point on dine; the term point algebra is not used here because it can be
misleading in the context of space representation). It camubericallyrepresented
by a date. A relational representation involving instants requires identifying the
considered instants and their relationshipsiere arethree possible mutually
exclusive relationships between instariteey are calledbefore” (<), “after” (>)
and “simultaneously” (=). The set {<, =, >} is called.A

relation (r):xry xly conversey rlx
before (<) H%l 2 after (>)
simultaneously (=) Hﬁ < =

Table 1. The 3 relationships between instardaady.

The composition operation allows one tieduce the relationship between two
instants x and z even if it has not been stated, by propagating khewn
relationships involving intermediate instanEar instance, ik is simultaneous ({=})
to y which is anterior({<}) to z then x is anterior toz this operation is called
composition of temporal relation¥he composition operatoxs is represented by a
composition table (table 2) which indeed indicates thxgkyields {<}.

Granularity in qualitative space and time representation (9/12/01 23:31) 707
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X3 ‘ > <

>
>
<=>

<=>
<
<

AN LY
Al Vi

Table 2. Composition table between instant relationships.

The neighborhoodrelation in A corresponds to the effect @ontinuously
moving instants in time. It is depicted in figure 2a.

For instance, if the example of figure 1 is moddledugh bounding instants(
for the left endpoint ang* for the right endpoint) of intervals*TB-, B and H, it
is represented ifc) by Tt=B- (the truck ends where the bumpmgins), B<B*

(the beginning of the bumper is befdte end), B'<H- (the end of the bumper is
before the beginning of the house). One can deduce that the (right extrethi¢) of

truck is left of the(left extremity of the) house becaus&=B-, B-<B*, B*<H-, and

=Xx3< gives {<} and < composed with < yields} again. A continuousnodification

of situation (c) towards situation(b) is possible (by enlarging the itmper). As a
matter of factthe bumper can progressively be enlarged (without changing the
gualitative description of the situation) as far as it does not touch the house. Once it
meets the house, the situation is changed to situation (b).

1.3 Interval algebra

Theinterval algebrgAllen 1983) is anothewell known algebra ofelations. An
(uninterrupted) period is a temporal entity with a duration. It cathbeght of as a
segment on a straighihe. A numericalrepresentation of a period is amerval: a
couple of bounds (beginningstant, ending instant) or a beginning instant and a
duration. Intervals can be manipulated through a set omuiBially exclusive
temporal relationships between two intervals (see table 3); this set is cglled A

relation (r):xry xly conversey rlx
before (b) f ! ; . after
during (d) ’ ! contains
overlaps (0) — overlapped by
starts (s) (and finishes before) ’ ! started by (and finishes after)
finishes (f) (and start after) L finished by (and starts before)
 —m——
meets (m) f ! met by
| e |
equals (e) || : e

Table 3 (from (Allen 1983)). The 13 relationships between two intervaaly.

The composition operatoft, 3 is represented by a composition tapMien 1983),
similar to the table 2.
R0
[N
-0 OG0 & oo
\:)/ /
@ (b) \/@
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Figure 2. Neighborhood graphs fofa) instant-to-instant relations, (b) interval-to-interval relatiqfrom
(Nokel 1988)). Theneighborhood graph imade ofrelations asnodesand conceptual neighborhood a&siges
(converse relationships are denoted with an “i” added at the end for the sake of readability).

For instancethe three situations of figure 1 can be expressed insdme
formalismwith objects and qualitative relatiotetweenthem. Provided thatonly
the positions of the objects along the horizorntaé are considered, théhree
elements (T, B and H) are related to each other in the way of figure 1c by T{m3B
truck meets itsbumper) andB{b}H (the bumper is before the houselhe same
computations as above can be carried out in the interval algebra: the truckelteing
of the house can be obtained by composing the relationship between the truck and
the bumper and the bumper and the house:x{gih}={b}. In the sameway as
above, one can enlarge the bumper and the description of the situdtiomt
changeuntil it meetsthe house, leading to situatiqb). This complieswith the
neighborhood graph of figure 2b.

1.4 Conversion from interval to instant formalisms

The interval algebra can be obtained direfyn the instant algebra through an
interval operation (Hirsch 1996) which interprets any element of the interval algebra
as a pair of elements of the initial algebra related by a particular relation (< is used for
generating Az from Ag). It thus deserves the name of interval algebra.sHneeidea
can be used for generating the neighborhoods (Euzenat 1998).

A useful result concerning granularity is that relationshipsveenentities in the
interval algebra can be expressed according to the relationsbipsen their
bounding instants in the instaatgebra. Any relationship betwee&<x x> and
y=<y- y*> is expressed by a quadruplg, ¢, r3, rs) of relationships between the
endpoints defined by:

X XP> (11, T, T3, Ta) < Y> =X 11y Ox 12y OX ray DXt 14yt

assumingthat x<x* and y<y*, each possible relationshipetween thebounding
instants is expressible byieans olsuch a quadruplelhe result forinstant/interval
algebras is given in table 4. The symbblis used so thaifl x is the expression of an
interval as a couple of endpoints did a relationship betweemtervalsexpressed
as a quadruplée. is extended to sets of relations so ftipat is a set of quadruples.

XY eny xryt | )y [yt || Y ey oyt )ty | xfray
b < < < < bt | > > > >

d > < > < dr | < < > >

o < < > < or |> < > >

[S = < > < st | = < > >

f > < > = fr |< < > =

m | < < = < m | > = > >

e = < > = e = < > =

Table 4. The 13 relationships between intervals expressed through relationships between interval endpoints.

Because any formula representing relationship between four ingtaxitsy- andy*

satisfying the properties of intervats<{x* andy<y*) can be expressed undsdrat
form, the inverse operatioril is well-defined. It converts such agxpression

between bounding instants of twotervals into a set of relations expressing the

Granularity in qualitative space and time representation (9/12/01 23:31) 709
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disjunction of relations holding between the intervals. Of colrstly operators({

and[l) are inverse.

For instancepne can check that the situation providedexamples forthe two
previous sections corresponds to the interval algebra.mati@r of fact, theruck
(T) being left of (<) the house(H) is described by f<H- in the first case and by
T{b}H in the second one€rhis corresponds to table 4 becaus&Tf<H<H* (by
definition of the intervals) and by using the composifi@nAs3, it can bededuced

that T<H-, T-<H*, T+<H- and F<H*.

3. GRANULARITY CONVERSION OPERATORS

From the above, it can be understood that extemdkdion algebras constitute a
very general way of representing knowleddée relationarepresentation systems
presented sdar are adequatefor representing a situation at any granularity (as
shown in the examples of the previous section).

Meanwhile, the granularityproblemspresented in the introductiomanifest
themselves in theontext ofrelation algebra when several representations of the
same situation at various granularities have to be comparedmasier of fact, the
situations of figure 1 cannot be merged into one consistent situation: Figures 1b and
c togetherare inconsistent because,(b), B{m}H and, in(c), B{b}H which, when
paired, i.e. when the set of relationships holding between two objects are
intersected, yields B{}H.

The relationships between two representations of $hene situation at two
different granularities have to be investigatétle present sectiofirst presents the
notion of operators able to convert a representation from one granulaahotber.

Then a set of constraints governing these operators is detailed and disdingsed.
set is made of fiveore constraints, suitable to aeyxtendedrelation algebraand a

sixth one dedicated to the construction of interval algebras. ltasheub-section,

the problem ofguaranteeing the existence of operators satisfying the constraints is
explored in a systematic wayhe following sectionswill apply this framework to
specific formalisms used for time and space representations.

3.1 Form of operators

Operatordor transformingthe representation of a situatimm one granularity
to another can be defined whicmap arepresentation to a possible set of
representations which is compatible with what is observed. The approachtaieen
adopts the same relational system forrepresenting situations at different
granularities. It also assumdisat the sameset of entities is considered mach
representation. As a consequence, only the relationships among entiti#argan
switching from one granularity to another.

A tool is neededfor constraining the modification of the relationshigsiong
entities through granularity conversion. It is provided by a couple of functioms
I to 2 called(upward and downward) granularity conversion operatGigen a
relationship observed abmeparticular granularity, thelownward (resp.upward)
operator provides the set of relationships thah be perceived at &ner (resp.
coarser) granularity. These operators are calldard and downward granularity
conversion operators and are represented by thegirdvand?'| 3 operatorgwhere
g and g’ are granularities such that gfier — more precise — than g’). The
operators could have beetike in (Montanari 1996), a binary relationship
g~ 9 betweenrelations such thaj- 9(r,I") is equivalent tarlgt9r’ and r' 9’y 4r.
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The use of functions emphasizes the transformation aspectspedifies in one
expression the set of possible conversions of a particular object. By opposition, the
relational views favor thene-to-one relatiobetween two objects. Botforms are
equivalent but a functional settings requires a constraint (incerspatibility) that
can be wired in the relational formulation.

A third operatorg— g, will be used foryt 9" and9'i g when the property holds for
both (then there is no constraint upon g and $.unless stated otherwiseach
formula below is universally quantified on tigés, and constrains g to dener than
g’ wheneveryt 9 or 9'| 4 is used.For the sake of completeness, wssumehat g g
is identity. Last, when it does nomatter to identifythe granularitiege.g. when
asserting abstract properties of the conversion operatorsproip@sed operators
will be replaced by, | or —.

As usual, the notatiog- g, introduced for the conversion of a single relationship,
is extended to setg-gp = | Jg-g I

rlo

These operators can express (and eventually answer to) the three queesitexhs
in the introduction about representations:

* How to convert a representatidrom one granularity to another one? By

applying the operator'’cg— gr).

* Are two representations compatible? By applying the operatorstesiohg

the compatibility ( Cgt 9r andrJo'y g').

* What can be the relative granularities of two representations2e8yng

compatibility in both directions.

The remainder of this section identifies necessary properties of the operators.

1.2  Properties of granularity conversion operators

Anyone can think about a particular set of granularity conversion operators by
imagining the effects of coarsenesBut, here, weidentify and discuss a set of
properties which should be satisfied layy system of granularityconversion
operators. In fact, this set of properties is vamall. The next section shows that, in
the temporal case, they are sufficient for restricting the number of pospiiators
to only one (plus thexpected operators corresponding to identity eoiaversion
to everything).

Self-conservation

Self-conservatiorstates that, whatever be the conversion, a relationshigt
belong toits own conversion. It is quite a sensible amdnimal property: the
knowledge about the relationship can be less precise but it must have a chance to be
correct.

[1] rdg-gr (self-conservation)

Moreover, in a qualitativesystem, it ispossible that nothing changes with
granularity if the (quantitative) granularity stepsmallenough. Not requiringelf-
conservation would disable the possibility that Haenesituation looks thesame at
different granularity. For instance, in figuretide conversiorfrom (a) to (c)cannot
imposethe relation b (before)etween T and H to become (meets),excluding b,
because this wouldlso impose it to (b) imvhich the relationship hagmained the
same.

Granularity in qualitative space and time representation (9/12/01 23:31) 711
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Self-conservation corresponds to the property named reflexivitgn the
conversion is a relatiorfi.e. 4~ 9(r,r)). Because (Montanari, 1996) applies to
guantitative conversion, it is only trder the conversion which does nohange
granularity (in fact, reflexivity is universally true, because entities of different
granularities belong to disjoint domains).

One mightargue that self-conservation is acceptableupward conversion, but
not for downward conversionHowever, one-way self conservation plus inverse
compatibility (to be discussed below) entails full self-conservation.

Technically, self-conservation tieshe conversion to the perceived relation. It
disqualifies operators which do not preserve thatial relation (such as the
operators which just convert anything their symmetrical relationships —
otherwise disqualified by the idempotency property to be discussed below).

Neighborhood compatibility

A property considere@arlier is theorder preservationproperty — stated in
(Hobbs 1985) as an equivalenceixy) x>y Og—g X <g-g Y. Order-preservation
takes for granted theavailability of an order relatiorf<) structuring the set of
relationships. It states that

if x>y, then ={—g X<g-gy) (order preservation)

However, it has the shortcoming of requiring the order relatfitsnalgebraic
generalization could beeciprocal avoidance

if xry, then =— g xr'g-g y)(reciprocal avoidance)

Reciprocal avoidance, is over-generalized and conflicts with self-conservation in
case of auto-converse relationshifi®. such thatr=r?). The neighborhood
compatibility, although not expressed in (Euzenat 1993) has been taiken
accountinformally: it constrains the conversion of a relationféom a conceptual
neighborhood (and hence the conversion of a conceptual neighborhdommta
conceptual neighborhood).

] Or.0OF " g—gr . [Fe,...ralg—gr. r4=r, r p=r" , anddid[1,n-1] NX(ri,fi+1)

(neighborhood compatibility)

Neighborhood compatibility has already been reported by Christian Freksa
(1992) who considers that a set of relationships must be a concaptghborhood
in order to be seen as a coarse representation of the actual relatif#jsbipieaker
than the two former proposals because it does not prevent the converse to be part of
the conversion. But in suchcase, itconstrains a path between thedation and its
converse to be in the conversion too. Neighborhooahpatibility seems to be the
right property, partly because, unlike th@mer ones, itdoes not forbid avery
coarse granularity at which any relationship is converted in the whole set of
relations. It alsoseemsnatural because granularity can hardly ibeagined as
discontinuous (at least in continuous spaces).

Conversion-reciprocity distributivity

An obvious propertyfor conversion isymmetry. Itstates that the conversion of
the relationbetween dirst object and a second omeust bethe converse of the
conversion of the relatiobetween the second one and fingt one. It isclearthat
the relationships between twemporal occurrences aresymmetrical and thus
granularity conversion must satisfy:
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[3] (5-gp)=@-gp)*
(distributivity of g— g over-1)
Failing to implementthis property would causeonverted representations in
which ArB but not BrA (e.g. Acontains B but B is not contained B). This is
properly in contradiction with the axioms of relation algebras (Tarski 1941).

I nverse compatibility

Inverse compatibility states that the conversion operators are consistent with
each otherj.e. that, if the relationshippetween two occurrences can be seen as
another relationship at some granularity, then the inverse operation from the latter to
the former can be achieved through the inverse operator.

[4] rd (%4, andr 0 (), 1°r (inverse compatibility)

' ) in]
ngT r rDig,r

For instance, if someone in situation (b) of figure 1 is able to imagine that, at a finer
granularity (say situation c), there is some space between the bumper and the house,
then (s)he must beeady to accept that, §)he were in situatiorfc), (s)he could
imagine that there is no spabetweenthem at a coarser granularitgs insituation
b).
Stated otherwise, inverse compatibiltgrresponds to the expressionl r’ iff
r'@ r.Inverse compatibility is contained in the relational description obfferator
in (Montanari 1996).

| dempotency

A property which is usually considerdicst (especially inquantitativesystems) is
the full transitivity:

g—>g'g—>g =gogl (transitivity)
Full transitivity is too strong; it would for instance imply that:
ng"g’lgr =r
Of course, this cannot be achieved because it waoddnthat there is ndoss of
information through granularity conversiorhis is obviouslyfalse. If it were true
anyway, there would be no need for granularity operators: everything would be the

same ateach granularity. On the other hand, the oriented transitivity (previously
known as cumulated transitivity) can be expected:

gt 9 gt 1319 randd’l 91 4r =9"1 4 (oriented transitivity)

However, in a purely qualitative calculus, the actual granularities g, g’ and g” are
not relevant and oriented transitivity becomes a property of idempotency of
operators:

[5] t-1=t andi-l =1 (idempotency)

At first sight, itcould be clever to have non-idempotent operators waiehess
and lessprecise with granularity conversion. However, if this applies weejl to
guantitative data, it does not apply for qualitative: the qualitative conversion applies
equally for a large granularity conversion and for a small one which #nten less.
If, for instance, in garticular situation, a relationshietween two eities is r, in a
coarser representation it is r' and in an even coarser representation it is r”, then r”
must be anember ofthe upward conversion of This isbecause r” is indeed the
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result of a qualitative conversion from the first representation to the third. In figure 1,
for instance, ithe black band on the truck can be eqg{lahgitudinally, e) to the
truck body (a), then can start (s) the truck body (b) and then be contdiniedthe
truck body (c). Obviously,the downward conversion of must contain s and d
because the conversidrom (a) to (c) isalso adownward conversion of &hus,
gualitatively,l -1 =1.

If there were no idempotency, converting a relationship directly would give a
different result than when doing it through ten successive conversions.

Representation independence

The core properties given sfar were not related to the interval relation algebras.
Thiskind of algebra can be constrained so that the conversion operatboghof
algebras are connected. The property constraining the conversion operatmsds
on the operation that allows one to switithm arelation algebra to an interval
relation algebra (byll] and [J). Representationindependencestates that the
conversionmustnot be dependent upon the representation oftehgoralentity
(as an interval or as a set of bounding instants):
g-gp =U g-glp
and (representation independence)
g—ogp =Ug-glp
An example of representation independence, tbfars to figure lwill be given
in the next section in which the instant algebra and the interval algebra are used for
expressing the same situations and yield the same result.
Note that, becausél requires that the relationshigetween bounding instants
are that of an interval, the results are restricted to those which can be interpreted as
relations between valid intervals. The extra relations correspond to the vanishing of
an interval, orthe transformation of an interval into a point, which are not
considered here.
Representation independence can be formulated as distributivity:

[ g-9p)=g-g(P) andd g-gp)=g-g (0 p)

DEFINITION 1: Given anextendedrelation algebra, aouple of operatorsip-down
satisfying propertieq1] through [5] (core properties) is a coherent granularity
conversion operator for that system.

The framework provided so far concerns two operators related byotistraints
but there is no specificity of thepward or downward operatdthis is why
constraints aresymmetrical). By convention, if the system contains aunique
equivalence relation (defined as e such #vatoe=¢& (Hirsch 1996))the operator
which mapsthe equivalence relation to a strictly broader setldsoted as the
downward operatofif unique). This meetsthe intuition because the coarser the
view the more indistinguishable the entities (and theye then subject to the
equivalencerelation). Implementing this requirement asother constraintvould
have two consequences:

* simplifying the treatment below;

» allowing the introduction of conversion-specific constraints.

However, this is not necessdigr the work presentetiere, so the morgeneral
solution, which does not introduce orientation, has been retained.
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1.3  Existence results for extended relation algebras

For any extendedelation algebra there atevo operators which always satisfy
these requirements: the identity function (Id) which maps any relation into itself (or a
singleton containingtself) and the non-informative functio(NI) which maps any
relation into the base set of the algebra. itageworthy that these functiomaust
then be their own inverse (i.e. thaye candidatedor both + and | at once). These
solutions are not considered anymore bel®ie question of the generalxistence
of granularity conversion operators, differémm Id and NI, corresponding to the
above constraints can baised. Two partial results are establish€de first one
shows that there are small algebras with no non-trivial operators:

PROPOSITION1: The extendedrelation algebra based on two distirdements a
and & such thaiN(a,a') has no granularity conversion operators other idantity
and non-informative map.

It can be noted that in the case of two auto-inverse operators (e.g.,#, dmere
must exist conversion operators as shown by proposition 2. Proposition 2 exhibits a
systematic way of generating operatdn@m minimal requirements (but does not
provide a way to generatal the operators). It only provides a sufficient but not
necessary condition for having operators.

PROPOSITION 2: Given anextendedrelation algebra containing at least two
relationships a and b such thaeighborhood is the totalelation on the
relationships, there exists @uple of upward/downwardgranularity operators
defined by:

if a and b are auto-inversea = {a, b}, 1 b = {a, b} the remainder being identity;

if a only is auto-inverse:a = {a, b, b'}, tb = {a, b}, 1b* = {a, b'}, the remainder
being identity;

if a and b are not auto-inversea = {a, b}, tb = {a, b}, 1a* = {a*, b}, 1b* = {a’,
b}, the remainder being identity.

There can be, in general, many possidgeratorsfor a given algebra. Proposition
2 shows that thdive core properties of 83.2 are consistent. Anotlgeneral
guestion about them concerns their independence. It can be answered affirmatively.

PROPOSITION3: The core properties of granularity operators are independent.
This is proven by providing five systems satisfying all properties but one.

4. APPLICATION TO TEMPORAL ALGEBRAS

This general framework fagranularity conversions in extendeelation algebras
is here applied to specific temporal systeiiitse theory isfirst applied to thenstant
algebra against which the constraints aeliinated inorder to generate thenly
non-trivial couple of operators. Transferring these results to the well-known interval
algebra is straightforward thanks to the sixth constraint which buildspletors
through theinterval construction.The last results irthis section concern the
distributivity of granularity conversion over relation composition.
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4.1  Conversion operators for the instant algebra

Once the properties have beeefined, one can start generatingandidate
upward and downward conversion operatdi®wever, the requirements are so
precise that they leave no plafoe choice. It is showrbelow, by starting with the
instant algebra, that there is only one possible couple of operators.

Table 5 features all the 64(%23) imaginable conversion operatdms the instant
algebra. Eacleell identifies an operator: the column determines d¢baversion of
“="and the row determines that of “<”. The conversion*sf is fully determined
by that of “<” (through property [3]).

<\= | { < {= {0 {<= { {=>} {<=>}
{ 1\1 1\1 1\ 1\1 1\3 1\12 1\3 1\
{< \1 \1 1d \1 \3 \12  \23

{=} 1\1 1\1 1\ 1\1 1\3 1\1,2 1\3 1\
{> 1\1 1\1 1\ 1\1 1\3 1\1,2 1\3 1\
{<=} \1 \1 B ]\ \3 \1,2 \3
{<>} 2\1 2\1 2\ 2\1 2\3 2\12 2\3 2\
{=>} 1\1 1\1 1\ 1\1 1\3 1\12 1\3 1\
{<=>} \1 \1 0 \1 \3 \1,2 \3 no
info

Table 5. Each column represents a possible conversion for = and each row represents a possible conversions for
<. Because the conversion for > is constrained by [3] to be the converse of that of <, icansmerechere.

Thus, eachcell represents a conversion operafdefined onthe base relations). It contains the numbers
corresponding to constraints violated by the corresponding opébaforethe backslash, thosaolated by <;

after it, those violated by the conversion of =).

These a priori possible operatdos converting < and = can beasilyreduced to
six: Constraint[1] restricts the conversion of < to e}, {<=}, {<>} or {<=>} and
that of {=} to be in{=}, {<=}, {=>} or {<=>}. Constraint[2] suppresses the
possibility for < tobecome{<>}. Constraint[3] has been used in a peculiar but
correct way for eliminating the {<=} (resp. {=>}) solutions for =. As a mattefaat,
these solutions would cause the conversion be {=>} (resp{<=}), but =tis
= and thus its conversion should be that of = too.

<\= {7} <=}
{<} Id a

{<=} B y
{<=>} |9 no info

Table 6. The six possible conversion operators for = and <.

There arestill six possible conversion operatolest (Id, a, (3, y, d and NI). The
above table does not consider whether the operaterfordownward orupward
conversion. This leaves, apriori, 36 upward-downwardcouples. But the use of
property [4] — the putative operatorsnust be compatible with their inverse
operator (and vice-versa) — reduces them to 3: ldH@,and NI-NI.

.accepts Id a B 'y & NI

|d ° ° ° ° °

o<
|
[ ]
|
[ ]
|
[ ] [ ] [ ] [ ] ®
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Table 7. From the 6 possibleperatorssatisfying individual properties[1], [2] and [3], 36 couples of
upward/downward operators can be considered. Among them only the li@addsiwith an «arecompatible
with the firstequation of property4]. But, becauseghe compatibility must also be true in theverseorder,
only the couples compatible in both orders remain.
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The solution Id-Id cannot be considered as granularity because it does not

provide any change in the representation. The soliiedl is useless. Thus the-

B pair ischosen as downward/upward operators (according toctrevention
provided above).

PROPOSITION 4: The table 8 defines the only possiblaon-auto-inverse
upward/downward operators forsA

relation: r

ng’r Gigr
< < = <
= = <=>
> >= >

Table 8. Upward and downward granularity conversions between instants.

The a-f3 couplefits intuition very well. Forinstance, if the example of figure 1 is
modeledthrough bounding instantsc(for the left endpoint andx* for the right
endpoint) of intervals T, B-, Bt and H, it is represented ic) by Tt=B- (the truck
ends where the bumpbegins), B<B* (the beginning of the bumper is before its
end), B*<H- (the end of the bumper is before the beginning of the hougb) by

B+=H- (the bumper ends where the house begins) and in (ay+y'B(the bumper
does not exist anymore)his is possible by using the couptef which converts

B*<H- into Bt=H- (= 0 <) and B=B™* into B<B* (< 0 a=), but not with the use
of y as a downward operator.
The operators of table 8 also satisfy the properties of granularity operators.

PROPOSITIONS: The upward/downward operatorfor A3 of table 8 satisfy the
properties [1] through [5].

1.2  Granularity operators for the interval algebra

Many operators for the interval algebra can be generated by enumeration. But it

must be related to the instant algebra by constrainTgdjle 9shows the automatic
translation from points to intervals generated by this constraint:

ror 9T ior 9 gf

b <= <= <= <= bm < < < b

d >= <= >= <= dsfe > > < d

) <= <= > <= |osme?t < > < )

S = <= >= = se <=> > < osd

f >= <= >= = fe > > <> olfd

m <= <= = <= m < <=> < bmo

e = <= >= = e <=> > <=>oflglsesd

dfol
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Table 9. Transformations of upward and downward operators between instants into interval relation quadruples.

The constraint that itmust bethe interval algebréin the sense oflirsch (1996),
see 82.4) of the instant algebra restricts éRtraction of interval relations to the

valid ones. Table 10 provides the only possible operatorsipr A

relation:r of gy 9 gr converser! o! gr-1 ) g,r-l
b bm b bt bt mt bt

d dfse d d disifle d

0 oftsme o} d olstfem?! o?

s se osd st sle disto?
f fe dfo? i fle d*flo
m m bmo mt m? olm?p?

e

e

oftdlsesdfo?

Table 10. Upward and downward conversion operators between intervals.

PROPOSITIONG: Theupward/downward operatofer A1z of table 10 are thenly
ones which satisfy the property [6] with regard to the operatorsfaf fable 8.

The corresponding operators enjoy the same properties as the operatars for A

PROPOSITION7: Theupward/downward operatofer A1z of table 10 satisfy the
properties [1] through [5].

The reader is invited to check on the example of figutkat, what has been said
about instant operators ill valid: the situation(c) is described byT{m}B (the
truck meets its bumperB{b}H (the bumper is aside the house), (im by B{m}H
(the bumper meets the house) and in (c) where the bumper does not appear anymore
by T{m}H (the truck meetsthe house).This is compatible with the idea that, at a
coarser granularity, b can become nfi(rb) and that, at &iner granularity, m can

become b (@ m).

The identified upward operator does naatisfy the constrainf2] for B-
neighborhood (in which intervals are translated continuously), as it is violated by d,
s and f, and C-neighborhoofin which intervals arecontinuously expanded or
contracted while preserving their center of gravityi.e-the boundsaretranslated
in opposite directions of the same quantity) as it is violated by o, s @uahs$traint
[2] is violated because the corresponding neighborhoas not basedupon
independentlimit translations although thisndependence has been used for
translating the results fromzAo A3

The identified operators correspond exactly to the closure of relationghgis
Gérard Ligozat (1990ntroduced inhis formalism (see Figure 3)This is natural
because the&losure, justike the conversion operators, providak the adjacent
relationships of a strictly higher dimension (here the dimension of a relationship
depends on the number of endpoints it constrains, i.e. the number of “=" relation in
the rows of table 4).

(b)—(m—
0o 1

(sl o B (s] 2

/ / \
o Y w-® & o 1\@ T
o\dz\@/o 1 2 1 2\@/0 @/2
197 BC
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Figure 3. Transposition of Ligozat (1990) framework on the A-neighborhood dgeaphnode is labeleavith
the number of endpoints that its relationship constrains (resp. doesnxitain) when one of the intervals is
given. Theupward (resp. downward)conversion operator is obtained lgathering, foreachrelation, the
reachable nodes by following a path with strictly ascending labels.

1.3  Granularity and composition

The composition of symbolic relationship is a favored inferencmeans for
symbolicrepresentatiorsystems. One ahe properties which would be interesting
to obtain is the independence of thesults of the inferencelsom the granularity
level [7] which is denoted by the distributivity of overx.

[7] > (P1xp2) = (- p)*x(-p2)
(distributivity of — overx)

This property is only satisfied for upward conversion # A

PROPOSITIONS: The upward operator forsfsatisfies property [7].

It does not hold true for &: letx, y andz be three intervals such thddy andydz,
the application of composition of relations give® o m d sk which, once
upwardly converted, yieldgdb m e d f s o 1} z. On the contrary, if the conversion is
first applied, it returng{b m}y andy{d f s e}z which, once composed, givegh o m
d s}z The interpretation of this result is the following: bfrst converting, the
information that there exists an interyaforbiddingx to finish z is lost:if, however,
the relationships linking to x andz are keptthen the propagatiowill take them
into account and recover the lost precision: {ome d f§o{b o md s}={b o md
s}. However, this cannot be prevented because, if the lengthsafo smalthat the
conversionmakes it vanishthe correct information ahat granularity is the one
provided by applying first the compositiancan meek at such a granularity.

Although [7] cannot be achievedor upward conversion in A, upward
conversion is super-distributive over composition.

PROPOSITION9: The upward operator for;Asatisfies the following property:

[8] (tp)x(t Pt (P2xp2)
(super-distributivity oft overx)

A similar phenomenon appears with the downward conversion operators (it
appears both for instants and intervals).l&, y andz be three instants sug¢hat
x>y and y=z. On one hand, the composition of relations giweg, which is
converted tax>z at thefiner granularity. On the other hand, the conversion yields
x>y and y{<=>} z because, at eore precise granularityy could be close but not
really equal toz The composition then provides nmore information about the
relationship betweenx and z (x{<=>} 2). This isthe reverse situation as before: it
takes into account the fact that the non-distinguishability of two instants cannot be
ensured at diner granularity. Of course, #&verything is convertedirst, then the
result is as precise as possibownward conversion is sub-distributivever
composition.

PROPOSITION 10: The downward operator$or A1z and A satisfy the following
property:
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L (P1xp2) O (L p1) x (1 p2)
(sub-distributivity ofl overx)

The two latter properties can be usefal propagating constraints in order to
obtain themaximum ofinformation quickly. For instance, ithe case ofupward
conversion, if no interval vanishes, every relationghist be firstconverted and
then composed.

These propertieshave been discovered independently in theantitative
granularity setting through an approximatiaigorithm for quantitative constraints
(Bettini 1998a).

1.4  Discussion: interpretation of granularity conversion

Time isusually interpreted as a straiglire, instants as points and intervals as
segments. Under a numerical light, granularity can be defined as scaling plus filtering
what is relevant and what is not (a discretization). However, granularitfiter an
size aghe name indicates. Fdhe case ofime,the granularity of a system can be
defined as the duration of thamallestrelevant event (relevance beiragfined
independently beforehand). This applies obviously to intervals and less obviously to
points where it is the shortest period thatstoccur between two instants sloat
they are considered as different.

This has consequences for symbolic representations: if, at a coarse granularity, one
observes thasomeevent is connected to anoth#ris can be wrong at fner
granularity because an irrelevant lapsetimie could be relevant there. kanother
way, when communicating thesame observation, short lapses ¢ime may be
irrelevant (and thus the relationstbptween the event can be disconnected). It is
what happened for the relationship between B and H, which is {b}, in Figur@nd
becomes {m}, in 1b.

The present study focuses on objects which persist and keejartieenaire (i.e.
an interval persists as an intervlidm one granularity to another. This b&cause
only the relationships between these objets have been considered andbjdws o
vanish they hold no relation with anything. As a matter of fact, the vanishing of B in
Figure 1a has not beatcountedfor by any conversion of the relatidretween B
and something else.

There areopenissuesnot considered here. One is the establishmeonpefators
for an extendedrelation algebra of both points and intervals in which an interval
can become a point (and vice verlajough continuoudransformation. Another
one is the explicit consideration of the vanishing objects.

5. APPLICATION TO TWO SPACE REPRESENTATIONS

Another possible application of algebras of relations is space. Intuitively,
granularity applies to space and thersust be operators for qualitative
representations of space. It is thus interesting to explore space granularity.

Qualitative time representation has inspired several extensions towards qualitative
space representation (see (Hernandez 1994) $omanary).However, there is not a
universally accepted representatidinere are severgroposed representations for
space (Gusgen 1989; Egenhofer& 1992; Randell& 1992a) which caonsédered
as starting pointgor space representation and not fab-fledged representation
systems.

Instead of consideringpecific formalisms, wetry to transfer the resultiound
above toclasses of systemsbtained by certain constructions. Below two
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constructorsare introduced whichtransformone extendedrelation algebrainto
another. They are Cartesiaproduct (85.1) and weakening (85.2). These
constructors have already been usmdgenerating space representatiofs,they

are ideal candidate. The constructors are proven to preserve several properties of the
granularity conversion operators.

5.1  Product of the interval algebra

The classical model athe interval algebra is the mono-dimensioBaiclidean
space. It can beasily extended to am-dimensional Euclidean spadérough
Cartesian product (Glsgen 1989). In such an extension, it is straightforward to
define instants as points and areas as intervals. An interval is adedireged by
two points, i.e. a (hyper-)parallelogramhose borderare parallel tahe axes of the
referenceframe. The extension of theime algebra is defined as follow&rom a

structure €, L, x, N>, another structurel<, x', 1, N"> is defined such that:

n
0@ ,...rpT , r=(rq,...rp)M " (alsonoted byr = x r;). Thisnotation isextended
i=1

n an O
tosets:x g =Oxri/r Up O
i=1 0=1 0

(** definition onrn) = glri—l =7t Y
n
(x definition onlM) rxr’= x ryxr{ = s, rih

=1 F{CrXr,.. F O X1

n
(N definition onl™m)  N(r)= x N(r;) = Ui
1=1 F{ON(rq),...r 1 ON(r )

The extension can be applied to granularity conversion operators:

n
(- definitononl™M) . r=x 1= L rink
=1 B ri,..rmBE ry

These operators are extended to sets of relations in such a way that
p'={r'rP }, pxp'= Jrxrrand - p=J-r.

rOop,r'Op’ rfo
_This issufficient for defining the conversion operators nrdimensionalspaces.
First, the properties of granularity operators are preserved.

PROPOSITION11: If the upward/downward operators forsatisfy the properties [1]
through [5], then the upward/downward operatordfosatisfy them too.

The preservation of representation independence depends on the existence of
operatorsfor converting from one representation into anothdrhe operators are
defined here entirelyhrough the product notatio(so quadruples arproducts of
four dimensions). Although the notation is convenient one, should keamdhthat
these quadruples do not represent the relationships betweesantie®bjects and
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that additional constraintsiust be satisfied bthe quadruples. This corresponds to

the expression of the boundsreflimensional intervals.
4 n
_— .
(O definition onl") O« szﬁzlnm )
in which g is a notation satisfying the following equation:

or . O

(Tt definition) T o=k with 1<k<m
L 4 n . n 4
(O definition onlN) 0 X X riJ =x 0 X riJ
j=1i=1 izl j=1

when defined.

PROPOSITION12: LetH be an algebra of relations ahdne ofits interval algebras,
if the upward/downward operatofer I' satisfy the property6] with regard to the
operators oH, then the upward/downward operatéos ['" satisfy the property [6]
with regard to the operators df.

Finally, the product construction preserves the distributivégultsobtained for
the base structure.

PROPOSITION 13: The upward/downward operatorgor 'n satisfy the same
properties a§ with regard to properties [7], [8] and [9].

1.2  Weakening of relation algebras

The weakening of a relation algebsdl show lessdetails in thecharacterization
of the relationship. Aweakened algebra is obtained by grouping several

relationships together (it is a quotient). Weakening2{ - 2" ) andstrengthening
(@ 2" - 2) constructordrom aninitial algebral’ to a weak algebr&’ are thus
introduced. Given an existing algedraand the weakened algelra such that[]
transforms d’-relationship into a set df-relationships and thenage ofl"’ by [Iis
a partition ofl” (i.e. aset of disjoint non-empty subsets [ofcoveringl’), (I can be
defined by the function associating to dnyelationship thd ’-relationshipwhose
image byl containsit. Theseconstructorsareextended to theets of relationships
as usualThey satisfy the following property:

[wi] M =p
If the considered setis either the result of @ transformation or the union stch
sets, the property [w2] also holds:

[w2] mp =p
Otherwise, the following weaker property holds:
[w3] pIp

These transformation are closely related to tbhacept of qualitativeconstraint
abstraction introduced in (Gisgen 1989) and they can be defined accordingly, but
instead of being usedrom a quantitative representation to a qualitative
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representation, thegre usedbetween two qualitative representations. Converse,
composition and neighborhood are defined through weakening:

(** definition onl™’) pl=(lp )*
(x definition onl™) P1xp2=L[p 1xIp 2)
(N definition onl™’) N.(r') =0 [N (1)

rdr’

These definitions can be applied toz And A3 yielding the relationships
considered in table 11 ari®. It must benoted that the resulting relationsHgoks
like sets of qualitative relationshipsvell known in the spatial temporal
representation : those of the point algebra in space and the REgiomection
Calculus (or RCC-8) algebra (Randell& 1992a).

These definitions daot indeedyield the actual RCC-8 algebisecause the
weakening process has not forgotten that the considered oajecistervals, and
thus, the composition is not that of RCC-8 (the demonstration is out of scope here).
However, the weakening provides a set of relationships that can be put in bijection
with those of RCC-8 and, as will be shown, it also provides a couple of(iralie
sense proposed in previous sections) granularity conversion operators for RCC-8.

relation:r ’ ’
gtdr gtdr

= = =£
# #£= #

Table 11. Conversion operators for topological spatial relationship between paints (A

relation €): x1r x2 RCC8 example of gr glg'r
nto (non-tangential outside) @ @ nto to nto

to (tangential outside) to to nto po
po (partial overlap) @.@ po to ti tit eq po

eq (equality) x1©x2 e eq ti nti po t nti*
tieq ti po nti

nti eq ti nti

Table 12. Conversion operators for topological spatial relationship between agpas (A

ti (tangential inside) 1
nti (non-tangential inside) X1

The weakened (upward and downward) conversion operators can be defined
accordingly:
(- definition onl") S p=0[p

It is not claimedthat weakening provides the only possibleward-downward
operators but that there exists at least one such couple of operators and that it can
be constructed that way.

Again, these operators can be illustrated with the example of figure 1. the
situation (c) is described by T{to}B (theeuck is tangentially outside afs bumper),
B{nto}H (the bumper is outside the house), (b) by B{to}H (the bumper is

tangentially outside the house) and (t) where the bumper does naippear
anymore by T{to}H (the truck is tangentially outside the hou3&)s iscompatible
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with the idea that, at a coarser granulanitg can become to (fb nto) and that at
a finer granularity to can become nto (@tdo).

The operators obtainedor A, and A enjoy the usual properties (including
idempotency):

PROPOSITION14: The upward/downward operatoifer A, (resp. A) of table 11
(resp. table 12) satisfy the properties [1] through [5].

Here,the property[6] is irrelevant because As not considered as an interval
algebra. A more general property can be established for these kinds of weakening. It
states that weakening preserves the properties [1] through [4].

PROPOSITION15: If the upward/downward operators fosatisfy the properties [1]

through [4], then the upward/downward operators generated as fdvawee of its
weakening’ satisfy them too.

Property [5] (idempotency) is not generally preserved through weakening. For
instance, considering a relation algebra with four relatigng r; and | suchthat
the (say upward) conversion is{r,} for r;, {rs, r,} for r; and identityfor the others.
If the weakening just groups and g into a new r’ relation, then the conversion pf r
will then be {r, r'} and applying the conversion once agai yield {r,, ', r,}. The
sameholds true of propertief], [8] and [9]. They requiremore constraints on the
weakening operation.

1.3  Discussion: is this sufficient for space ?

The product constructor has bedmst presented as a combination ofi3A
(Gusgen 1989; Mukerjee& 1990The resultsabove provide thessystems with
granularity conversion operatorshe products have once beataimed as anon-
intuitive representatiorfor space; however, there smeinterest in this digital
representation of space:

(1) because it is a useful simplification of the representation (Oliver& 1995),

(2) because it is the representation used diyital sensorssuch ascameras

(Kong& 1989), and
(3) because iseems to beused in applicationdike cadastral applications or
bounding box calculus (Papadias& 1995).
Thus thegenerated operatoffer granularity conversion could be quite useful in
such contexts.

However, this clearly does not account for all the facets of spacsdthe isrue
of RCC-8). The research on qualitative space representation is very Bectdelcts
can also be usefbr combiningheterogeneous representatiqns. representations
which do not correspond tdimensions of the spacebhis is exemplified by the
system RCC-15 (Cui& 1993) combinings detween twoareas andetween their
respective convex hull or by (Egenhofer& 1994) which again combigdefwveen
the generalized regions (insider topological closure of each area) and their respective
holes. These products are always followed by a weakeningastega at eliminating
(by groupingthem together) themeaningless distinctiondor instance, when the
intersection of the closure empty,the intersection between the holes does not
matter; as a matter of fact it is always empty).

The most sophisticated spatial representations are generaliyained by
combining different views of the spatial areas (not only extension, borders and
direction). The ideal solutiowould be to consider independently concepts such as
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containment (topology) with orientation (vector spaces) or even dist@netic
spaces). For instancthe A5 algebra(Zimmermann& 1993)ositioning areas with
regard to movement is obtained by tpeoduct of A and A. Other works
(Hernandez 1994) ugeairs of orientations (see figurd), topological relation and
provide the neighborhood structufer this combination.This has been recently
extended to a qualitative notion of distance (Clementini& 1995).

coll
f2

11 ri 12 b2
b2

Figure 4 (from (Herndndez 1994)): Three sets of directional relationships (from the coarser to the finer).

It seems that such a structure can be given to orientation representation and the
existence of granularity operators seems intuitively correct. However ettistence
and their possible constructiahrough product and weakeningill have to be
established.

6. RELATED WORK

Jerry Hobbs (1985)ntroduced the concept of granulariyom the non-
distinguishability of particulatermswith regard to a given set of predicatgbese
terms can be substituted in the range of any of the predicates without changing their
validity). His work has been extendedrther in (Greer& 1989) usingwo partial
orders upon which granularity can be based. In the presgdr, thegranularity
has been incorporatedpaiori in the structure of thalgebra, insuch a way that it
can be mapped to similar structure, whereas the above-mentiomehtributions
define a granularity with regard to relevant predicates or partial orders. The
approaches thugliffer in terms of the language(logic vs. algebra)and the
characterization of granularity (a posteriori and a priori).

A tremendous amount of work has been done on granularityetnc spaces.
One of themostelaboratemodels isthat of (Montanari& 1992; Ciapessoni& 1993).
It proposes a quantitative temporal granulabfsed on a hierarchy of granularities
strictly constrained (to be convertibleljvisible, etc.) which offers upward and
downward conversion operatorfor instants and intervals (instead of their
relationships). (Euzenat 1998jffers a lesonstrained frameworkor quantitative
relationships and thus achieves weaker properties. Hence, the properties obtained in
the present paper for qualitative representation are compatible witfu#irgitative
representation of (Montanari& 1992; Ciapessoni& 1993).

Also, alot of work has been done on calendars and granularity idah@base
community (e.g. Dyreson& 1995, Bettini& 1998a, Cukierman& 1998) to pghimnt
that it has led to the normalization of the vocabulary (Bettini& 1998his work is
concerned with an intrinsically metric vision in which the problem is unit conversion,
which introduces indeterminacy when converting tbnar granularity. It shares
several basic assumptions with the work presented here (such as the definition a
priori of conversion through the use of operators) amekts someesults (such as
those related to granularity and deduction). However, the approach akliagson
a quantitative representatiomhere, very often, position variables are replaced by
intervals.

Granularity in qualitative space and time representation (9/12/01 23:31) 725
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On the qualitative side, various authors have considered granularity (Freksa 1992,
Hernandez 1994, Grigni& 1995). They usually considerea set of relationships
which expresses a situation at another (generally coarser) granularity. These sets can
form a partition of an initial base sgor instance, by consideringgAnstead of As)
or not (consider the three sets of directional relationshipsgafe 4). On the
contrary, the present work uses g@merepresentatiorformalism ateachlevel of
granularity. As a consequence, an arbitrary number of granularity leaelbeused
instead of a predefined number of such (corresponding to the dd@mealism).

Only recently, a qualitativemodel for time granularity has beengiven
(Becher& 2000). Although, it is expressed in relat@lgebras, thisvork is more

easily comparedwith (Montanari 1996) because the various granularities are
representednside the algebra anbecause objectare converted instead of the
relations. The consequence of the former is that, instead of considering several layers
made ofthe pointalgebrathe authors consider an enhanced point algebra (with 5
relations).

There has been work in granulaemporal logics which areot immediately
comparable with the present one. (Fiadeiro& 1994) considgranularity
conversions betweerseveral representations expressed in Hane classical
temporal logic (justike here,the same classicailgebras have been used). Angelo
Montanari (1996) provides a complete account of granularity nmetic temporal
logic. Although, athorough comparison with this work is todar-reaching, it is
possible to compare the constraints provided here atbms of his system. The
main differencelies in the qualitative versus quantitative representatiogether
with the fact that thdogic representation converts objects ofemporal domain
instead of relationships. However, if one considers that the ordering of objects is a
relation, the properties can then be compared:

[1] corresponds to the reflexivity property (but is restricted to ithentity

conversion, see 83.2).

[2]does not strictly correspond tosomething, because there is ngpecific

consideration of neighborhood. However, order preservation is required.

[3]does not strictly correspond to something because there isspecific

consideration of converse. However, the equivalent should thxaigh the
displacement operator.

[4]is built-in in the relational representation chosen for the operator.

[5]does notstrictly correspond to something because of the quantitataterre

of the formalism. It isreplaced by severallownward/upward transitivity
axioms which cover oriented transitivity.

[6] has no equivalent due to the absence of intervals.

At the best of our knowledge, our work is tfiest one that proposes a general
account of granularity imelation algebras. It is even tH&st one that considers
granularity in homogeneous relation algebras for eitie orspace. A granularity-
like conversion operator has beemplicitty given for RCC-8 recently
(Papadias& 1995). It consists in converting the RCC-8-reldimveen two areas
into the RCC-8-relation of theiminimal bounding rectangles andice-versa. It
appears that the operators built this way are not those of 1dblAs a matter of
fact, they enjoy propertie§l] through [4] but not idempotency5] (for the same
reason as above : the second conversitinyield relationsthat are not related to
the initial relation, but to other forms of an intermediate relation).

7. CONCLUSION



GRANULARITY IN RELATIONAL FORMALISMS 727

In order to understand the relationships betweseweral granularities, a set of
requirements has been establisf@dconversion operatord.hese operators can be
used for combining information comirfgom different sources and overcoming their
apparent inconsistencyThese constraintshave been shown consistent and
independent.The only possible operatordlling these requirements haveeen
identified for the temporal algebras of poinend of relations. Moreoveother
properties of the operators have been established: preservation of the relationship
between points anchtervals and non-distributivity aiemporal compositiorover
granularity conversion.

The proposed approach is quite unusualom avery simple formalism (4) the
operators have been exported to the more complex o tihough the particular
relationships they enjoyThen, through other general constructionsamely
weakening and product, it has been shown howind the operatordor other
formalisms including A or Ajgg (i.€. the orthogonal product of1 4.

The presented work can be developed in several direclitesfirstone consists
in linking qualitative granularity operators tuoetric logics (Montanari 1996). The
theory presented here is oriomaticand its semanticsstill has to beformally
provided. This might be obtained by having dame models fogranularity inboth
metric logics and qualitative algebrag.he second working path consists in
answering two particular questions: whate the conditions whichwarrant
existence and uniqueness of granularity conversion operdébor& particular
structure? Where is the separatiogtween structures which enjoy distributivity of
granularity conversion over composition and those which do Ridly, we are
concerned with the development of a space representtgiam which is able to
process transformations of representations (Buisson& 1994) and we lWkauld
introduce in it granularity conversion operators and representagtversion
operations (such as weakening).
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APPENDIX A: NOTATIONS

Thesenotationsare usedor the notions of instant and interval relation algebras
(Allen 1983), wunordered point and area algebras (Egenhofer& 1992;
Randell& 1992)conceptual neighborhoo(Freksa 1992a) and extensions such as
the conversion of relations between intervals into points:

XY, Z Temporal and spatial entities (instants, intervals, etc.).
As Set of point relations: {<,=,>}

Aiz Set of interval relations: {b,d,o0,s,f,m,elft,s?,0,d*, b}

A, Set of non ordered point relations: £,

Ag Set of non ordered spatial relations: {nto,to,po,ti,nti,emti'}
r Any set of relations.

2r The power-set of .

rr,r,r Elements of .

p. P, P’ Pi Subsets of .
rt Converse relationship; extended to sets of relatipi)s (

rxer Composition of relations; extended to sets of relatiprs- Q).

NZ(r,r) X-neighborhood relationship on the §etalso used asi(r).

rn Cartesian product of a set of relations.

rxny Extension of a composition operator over the Cartesian product.

[ Transformationfrom interval to instant couplesl](x) and interval
relations to quadruples of instant relationsr), extended to sets

[ (T?ar?sformation from instant couples to interval (J((x,y) and

guadruples of instant relations to interval relatid@isr{,ro,r3,r4) — as
far as it is possible); extended to sets.
Composition of functions.

These notations are newly introduced in the present article:

g,9,9" Granularities.

gtd'r Upward granularity conversion operatmom g to g’; extended to
sets 19 p).

Gigr Downward granularity conversion operator from g toexXtended to
sets €1 4p).

gog I Generic granularityconversion operatofrom g to g’; extended to
sets {—g p).

h] Weakening operator.

[ Strengthening operator.

n

X Product operator.

11
=
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APPENDIX B: PROOFS

Section 4aims atproviding evidence of propositions 4 to The proofs of the
propositions 4 to 10 (84) are provided éyhaustive check in (Euzenat 1994). The
proofs of propositions 1, 2, 3 (83), 11, 12, 13 and 15 (85) are given &toposition
14 can beeasilyproof-checked exhaustivelAll the properties can be proved by
considering a single relationship (nstead of a set of relationshigy.(Hence, some
of them are only proved for a single relationship. The proofs for inverse compatibility
are only given in one wayecause theyemainvalid when inverting thet! -
operators.

Existence results for algebras of binary relations

PROPOSITION1: The algebra based on two elemengnd & such thatN(a,a') has
no granularity conversion operators other than identity and non-informative map.

proof. Once given the granularity conversifum a, the conversiorfor a* can be
easily deduced through the conversion-reciprodaigtributivity. Forany possible
choice of the conversion operator, there are amgp possible valuedor the
conversion of a (because self-preservation constrains the value to coriseti):a
{a} and {a, a'}. These two values satisfy idempotency andgeighborhood
compatibility. Inverse compatibility constrains tbpposite conversion to Hda} in
the case of {a}, and {a,"a in that of {a, a'}. On the one hand, if one conversion of a
is {a, a'} then its opposite must containfar both a and & (thus itmust be{a, a'}
for a', and sofor a). This isthe non-informativemap. On theother hand, if the
conversion of a iga}, and because we just proved that the opposieversion
cannot be {a, &, it can only be {a} and thisatisfiesinverse compatibility tooThis
is identity. %

PROPOSITION 2: Given anextendedrelation algebra containing at least two
relationships a and b such thaeighborhood is the totalelation on the
relationships, there exists @uple of upward/downwardgranularity operators
defined by:
if a and b are auto-inversea = {a, b}, 1 b = {a, b} the remainder being identity;
if a only is auto-inverseza = {a, b, b'}, 1b = {a, b}, 1 b* = {a, b'}, the remainder
being identity;
if a and b are not auto-inversea = {a, b}, tb = {a, b}, 1a* = {a*, b}, 1b* = {a’,
b}, the remainder being identity.
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proof. It must be noted first that all the given operatordrivially satisfy self-
conservation and neighborhoodcompatibility. The conversion-reciprocity
distributivity is easily checked in thefirst case. It deserves aore careful
examination for the two others but it appears that it holds. ldempotency is based on
the property that the result of any conversion here is either ideftiryally
idempotent) or the union of identity convertible relations and ittel relation
itself. So applying once again the operataill give the same result. Inverse
compatibility is the less obvious property. Rbe first and the thirdcase, it idoased
on the same pattern: the conversion of a relation is the reltgain(which satisfies
inverse compatibility because of self-preservation of the opposite conversion) or the
union of the relationtself with another relation whose opposite conversion yields
the exactsameresult. As aconsequence, the inversempatibility holdsfor these
relations too. Concerning the secocabethe downward conversion of a is a plus
two other relations whose upward conversion contains atpkmselvesinverse
compatibility is satisfied by both operators. The proposed operators are thus valid.

¢

PROPOSITION3: The core properties of granularity operators are independent..

proof. This is proved by providing set oéxtendedalgebras and functionghich
satisfyall the properties but one. They are providedow, it is easy taheck the
satisfaction and non satisfaction of properties.

self-conservation)The algebra is based on aj',ab(=b') and c(=¢); the
neighborhood structure is tlttomplete graphta = {a, b, c},tb = {c}, 1c =
{c}, tat={b,c,a}, ta={a},tb={a,a}, tc={a, b, c, & andia’={a'}.

neighborhood compatibility) The algebra is based on al,ab and B; the
neighborhood is restricted M(a,a’), N(a*,b), N(b,b%), N(b*,a).ta={a,b}, 1 b’
1={b!}, tb={b}, rat={b% a'}, ta={a}, tb'={b? a}, 1b ={a b} and
tat={al.

conversion-reciprocity distributivity)rhe algebras contains a and' and the
neighborhood structure is tlmplete graphta = {a, a} and ta' = {a'},
ta={a}andia’={a, a'}.

inverse compatibility) The algebra is based on a*aand b(=b); the
neighborhood structure is the complete gragh= {a, b}, tb ={b}, ra' = {a
1 b}, ta={a}, tb={b}andia’={a'}.

idempotency) The algebra is based on'aared b(=h); the neighborhoodelates
onlyatobandatob.ra={a, b},tb={a, b, a}, ta*={b, a}, 1a = {a, b},
tb={a, b, d}andia*={b, a'}. ¢

Product of the interval algebra
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PROPOSITION11: If the upward/downward operators forsatisfy the properties [1]
through [5], then the upward/downward operatordfosatisfy them too.

proof.

(self-conservation P (definition of ')

= (Jrpor (self-conservation i)

ouU Jrsrh (- definition on")

0o G ry,..rpBory,

=J-r (extension of- onTn)
=5p O
(neighborhood compatibility
i O[an],0r, 08,4 & 1, 0°,..rP 5 rird=5,rP =t andDj O p],N(rij_l,rij)

(neighborhood compatibility oh)

n

Dxr,,st xtD U{(rt. r)}Dxr,, xrpD St}
i=1 i=1 i=1 e rq,.. i=1 G rq,..
i rn r= rn
no,on n n o0
XTI =Xs, ><r —xtandDJD[lp]N xrl, xr)™? 0
i=1  i=1 i=1 =1 =1 i=1

(definition of M)

n n n n n n n
OXr,0xs§, Xt G xr,0xrl...xrP3 xr;
i=1 i=1 i=1 i=1 i=1 i=1 i=1
0 n [n J n i- 40
><r, = X5, ><r = ><tI anddj O[1 )], N%xrI X .
i=1 i=1 i=1 i=1 =1 i=1
(definition of N and - on[n)
- Or,0st@ r,Og,...rp B rirg =s,;rp =t and0)j D[lp],N(rj_l,rj)
(definition of ')
%
(- /" distributivity) St (** definition onln)

1 This is also true of a momestricteddefinition of neighborhoodhrough product (in
which two product relations are in neighborhoo@nfionly if they differ by only one
projected relation which are themselves neighbors).
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(idempotency
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n —_—
i=1

1

n —_—
i=1

1

n
=X (- 1)
o}

OiOf1n),r 0

riir
Oi O[1n],0rf O 1,1

n n n
DXF{DX LI, X T [
i=1 i=1 i=1
n n n
DXri’U xri,xrim
i=1 i=1 i=1

rDﬂr'

(- definition onln)
(- /* distributivity inT")

(** definition onln)

(- definition onl'n)

(definition of M)
O

r (inverse compatibility oii)

A rf (development)

n
X 1rf (product)
i=1

n
xri (- definition onlM)
i=1
O
(definition of M)
(- definition onl'n)
(- definition onln)
(- idempotency i)

(- definition onl'n)

(definition of M)

¢
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PROPOSITION12: LetH be an algebra of relations andne ofits interval algebras,
if the upward/downward operatofer I satisfy the property6] with regard to the
operators oH, then the upward/downward operatéos ['" satisfy the property [6]
with regard to the operators &f.

proof.
. . 4 1 - -y .
(representation independence @0  xr! (definition of M)
j=1
4 n i - .-y .
=0 xxr/ (O definition onln)
j=1i=1
n 4 i - -y .
= x0 xr/ (- definition onrn)
i=1  j=1
n 4 i - .-y .
=0 x -0 xr! (O definition onrn)
i=1 j=1
4 n 4
= x Xm0 xr
k=1i=1 j=1
(representation independence [on
4 n 4 . o
= X XT - XTI (- definition onln)
k=1i=1 j=1
=X XTR X -1 (T definition)
k=1i=1 j=1
4 n k e s .
= X X o (- definition onl™; twice)
k=1i=1
4 n k . ags
= 5 X XTI (definition onl"n)
k=1i=1
4
=5 X rk o
k=1
(representation independence 2.0 r (definition of M)
n
=0 X (O definition onln)
i=1
4 n - -y . .
=0 x xmOr, (- definition onl™; twice)
j=1i=1
4 n - - .
=0 X X - m O (O definition onln)
j=1i=1

Granularity in qualitative space and time representation (9/12/01 23:31) 735



736 COMPUTATIONAL INTELLIGENCE

n 4
=X U0 X - mOr (- definition onln)
i=1  j=1
n 4 . .-, .
=X xmOr (T definition)
i=1 j=1
n . . n
=x -0 (representation independencelon =X oI
i=1 i=1
(- definition onl") =519

PROPOSITION 13: The upward/downward operatorgéor ' satisfy the same
properties a§ with regard to properties [7], [8] and [9].

proof.
(- distributivity overx) > (pxp) (extension ofx on[N)
= Yrxr (x definition inn)
ro,r'Op’
== U LJ(ry....r0} (extension of onn)

r'Oo" r{Orygxry,...rpOrxry

rOp,
= U - LJ(rs....rk (extension of onln)

ro,r'Op’ ri0ryxry,...ry O, xry

= U Ji(rph...r} (— distributivity overx)
rOo,r'Oo" r{G (ryxry),...rp B (rpxry)

R J(r....r% (extension o on™n)

rOo,r'0o" r{G ryxori,..rpl rpxorp

O O 0O O

= U o Ug.moco UJLr-rio

rOo,r' o' (G ry,riB o1y O e .o, 0
(extension o on[n)

%\J n n |:| aj n n |:|

= U{( N In g U{( Mt 0

Moo 1@ ry,rid ry, O e fqe .. r, O
(- definition inl")

O O .
= - X ~r'g (extension of- onln)
(e 0 oo

= SpX-p %

The super and sub distributivity is established throughRthelationshipbetween
the two terms. This relation can belFpr [1 depending on the considered algelbra

Weakening of relation algebras
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LEMMA (monotony of weakening)f p O p' then Op (11 o’

proof. Dp:{Dr;r Dp} D{] rr Dp’} =p' ¢

COROLLARY (sub-commutativity oflovern): O(pO (P o
pdr par

LEMMA (commutativity of /I ): [ *=([@) * andOr'=(Cr) .

proof.

(commutativity of /D) Ort (** definition inl™)
=00 (Or)* (closedness df/Othrough™)
=(0r) * 0

(commutativity of /D) Ort [wi]
=00 (Or) * (commutativity of*/[)

= r)* (** definition inl™)

=(0r) 1 O

PROPOSITION15: If the upward/downward operators fosatisfy the properties [1]

through [4], then the upward/downward operatdim one ofits weakeningl™’
satisfy them too.

proof.
(self-conservation P [wi]
= (self-conservation iifv)
HENIT) (- definition inl™)
=-p O

(neighborhood compatibili)y

OrrGs r (- definition inl™)

[5,sTH 0 d r, ST r (self-conservation i)

O O tt'mr s t, s
(neighborhood compatibility ift + [w1])

Granularity in qualitative space and time representation (9/12/01 23:31) 737



738 COMPUTATIONAL INTELLIGENCE
[Qo,...th B titg =sOty =t 0 i O[1n],N(ti_1,4)]
O th,..th B ity =t Oty = 00§ O[2m],N(t{_1,t))]
E[] t=0'= r]
O Oioon,s=t O
Hi On+1n+m+1],5 =ti’_n_1H

[&),...%.{.m.{.l g-) |:| r,% = SD%+m+l = S’

i Ofin+m+1,[N(§-1,§) (0§ = 05
(application ofi] and simplification)

O

0 (ro,...rp B rirg=rOrp=r' i O[1p],N'(rj-g,r) 0
(Y - distributivity) (-p)?t (* and - definition inl™)
= [ @) * (Y commutativity)
=M-pP) * (%- commutativity inl)
= () * (‘0 commutativity)
=-p * [wi]
=P * (- definition inl™")
= ,p? 0
(inverse compatibility r [wil]

=[Mr (inverse compatibility if” and
monotony of weakening

00 ﬂ r' (sub-commutativity oflovern)

r'md r
0O No r [w3]
r'md r
O Noaor (- definition inl™)
r'gggd r
= ¢
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LIST OF FIGURE CAPTIONS

Figure 1. The same scene at three different granularities. It is taken as a spatial metaphor for geauiarity
used throughout the paper.

Figure 2. Neighborhood graphs fofa) instant-to-instant relations, (b) interval-to-interval relatiqfrom
(Nokel 1988)). Theneighborhood graph imade ofrelations asnodesand conceptual neighborhood a&siges
(converse relationships are denoted with an “i” added at the end for the sake of readability).

Figure 3. Transposition of Ligozat (1990) framework on the A-neighborhood dgeaphnode is labeledavith
the number of endpoints that its relationship constrains (resp. doesnsitain) when one of the intervals is
given. Theupward (resp. downward)conversion operator is obtained lgathering, foreachrelation, the
reachable nodes by following a path with strictly ascending labels.

Figure 4 (from (Hernandez 1994)): Three sets of directional relationships (from the coarser to the finer).
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LIST OF TABLE CAPTIONS

Table 1. The 3 relationships between instardaady.

Table 2. Composition table between instant relationships.

Table 3 (from (Allen 1983)). The 13 relationships between two intervataly.

Table 4. The 13 relationships between intervals expressed through relationships between interval endpoints.
Table 5. Each column represents a possible conversion for = and each row represents a possible conversions for
<. Because the conversion for > is constrained by [3] to be the converse of that of <, itiamsmgrechere.

Thus, eachcell represents a conversion operafdefined onthe base relations). It contains the numbers
corresponding to constraints violated by the corresponding opéaforethe backslash, thoseaolated by <;

after it, those violated by the conversion of =).

Table 6. The six possible conversion operators for = and <.

Table 7. From the 6 possibleperatorssatisfying individual properties[1], [2] and [3], 36 couples of
upward/downward operators can be considered. Among them only the Ii®addziwith an «arecompatible

with the firstequation of property4]. But, because¢he compatibility must also be true in theverseorder,

only the couples compatibles in both orders remain.

Table 8. Upward and downward granularity conversions between instants.

Table 9. Transformations of upward and downward operators between instants into interval relation quadruples.

Table 10. Upward and downward conversion operators between intervals.

Table 11. Conversion operators for topological spatial relationship between paints (A

Table 12. Conversion operators for topological spatial relationship between agpas (A



