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Abstract: The classical model of the chemostat with one substrate, one species and a Haldane
type growth rate function is considered. The input substrate concentration is supposed to
be constant and the dilution rate is considered as the control. The problem of globally
asymptotically stabilizing a positive equilibrium point of this system in the case where the
measured concentrations are delayed and piecewise constant with a piecewise constant control
is addressed. The result relies on the introduction of a dynamic extension of a new type.

1. INTRODUCTION

Biological systems suffer of a systematic lack of sensors
and actuators. However, even more crucial is the fact
that real monitoring systems like substrate or biomass
measurements, when available, deliver discrete measures of
these variables with delays which may be important with
respect to the proper dynamics of the system. From the
best of authors’s knowledge, this problem has never been
taken into account explicitly. In practice, the control laws
that are designed using continuous models are discretized
and users rely on the robustness of the control laws with re-
spect to delays of the measurements to control the system
effectively. But no rigorous theoretical study corroborates
the results and only small delays and sampling period
intervals are allowed.

These remarks motivate the present work. We consider
the classical model of the chemostat described in Smith
et al. [1995] with one substrate and one species, with
a Haldane type growth rate, a constant input substrate
concentration. The dilution rate is used as a control.
Controlling this system is a challenging problem, mostly
because it admits two equilibrium points when the dilution
rate is constant. One is locally exponentially stable and the
other is unstable. It has been considered, in a more general
context, in Mazenc et al. [2010], when a pointwise delay is
present in the input, under the assumption that both the
dilution rate and the measured variables are continuous
functions.

To the best of our knowledge, the case of piecewise con-
stant inputs and retarded discrete measurements has never
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been considered. We thus address the problem of globally
asymptotically stabilizing, on the positive orthant, a posi-
tive equilibrium point of the system described above in the
case where the measured concentrations are delayed and
piecewise constant with a piecewise constant control with
delay. No limitation on the size of the delay or the largest
sampling interval is imposed. The proposed result relies on
the introduction of a time-varying dynamic extension of a
new type. It leads to Lipschitz continuous time-varying
control laws. The control laws as well as the stability
analysis we present are of a new type. In particular, they
are very different from those of Mazenc et al. [2010],
Gajardo et al. [2009], Robledo [2009], Mazenc et al.
[2009], which do not seem to extend to the problem we
consider.

The paper is organized as follows. The considered model of
the chemostat is recalled in Section 2. The main result is
stated and proved in Section 3. Simulations are presented
in Section 4. Concluding remarks are given in Section 5.

Notation and definitions.

• Denote | · | the Euclidean norm of matrices and vectors
of any dimension.

• Given φ : I → R
p defined on an interval I, denote its

(essential) supremum over I by |φ|I .

• Let p be any positive integer. We denote Cin =
C([−τ, 0], Rp) the set of all continuous R

p-valued functions
defined on a given interval [−τ, 0].

• For a continuous function ϕ : [−τ, +∞) → R
k, for all

t > 0, the function ϕt defined by ϕt(θ) = ϕ(t + θ) for all
θ ∈ [−τ, 0] is sometimes called translation operator.



• We say that an equilibrium point is globally asymptoti-
cally stable, if is locally stable and all the trajectories with
initial conditions in the positive orthant converge to the
equilibrium point.

• The notation will be simplified whenever no confusion
can arise from the context.

2. MODEL OF CHEMOSTAT

Consider the model defined by
{

Ṡ(t) = D(t)[Sin − S(t)] − µ(S(t))x(t),
ẋ(t) = [µ(S(t)) − D(t)]x(t),

(1)

where S ∈ R is the substrate, x ∈ R is the biomass and Sin

is a positive constant. The variable D represents a dilution
rate, and thus all its values are nonnegative.

We assume that the function µ is of class C1 and such
that:

(i) µ(0) = 0,

(ii) there exists a value

S ∈ (0, Sin) (2)

such that µ′(S) > 0 for all S ∈ (0, S) and µ′(S) 6 0 over
(S, +∞),

(iii) lim
S→+∞

µ(S) = 0.

The properties of µ imply that the positive orthant is
a positively invariant set of (1). Throughout the paper,
we consider solutions with positive initial conditions i.e.
x(0) > 0 and S(ℓ) > 0 for all ℓ ∈ [−τ, 0]. It is worth
noticing that Haldane functions, i.e. functions of the type

µ(S) =
aS

b + S + cS2
, (3)

with a > 0, b > 0, c > 0 satisfy the requirements (i), (ii),

(iii) with S =
√

b
c
.

We introduce two sequences of asynchronous sampling
instants ti and mi. We let t0 = 0, m0 = 0 and assume
that there are two positive constants ν1 > 0, ν2 > ν1 such
that, for all i ∈ N,

ti+1 − ti ∈ [ν1, ν2] (4)

and
mi+1 − mi ∈ [ν1, ν2]. (5)

We consider the case where

D(t) = D(ti) , ∀t ∈ [ti, ti+1) (6)

and where the output is

y(t) = S(mi − τ) , ∀t ∈ [mi, mi+1), (7)

where τ is a positive constant. Thus D has to be piecewise
constant and y corresponds to discrete measurements with
a constant delay.

3. MAIN RESULT

3.1 Control design

Let S∗ be a constant in the interval (0, S). Then, the fact
that µ is inceasing over (0, S) ensures that µ(S∗) > 0.
Therefore, when D(t) is identically equal to D∗ = µ(S∗),

the point (x∗, S∗) with x∗ = Sin − S∗ is an equilibrium
point of (1) and (x∗, S∗) ∈ (0, +∞) × (0, S). Observe for
later use that since the function µ is increasing over (0, S),
the inequalities

0 < µ(S∗) < µ(S) (8)

are satisfied.

The control objective we consider is the stabilization of
such a point (x∗, S∗) when the output is (7) and the control
of the type (6).

To begin with, we define two functions. Let θ : R → [0, 1]
be defined by

θ(ℓ) = min {max{0, ℓ}, 1} (9)

and ϕ : R → [0, 1] be defined by

ϕ(ℓ) = min

{

max

{

0,
S − ℓ

S − S∗

}

, 1

}

. (10)

We introduce a constant

T =
1

D∗

ln

(

µ(S)Sin

[µ(S) − D∗][Sin − S]

)

+ ν2 + τ > 0. (11)

We are ready to state and prove the main result of the
paper:

Theorem 1. Consider the system (1) with the dynamic
extension:







ṗ(t) = ϕ(y(t))θ

(

t − 7T

T

)

,

p(t) = 0 , ∀t ∈ [−τ, 0]
(12)

with y(t) defined in (7) and T in (11) and the feedback
Df (t) defined, for all t ∈ [ti, ti+1), by:

Df (t) = θ(p(ti))θ

(

ti − T

T

)

D∗

+

[

1 − θ

(

ti − T

T

)]

D∗,

(13)

where D∗ is the value such that D∗ = µ(S∗). Then this
systems admits the point (S∗, x∗), x∗ = Sin − S∗ as a
globally asymptotically stable equilibrium point.

3.2 Proof of Theorem 1

Let us prove that the dynamic feedback (12)-(13) renders
the point (S∗, x∗) globally attractive for (1).

Let (S(t), x(t)) be a positive solution of (1)-(13). We
analyze its behavior. To begin with, we observe that the
growth properties of the nonlinear terms imply that the
finite escape time phenomenon does not occur.

Next, we consider a value of t such that t > 3T. Let i ∈ N

be such that t ∈ [ti, ti+1). Since T > ν2, we deduce that
ti > 2T. Consequently ti−T

T
> 1. From the definition of θ,

it follows that
Df(t) = θ(p(ti))D∗. (14)

Therefore we have, for all t > 3T














Ṡ(t) = θ(p(ti))D∗[Sin − S(t)] − µ(S(t))x(t),
ẋ(t) = [µ(S(t)) − θ(p(ti))D∗]x(t),

ṗ(t) = ϕ(S(mi − τ))θ

(

t − 7T

T

)

, when t ∈ [mi, mi+1).

(15)



Since, for all t ∈ [0, 7T], θ
(

t−7T

T

)

= 0, and p(t) = 0 for all
t ∈ [−τ, 0], we deduce that, for all t ∈ [−τ, 7T], p(t) = 0.
Let k is the integer such that 5T ∈ [mk, mk+1). It follows
that, for all t ∈ [−τ, mk], p(t) = 0. Moreover, from the
definitions of k and the inequality T > ν2, it follows that
mk > 4T. Consequently, for all t > 3T,


















Ṡ(t) = θ(p(ti))D∗[Sin − S(t)] − µ(S(t))x(t),
ẋ(t) = [µ(S(t)) − θ(p(ti))D∗]x(t),

ṗ(t) = ϕ(S(mi − τ))θ

(

t − 7T

T

)

, when t ∈ [mi, mi+1),

p(t) = 0 , when t ∈ [3T, mk],
(16)

Now, to prove that S(t) cannot be always larger that S,
we proceed by contradiction. We assume that S(t) > S for
all t > mk − τ and we show that a contradiction occurs.

Let us consider t > mk. Then there is an integer l such
that t ∈ [ml, ml+1). Then ml − τ > mk − τ . Therefore
our assumption implies that S(ml − τ) > S. From the
definition of ϕ, it follows that ϕ(S(ml−τ)) = 0. We deduce
that, for all t > mk, ṗ(t) = 0. Since p(mk) = 0, it follows
that, for all t > mk, p(t) = 0. Consequently, for all t > mk,

{

Ṡ(t) = −µ(S(t))x(t),
ẋ(t) = µ(S(t))x(t).

(17)

Therefore both the inequalities S(t) > 0 and Ṡ(t) 6

0 are satisfied for all t > mk. We deduce that S(t)
converges to a nonnegative value S∞. Since S(t) > S
for all t > mk, it follows that S∞ > 0. Consequently,
x(t) goes to +∞ because (17) there exists TL ≥ mk such

that µ(S(t)) ≥ µ(S∞)
2 for all t ≥ TL, which implies that

x(t) ≥ e
µ(S∞)

2 (t−TL)x(TL) for all t ≥ TL. On the other
hand, a consequence of (17) is that x(t) + S(t) = x(mk) +
S(mk) for all t > mk. It follows that x(t) 6 x(mk)+S(mk)
for all t > mk. This yields a contradiction.

We conclude that there exists a value r > mk−τ such that
S(r) < S.

Next, we establish that for all t > r, S(t) < S. From
mk > 4T and the inequality T > τ , it follows that r > 4T−
τ > 3T.

Now, observe that, we establish in Appendix A the follow-
ing result

Lemma 1. Let
z = S + x. (18)

Then, for all t > T, the inequality

[D∗ − µ(S)][Sin − S] + µ(S)[Sin − z(t)] < 0 (19)

is satisfied.

We deduce from Lemma 1 and from the inequality r > T

that, for all t > r, the inequality

[D∗ − µ(S)][Sin − S] + µ(S)[Sin − z(t)] < 0 (20)

is satisfied. Now, to prove that for all t > r, S(t) < S, we
proceed by contradiction. We assume that there is ℓ > r
such that S(ℓ) = S and, for all t ∈ [r, ℓ), S(t) < S. Then,
using x = z − S, we obtain

Ṡ(ℓ) = Df (ℓ)[Sin − S(ℓ)] − µ(S(ℓ))[z(ℓ) − S(ℓ)].

Since S(ℓ) = S, it follows that

Ṡ(ℓ) = Df(ℓ)[Sin − S] − µ(S)[z(ℓ) − S].

This equality rewrites as

Ṡ(ℓ) = [Df (ℓ) − µ(S)][Sin − S] + µ(S)[Sin − z(ℓ)].

Since Sin − S > 0 and Df(ℓ) 6 D∗, we deduce that

Ṡ(ℓ) 6 [D∗ − µ(S)][Sin − S] + µ(S)[Sin − z(ℓ)].

Therefore, we deduce from (20) that Ṡ(ℓ) < 0. This yields
a contradiction with the definition of ℓ.

Therefore we can conclude that, for all t > r, S(t) < S.

The next part of the proof is devoted to the proof of the
attractivity of the point (S∗, x∗). To establish this result,
we demonstrate first that the variable p goes to +∞. We
proceed by contradiction. We assume that p does not go
to +∞. Since p is non-decreasing over [0, +∞), then it
converges to a finite value p∞. Then, necessarily, p∞ > 0
because, for all t > r, S(t) < S, which implies that for all
t > 9T + r, ṗ(t) > 0. Therefore, for all t > 3T,

{

Ṡ(t) = θ(p∞ + q(t))D∗[Sin − S(t)] − µ(S(t))x(t),
ẋ(t) = [µ(S(t)) − θ(p∞ + q(t))D∗]x(t),

(21)
with q(t) = p(ti) − p∞ for all t ∈ [ti, ti+1). It follows that







ż(t) = θ(p∞ + q(t))D∗[Sin − z(t)],

Ṡ(t) = [θ(p∞ + q(t))D∗ − µ(S(t))][Sin − S(t)]
+µ(S(t))[Sin − z(t)].

(22)

Since p∞ > 0 and q(t) converges to zero when t goes to
+∞, it follows that there is a value ta > 0 such that,
for all t > ta, θ(p∞ + q(t)) ∈ [θ(1

2p∞), 1]. It follows that
Sin−z(t) converges to zero when t goes to +∞. Therefore
the S-subsystem of (22) can be rewritten as

Ṡ(t) = [θ(p∞)D∗ − µ(S(t))][Sin − S(t)] + h(t), (23)

where
h(t) = [θ(p∞ + q(t)) − θ(p∞)]D∗[Sin − S(t)]

+µ(S(t))[Sin − z(t)]
(24)

is a function which converges to zero when t goes to +∞.
From the definition of D∗ and the fact that θ(p∞) ∈ (0, 1],
we deduce that there is one and only one constant Sl ∈
(0, S∗] such that µ(Sl) = θ(p∞)D∗. Let us consider the
Lyapunov function V (S) = 1

2 [S − Sl]
2. Its time derivative

along (23) satisfies, for all t > r,

V̇ (t) = [S(t) − Sl][µ(Sl) − µ(S(t))][Sin − S(t)]
+[S(t) − Sl]h(t).

(25)

Since the fact that µ is increasing over (0, S) ensures that
[S(t) − Sl][µ(Sl) − µ(S(t))] 6 0, it follows that

V̇ (t) 6 [Sin − S][S(t) − Sl][µ(Sl) − µ(S(t))]
+[S(t) − Sl]h(t).

(26)

Since µ′(S) > 0 for all s ∈ (0, S), it follows that there is a
constant g > 0 such that, for all t > r,

V̇ (t) 6 −g[S(t) − Sl]
2 + [S(t) − Sl]h(t). (27)

From the triangle inequality, we deduce that

V̇ (t) 6 −gV (S(t)) +
1

2g
h(t)2. (28)

Since h(t) converges to 0 when t goes to +∞, we deduce
that V (S(t)) converges to zero when t goes to +∞. From
this property, we deduce that that S(t) converges to
Sl ∈ (0, S∗] when t goes to +∞. From the definition of
the function ϕ, we deduce that there exists Ta > r such



that for all t > Ta, the inequality ṗ(t) >
1
2 is satisfied. We

obtain a contradiction with the fact that p(t) converges to
a finite value.

We conclude that p(t) goes to +∞ when t goes to +∞.
Then there exists Tb > 0 such that, for all t > Tb

{

Ṡ(t) = D∗[Sin − S(t)] − µ(S(t))x(t),
ẋ(t) = [µ(S(t)) − D∗]x(t)

(29)

and S(t) < S. Then, arguing as we did to prove the
convergence of S(t) to Sl, one can prove that the trajectory
(S(t), x(t)) converges to (S∗, x∗). Therefore (S∗, x∗) is
globally attractive. In addition, one can easily prove that
(S∗, x∗) is a locally exponentially stable equilibrium point
of (29) by studying the linear approxiamtion of this system
around (S∗, x∗). We deduce from the definition of global
asymptotic stability we have adopted that (S∗, x∗) is a
globally asymptotically stable equilibrium point of (1) in
closed-loop with (12)-(13).

This concludes the proof.

4. SIMULATIONS

In this section, we illustrate our approach with simula-
tions. The parameters of the chemostat model used in
these simulations are given in Figure 1. The corresponding
Haldane function is plotted in Figure 1. For the simulations
which were performed over 300 times units, the delay in the
measurement of S was 2 time units, the sampling period
for the measurement was 4 times units while the sampled
period for the control was chosen to be 1 time unit. It
should be noticed that such values are quite realistic with
respect to practical considerations about the dynamics of
such a system.

Four simulations are presented. Two of these correspond to
initial conditions x0 = 30 and S0 = 0 with or without noise
and two other simulations were conducted with initial
conditions given by X0 = 30 and S0 = 90. It should be
noticed that for any of these initial conditions, the system
is unstable in open loop. In all cases, the objective was to
stabilize the substrate concentration around the setpoint
defined as S∗ = 8.

The simulations results are presented in Figure 2. Each line
corresponds to one simulation with S in the first column,
x in the second column and D in the last one. The first line
corresponds to the noise free case for the initial condition
x0 = 30 and S0 = 0. The second line has the same initial
conditions but with a 0.1 noise over signal ratio added
on the measurement of S. The last two rows represent
simulations for the initial conditions x0 = 30 and S0 = 90.
For the first column (the substrate concentration), both
the continuous signal and the delayed and sampled one
are represented.

K (t−1) g (l2.mg−2) L (mg.l−1) Sin (mg.l−1)

1.25 0.1111 7.65 100

Table 1. Model parameters
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Fig. 1. The Haldane function.
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Fig. 2. Four simulations.

5. CONCLUSION

We have solved the problem of rendering globally asymp-
totically stable positive equilibrium points of a model of
chemostat with a growth function of Haldane type, the
substrate concentration as output in the case of retarded
and sampled control and output. The key idea of the ap-
proach consists in the introduction of a dynamic extension
which leads to a time-varying dynamic output feedback.
Much remains to be done. In particular, the case where
several species are present is of interest.
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Appendix A. PROOF OF LEMMA 1

The variable z satisfies

ż(t) = Df (t)[Sin − z(t)], (A.1)

for all t > 0.

Now, we consider a value of t such that t ∈ [0, T]. Then,
for all integer j such that tj 6 t, the inequality tj −T 6 0
is satisfied. According to the definition of θ, it follows that

ż(t) = D∗[Sin − z(t)]. (A.2)

It follows that Sin − z(t) = e−D∗t[Sin − z(0)] 6 e−D∗tSin

because z(0) > 0. Therefore

Sin − z(T) 6 e−D∗TSin. (A.3)

Now, observe that, for all t > T, the equality

Sin − z(t) = e
−

∫

t

T
Df (ℓ)dℓ

[Sin − z(T)]

is satisfied. This equality, in combination with (A.3),
implies that, for all t > T,

Sin − z(t) 6 e
−

∫

t

T
Df (ℓ)dℓ

e−D∗TSin 6 e−D∗TSin.

From the definition of T, it follows that

Sin − z(t) 6 e
− ln

(

µ(S)Sin

[µ(S)−D∗][Sin−S]

)

Sin

=
[µ(S) − D∗][Sin − S]

µ(S)
.

We deduce that, for all t > T,

[D∗ − µ(S)][Sin − S] + µ(S)[Sin − z(t)]
< [D∗ − µ(S)][Sin − S]

+[µ(S) − D∗][Sin − S] = 0.

(A.4)


