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A Normal Form Algorithm For Regular Differential

Chains

François Boulier and François Lemaire

Abstract. This paper presents a new algorithm for computing the normal form of a differential

rational fraction modulo differential ideals presented by regular differential chains. An application

to the computation of power series solutions is presented and illustrated with the new Differen-

tialAlgebra MAPLE package.

Keywords. computer algebra; differential algebra; normal form; regular differential chain; charac-

teristic set; power series.

1. Introduction

This paper presents an algorithm for computing the normal form of a differential rational fraction

modulo differential ideals presented by regular differential chains. Regular differential chains, intro-

duced by Lemaire (2002a), slightly generalize Ritt’s characteristic sets. An equivalent notion was

introduced by Hubert (2000).

Even when restricted to differential polynomials, the normal form algorithm has various ap-

plications: it permits to decide the equivalence of two differential polynomials modulo a differential

ideal presented by a regular differential chain, and it permits to design and implement FGLM-like

(Faugère et al., 1993) algorithms, such as (Boulier, 1999). In this paper, one focuses on its application

to the computation of power series solutions of regular differential chains, which is an integration

related problem. In this context, it simplifies the exposition of the theory. Indeed, the general formula

of a power series expansion of some function u(x) writes:

u(x) = u(0) + x u̇(0) +
x2

2
ü(0) + · · ·

When this function is a solution of some differential ideal, presented by some regular differential

chain C, the values u(0), u̇(0) and ü(0) cannot be chosen freely, since the functions u(x), u̇(x) and

ü(x) must annihilate all the equations p = 0 such that p belongs to the differential ideal. A simple

way to state this basic fact consists in replacing each u(x), u̇(x) and ü(x) by its normal form, with

respect to C. One gets:

u(x) = NF(u, C)(0) + x NF(u̇, C)(0) +
x2

2
NF(ü, C)(0) + · · ·

The use of normal forms is not necessary: (Boulier et al., 2009, sect 7) gave a method, which does

not rely on any normal form method, but which is more cumbersome. Observe that the use of normal

forms may make it easier to find recurrence relations among the monomials of the power series, and

thereby, may help finding close form solutions.



2 François Boulier and François Lemaire

A normal form algorithm was already presented by Boulier and Lemaire (2000). However, it

only applied to differential polynomials. The algorithm presented here is new, since it applies to

rational differential fractions. This new feature permits us to state a new result: Proposition 5.5.

It might also be interesting in connection with the integration problem of systems of differential

equations since, in this area, considering rational differential fractions rather than basic differential

polynomials, may give some more freedom to investigate, say, integrating factors.

The paper is organized as follows. Sections 2 and 3 recall some basics of differential alge-

bra and on regular differential chains. Section 4 introduces an algorithm for computing inverses of

differential polynomials modulo differential ideals. This algorithm is applied in Section 5 for the

normal form algorithm, which consitutes the main result of this paper. Section 6 develops the ap-

plication to formal power series. We take this opportunity to widen the audience of an analyticity

theorem, proved by Lemaire (2002a). Section 7 shows implementations of these methods in the new

DifferentialAlgebra MAPLE package, developed by the first author and Edgardo S. Cheb-Terrab.

Appendix A provides some detailed material for Sections 4 and 5.

2. Basics of differential algebra

The reference books are that of Ritt (1950) and Kolchin (1973). More recent texts are Buium and

Cassidy (1998); Sit (2002); Wang (2003); Hubert (2003b). A differential ring R is a ring endowed

with finitely many, say m, abstract derivations δ1, . . . , δm i.e. unary operations which satisfy the

following axioms:

δ(a+ b) = δ(a) + δ(b), δ(a b) = δ(a) b+ aδ(b), (∀ a, b ∈ R)

and which are assumed to commute pairwise. This paper is mostly concerned by a differential

polynomial ring R in n differential indeterminates u1, . . . , un with coefficients in a commutative

differential field K of characteristic zero, say K = Q. Letting U = {u1, . . . , un}, one denotes

R = K{U}, following Ritt and Kolchin. The set of derivations generates a commutative monoid

w.r.t. the composition operation. It is denoted:

Θ = {δa1

1 · · · δam

m | a1, . . . , am ∈ N}

where N stands for the set of the nonnegative integers. The elements of Θ are the derivation oper-

ators. If θ = δa1

1 · · · δam

m is a derivation operator then ord θ = a1 + · · · + am denotes its order.

The monoid Θ acts on U , giving the infinite set ΘU of the derivatives. One indices derivations with

letters e.g. δx, δy and one denotes derivatives using subscripts e.g. uxy denotes δx δy u.

If A is a finite subset of R, one denotes (A) the smallest ideal containing A w.r.t. the inclusion

relation and [A] the smallest differential ideal containing A. Let A be an ideal and S = {s1, . . . , st}
be a finite subset of R, not containing zero. Then

A : S∞ = {p ∈ R | ∃ a1, . . . , at ∈ N, sa1

1 · · · sat

t p ∈ A}

is called the saturation of A by the multiplicative family generated by S. The saturation of a (differ-

ential) ideal is a (differential) ideal (Kolchin, 1973, chap. I, cor. to lem. 1).

Definition 2.1. A ranking is a total ordering over ΘU which satisfies the two following axioms:

1. v ≤ θv for every v ∈ ΘU and θ ∈ Θ,

2. v < w ⇒ θv < θw for every v, w ∈ ΘU and θ ∈ Θ.

See (Kolchin, 1973, chap. I, sect. 8). Rankings such that ord θ < ordφ ⇒ θu < φv for every

θ, φ ∈ Θ and u, v ∈ U are called orderly. Rankings such that θu < φu ⇒ θv < φv for every

θ, φ ∈ Θ and u, v ∈ U are called Riquier rankings. These two special types of rankings will be

especially useful in section 6.3.
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Fix a ranking. Consider some differential polynomial p /∈ K. The highest derivative v w.r.t.

the ranking such that deg(p, v) > 0 is called the leading derivative of p. It is denoted ld p. The

leading coefficient of p w.r.t. v is called the initial of p. The differential polynomial ∂p/∂v is called

the separant of p. If C is a finite subset of R \K then IC denotes its set of initials, SC denotes its

set of separants and HC = IC ∪ SC .

A differential polynomial q is said to be partially reduced w.r.t. p if it does not depend on any

proper derivative of the leading derivative v of p. It is said to be reduced w.r.t. p if it is partially

reduced w.r.t. p and deg(q, v) < deg(p, v). A set of differential polynomials of R \K is said to be

autoreduced if its elements are pairwise reduced. Autoreduced sets are necessarily finite (Kolchin,

1973, chap. I, sect. 9). To each autoreduced set C, one may associate the set L = ldC of the leading

derivatives of C and the set N = ΘU \ ΘL of the derivatives which are not derivatives of any

element of L (the derivatives “under the stairs” defined by C).

Ritt’s reduction algorithm is a generalization of the classical pseudoremainder algorithm de-

fined in (Knuth, 1966, vol. 2, page 407), to differential polynomials. Ritt’s algorithm is presented in

(Kolchin, 1973, chap. I, sect. 9). Given a differential polynomial p and an autoreduced set C, it per-

mits to compute a set of exponents a1, . . . , at ∈ N and a differential polynomial p′ partially reduced

w.r.t. C (i.e. w.r.t. each element of C) such that sa1

1 · · · sat

t p ≡ p′ mod [C] where s1, . . . , st denote

the separants of the elements of C. Given a differential polynomial p′ partially reduced w.r.t. C,

it permits to compute a set of exponents b1, . . . , bt ∈ N and a differential polynomial p′′ reduced

w.r.t. C such that ıb11 · · · ıbtt p′ ≡ p′′ mod (C) where i1, . . . , it denote the initials of the elements

of C. When p′′ = 0 one says that p′ is reduced to zero by C.

3. Regular differential chains

In this section, one considers a set C = {c1, . . . , ct} of R and one denotes A = [C]:H∞

C . The follow-

ing definition provides a compact presentation of regular differential chains, which were introduced

by (Lemaire, 2002a, déf. 5). Roughly speaking they are finite sets of differential polynomials sat-

isfying both the regular chain condition, introduced by Aubry et al. (1999), and the hypotheses of

(Rosenfeld, 1959, Lemma). Very close concepts were introduced by Boulier et al. (2009) and Hubert

(2000).

Definition 3.1. The set C is a regular differential chain if it satisfies the following conditions:

a. the elements of C are pairwise partially reduced and have distinct leading derivatives ;

b. for each 2 ≤ k ≤ t, the initial ik of ck is regular in K[N,L]/(c1, . . . , ck−1) : (i1 · · · ik−1)
∞ ;

c. for each 1 ≤ k ≤ t, the separant sk of ck is regular in K[N,L]/(c1, . . . , ck) : (i1 · · · ik)
∞ ;

d. for any pair {ck, cℓ} of elements of C, whose leading derivatives θku and θℓu are derivatives

of some same differential indeterminate u, the ∆-polynomial

∆(ck, cℓ) = sℓ
θkℓ
θk

ck − sk
θkℓ
θℓ

cℓ ,

where θkℓ denotes the least common multiple of θk and θℓ, is reduced to zero by C, using Ritt’s

reduction algorithm.

Consider a regular differential chain C. Condition a is the differentially triangular condition

of (Boulier et al., 2009, def. 3). It implies that C is triangular, algebraically. Algebraic triangularity

plus condition b is equivalent to the regular chain condition of Aubry et al. (1999). Condition c is

then equivalent to the squarefree regular chain condition of Aubry et al. (1999). See also (Boulier

et al., 2006). Last, condition d is the coherence condition, which is the key condition of (Rosenfeld,

1959, Lemma). See Boulier et al. (2009) and Hubert (2000) for almost equivalent notions.

The following Proposition will be used in the next section. It clarifies the relationship between

regular differential chains and characteristic sets. It can be found in (Hubert, 2003b, cor. 5.3).
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Proposition 3.2. If C is a regular differential chain, then it has the same rank as any characteristic

set of A.

Proof. The initials of C do not belong to (C) : I∞C . By (Aubry et al., 1999, thm 6.1), they are not

reduced to zero by C so that C can be transformed into an autoreduced set, without changing its

rank. We can thus assume that C is autoreduced.1 Since C is squarefree, the separants of C are

regular modulo (C) : I∞C , and this ideal is equal to (C) :H∞

C . Thus, by (Aubry et al., 1999, thm 6.1),

the set C is a characteristic set (in the non-differential sense) of (C) :H∞

C whence, by (Hubert, 2000,

lem. 6.1), it is a characteristic set (in the differential sense) of A. �

4. Inverses

Let C be a regular differential chain of R, defining a differential ideal A, let L = ldC and N =
ΘU \ΘL.

Definition 4.1. Let f be a nonzero differential polynomial of R. An inverse of f is any fraction p/q
of nonzero differential polynomials such that p ∈ K[N ∪ L] and q ∈ K[N ] and f p ≡ q mod A.

Roughly speaking, an inverse p/q is a rational fraction equivalent to 1/f modulo A. This

statement only makes sense if the denominators q and f are regular modulo A. This is clear for q,

since this polynomial is a nonzero element of K[N ], and every nonzero element of K[N ] is regular

modulo A, by (Boulier et al., 2006, thm 1.6) and (Boulier et al., 2009, cor. 4 to thm. 3). This is true

also for f , whenever an inverse of f exists, Proposition 4.3 shows. Before proving it, one needs the

following Lemma, which is a corollary to (Hubert, 2003a, prop. 5.18 and prop. 7.6).

Lemma 4.2. In the ring K(N)[L], the ideals (C) and (C) :H∞

C are equal.

Proof. Denote C = {c1, . . . , ct}. Assume ld c1 < · · · < ld ct. For each 1 ≤ k < t, denote

Ck = {c1, . . . , ck}. The set C is a regular chain, in the non differential sense. Thus the initial ik of ck
is regular modulo the ideal (Ck−1):I

∞

Ck−1
for each 2 ≤ k ≤ t. Thus, by (Boulier et al., 2006, cor. 3.2),

in the ring K(N)[L], the initial ik of ck is invertible modulo the ideal (Ck−1) : I
∞

Ck−1
, for each

2 ≤ k ≤ t. Let us now place ourselves in K(N)[L]. The initial of c1 lies in K(N) and is invertible.

Thus (C1) = (C1) : I
∞

C1
. Assume that, for some 1 < k ≤ t one has (Ck−1) = (Ck−1) : I

∞

Ck−1
. Then

ik is invertible modulo (Ck−1) and (Ck) : I
∞

Ck
= (Ck). Putting the above argument in an inductive

proof, the Lemma is established. �

Proposition 4.3. The differential polynomial f is regular modulo A if and only if f admits an

inverse.

Proof. By (Boulier et al., 2009, cor. 4 to thm. 3), a differential polynomial is regular modulo A =
[C] :H∞

C if and only if its partial remainder with respect to C is regular modulo (C) :H∞

C . One may

thus assume that f is partially reduced with respect to C. This implies that f ∈ K[N ∪ L].
The implication from left to right. One assumes f is regular modulo (C) : H∞

C . Then f is

nonzero. If f ∈ K then f is regular and admits an inverse. Assume f /∈ K. By (Boulier et al.,

2006, thm. 1.1 and cor. 1.15), it is invertible modulo (C) : H∞

C in the ring K(N)[L]. In this ring,

(C) and (C) : H∞

C are the same ideal, by Lemma 4.2 whence there exists a polynomial r such

that r f − 1 ∈ (C). Multiplying by some suitable nonzero polynomial q ∈ K[N ] in order to clear

denominators and denoting p = r q, one gets a relation p f − q ∈ (C) in K[N ∪L] hence an inverse

of f .

1(Aubry et al., 1999, thm 6.1) write that Ritt does not require his characteristic sets to be autoreduced. This is a (minor)

mistake, which explains why our proof starts with an autoreduction step.



A Normal Form Algorithm For Regular Differential Chains 5

The implication from right to left. Assume f is not regular modulo (C) : H∞

C . For each dif-

ferential polynomial p, the product f p is not regular2 modulo (C) : H∞

C and cannot be equivalent

to a regular differential polynomial. By (Boulier et al., 2006, thm 1.6), every nonzero q ∈ K[N ] is

regular modulo (C) :H∞

C . Thus f has no inverse. �

function Inverse(f, C)
Parameters

f is a differential polynomial

C is a regular differential chain

Result

an inverse of f or an error

Comment

the code uses the AlgebraicInverse function (Appendix A)

begin

let r be the partial remainder of f with respect to C
let h be the product of separants of C such that h f ≡ r mod A

The try-catch statement is only given to emphasize the fact that

the function call may raise exceptions (see Appendix A)

try

p/q := AlgebraicInverse(r, C)
catch:

error

end try

return h p/q
end

FIGURE 1. The Inverse function

Proposition 4.4. Assume the Inverse function of Figure 1 returns a fraction h p/q. Then, this frac-

tion is an inverse of f . Moreover, either f ∈ K and h p/q = 1/f ∈ K, or f /∈ K, and the leading

derivative of h p is lower than or equal to that of f .

Proof. One first proves that h p/q is an inverse of f . After the partial reduction, one has h f ≡ r
modulo A. Thus, using the fact that h ∈ K[N ∪L], if p/q is an inverse of r, then h p/q is an inverse

of f . One thus just needs to assume that the call to AlgebraicInverse succeeds and to prove that p/q
is an inverse of r. The rational fraction p/q is the inverse of r modulo (C) in K(N)[L] (Boulier

et al., 2006, page 89). One has p ∈ K[N ∪ L] and q ∈ K[N ] and a relation r p − q ∈ (C), in

K(N)[L]. Multiplying by a suitable polynomial b in K[N ], one gets b (r p− q) ∈ (C) ⊂ (C) :H∞

C

in the ring K[N ∪ L]. By (Boulier et al., 2006, thm 1.6), the differential polynomial b is regular

modulo (C) :H∞

C . Thus r p− q ∈ (C) :H∞

C and p/q is an inverse of r.

One now proves the second claim of the Proposition. The case f ∈ K is clear. Assume f /∈ K
and denote v = ld f . The separants which occur in h as factors are the ones of the elements of C
actually involved in the reduction process. They have leading derivatives less than or equal to v. The

elements of C involved in the computation of the algebraic inverse of r have leading derivatives

less than or equal to v (Boulier et al., 2006, page 89). Thus the second claim of the Proposition is

proven. �

2In a Nötherian ring R, an element b is regular modulo an ideal B if and only if it belongs to none of the associated prime

ideals of B. We use this well-know result (Zariski and Samuel, 1958, chap. IV, cor. 3 to thm. 11) with respect to the ideal

(C) :H∞
C

in the ring K[N ∪ L]. The fact that N ∪ L may be infinite does not raise any theoretical difficulty since we may

always restrict this set to the finite set of indeterminates which actually occur in C.
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The Inverse function may raise an error, either because f is zero modulo A, or, because a zero

divisor modulo A (thereby a factorization of some element of C) is exhibited. In the second case, the

exhibited zero divisor may be either f or some differential polynomial arising in some intermediate

computation. For that reason, it may happen that the Inverse function fails to compute an inverse of

a differential polynomial f , even if it is regular modulo A. These issues are detailed in Appendix A.

In the next section, it is assumed that inverses of the initials and separants of C can be com-

puted. The initials and separants are regular modulo A so that they admit inverses. However, as

stated above, the Inverse function may fail to compute them. In that case, a factorization of some

element of C is exhibited and the chain C can be decomposed into two regular differential chains.

We thus assume that such further decompositions are already performed. This assumption definitely

makes sense since, close variants of the functions of Appendix A, which may raise the exceptions,

were probably applied to the initials and separants of C, in order to check conditions b and c of

Definition 3.1.

5. The normal form algorithm

Definition 5.1. Let a/b be a rational differential fraction, with b regular modulo A. A normal form

of a/b modulo C is any rational differential fraction f/g such that

1. f is reduced with respect to C ;

2. g belongs to K[N ] (and is thus regular modulo A),

3. a/b and f/g are equivalent modulo A.

Proposition 5.2. Let a/b be a rational differential fraction, with b regular modulo A. The normal

form f/g of a/b exists and is unique. In particular,

4. a belongs to A if and only if its normal form is zero ;

5. f/g is a canonical representative of the residue class of a/b in the total fraction ring of R/A.

Moreover,

6. each irreducible factor of g divides the denominator of an inverse of b, or of some initial or

separant of C .

Proof. One first proves the uniqueness of the normal form. Assume f ′/g′ is another normal form of

a/b. Then, by 3, f/g and f ′/g′ are equivalent modulo A, which implies that f g′ − f ′ g ∈ A. By 1

and 2, f g′ − f ′ g is reduced with respect to C. According to Proposition 3.2, C has the same rank

as any characteristic set of A. Thus f g′ − f ′ g must be zero and the two fractions are equal.

One now proves the existence of the normal form. For this, consider the NF function of Fig-

ure 2 and replace the instruction “pb/qb := Inverse(b, C)” by the statement “let pb/qb be an inverse

of b”. Using Proposition 4.3 and the fact that b is assumed to be regular modulo A, one gets a “theo-

retical” version of the NF function which necessarily returns a fraction. It is thus sufficient to prove

that this fraction satisfies 1, 2 and 3.

1. The differential polynomial rt+1 is a partial remainder. It is thus partially reduced with

respect to C. By Definition 4.1, the differential polynomials p1, . . . , pt lie in K[N ∪ L] i.e. are

partially reduced w.r.t. C. Thus ft+1 is partially reduced w.r.t. C. Let now t ≥ ℓ ≥ 1 be a loop index.

Assume fℓ+1 is partially reduced w.r.t. C and deg(fℓ+1, vk) < deg(ck, vk) for each t ≥ k > ℓ.
Consider the sequence of instructions of the loop body. By the specifications of the pseudoremainder

algorithm, deg(rℓ, vℓ) < deg(cℓ, vℓ). Using Proposition 4.4 and the fact that deg(iℓ, vℓ) = 0, one

sees that deg(pℓ, vℓ) = 0. Thus fℓ is partially reduced w.r.t. C and, using the fact that cℓ does

not depend on vℓ+1, . . . , vt, one has deg(fℓ, vk) < deg(ck, vk) for each t ≥ k ≥ ℓ. Putting

the above argument in an inductive proof, one sees that f = f1 is partially reduced w.r.t. C and

deg(f1, vk) < deg(ck, vk) for each t ≥ k ≥ 1 i.e. that f is reduced w.r.t. C.
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function NF(A, C)
Parameters

A is a rational differential fraction a/b such that a, b ∈ R.

C is a regular differential chain, defining a differential ideal A.

Result

the normal form of A modulo A or an error.

Assumptions

Inverses of the initials and separants of C are (pre-)computed.

begin

The try-catch statement is only given to emphasize the fact that

the function call may raise an error

try

pb/qb := Inverse(b, C)
catch

error

end try

(ft+2, gt+2) := (pb a, qb)
pi/qi := Inverse(si, C) for each separant si of C = {c1, . . . , ct}
using Ritt’s partial reduction algorithm, compute d1, . . . , dt ∈ N and

rt+1 ∈ K[N ∪ L] such that sd1

1 · · · sdt

t ft+2 ≡ rt+1 mod A

ft+1 := pd1

1 · · · pdt

t rt+1

gt+1 := qd1

1 · · · qdt

t gt+2

denote vi = ld ci (1 ≤ i ≤ t) and assume vt > · · · > v1
for ℓ from t to 1 by −1 do

rℓ := prem(fℓ+1, cℓ, vℓ)
let iℓ denote the initial of cℓ
let dℓ ∈ N be such that ıdℓ

ℓ fℓ+1 ≡ rℓ mod (cℓ)
pℓ/qℓ := Inverse(iℓ, C)

fℓ := pdℓ

ℓ rℓ
gℓ := qdℓ

ℓ gℓ+1

end do

return f1/g1
the rational fraction may be reduced by means of a gcd computation

of multivariate polynomials over the field K
end

FIGURE 2. The NF function

2. One actually proves 6, which implies 2. All the differential polynomials gi are products

of denominators of inverses of b and of the initials and separants of C. They belong to K[N ] by

Proposition 4.3. The final reduction may simply remove some factors of g1.

3. At the beginning of the function, a/b and ft+2/gt+2 are equivalent modulo A. After the

partial reduction step,

a

b
≡

ft+2 s
d1

1 · · · sdt

t pd1

1 · · · pdt

t

gt+2 s
d1

1 · · · sdt

t pd1

1 · · · pdt

t

mod A.

Simplify sd1

1 · · · sdt

t ft+2 as rt+1 and each product si pi as qi. One sees that a/b is equivalent to

ft+1/gt+1 modulo A. Let now t ≥ ℓ ≥ 1 be a loop index, consider the sequence of instructions of

the loop body and assume that a/b is equivalent to fℓ+1/gℓ+1 modulo A. After the pseudodivision
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step,

a

b
≡

fℓ+1 ı
dℓ

ℓ pdℓ

ℓ

gℓ+1 ı
dℓ

ℓ pdℓ

ℓ

mod A.

Simplify ıdℓ

ℓ fℓ+1 as rℓ and each product iℓ pℓ as qℓ. One sees that a/b is equivalent to fℓ/gℓ. Putting

the above argument in an inductive proof, 3 is proved.

This concludes the proof of the existence of the normal form. One proceeds with the three last

points.

4. It follows from the uniqueness, 3 and the fact that 0 is a normal form.

5. It follows from 3 and the uniqueness of normal forms.

6. It was proved in 2, above. �

Proposition 5.3. Let a/b be a rational differential fraction. If NF(a/b, C) returns a rational differ-

ential fraction, then this fraction is the normal form of a/b.

Proof. The proof is given by the existence proof of Proposition 5.2, assuming that the initial call to

the Inverse function succeeds. �

Example 1. Take C = {u2
x−4u} and A = uxx. The sequence of pairs computed by the NF function

is (f3, g3) = (uxx, 1), (f2, g2) = (4u2
x, 8u) and (f1, g1) = (16u, 8u). The normal form of A is

16u/(8u) = 2. This basic example shows that the gcd computation at the end of the NF function

may be necessary for obtaining a reduced fraction.

The next proposition is clear but deserves to be stated.

Proposition 5.4. The NF function always succeeds when applied to a differential polynomial.

The next proposition is one of the results of this paper. Observe that items (ii) and (iii) could

not be stated with the restricted algorithm given by Boulier and Lemaire (2000), which only applies

to differential polynomials.

Proposition 5.5. Let a/b and a′/b′ be two rational differential fractions with b and b′ regular mod-

ulo A. Denote f/g and f ′/g′ their normal forms. Then

(i). NF

(

a

b
+

a′

b′
, C

)

=
f

g
+

f ′

g′
,

(ii). NF

(

a

b
·
a′

b′
, C

)

= NF

(

f

g
·
f ′

g′
, C

)

,

(iii). NF
(

θ
(a

b

)

, C
)

= NF

(

θ

(

f

g

)

, C

)

for each derivation operator θ. Moreover, each ir-

reducible factor of the denominator of this rational differential fraction divides the denomina-

tor of an inverse of b, or of some initial or separant of C.

Proof. (i). The rational differential fraction on the right-hand side writes (f g′ + f ′ g)/(g g′). By

Definition 5.1, 1 and 2, applied separately on f/g and f ′/g′, the numerator f g′+f ′ g is reduced with

respect to C and the denominator g g′ belongs to K[N ]. This fraction thus satisfies Definition 5.1, 1

and 2. It also satisfies 3. It is thus a normal form. Equality follows from the uniqueness.

(ii). It follows from Definition 5.1, 3 and the uniqueness property of normal forms.

(iii). The first statement follows from Definition 5.1, 3 and the uniqueness property of normal

forms. The second statement follows from Proposition 5.2, 6. �

Proposition 5.6. Let a/b be a rational differential fraction. If the normal form of a/b exists, then

the normal form of θ (a/b) exists for any derivation operator θ.
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Proof. Let f/g be the normal form of a/b. It is sufficient to consider the case ord θ = 1. By Propo-

sition 5.5, (iii), the normal form of θ (a/b) is equal to the normal form of ((θf) g − f (θg))/g2.

Using Definition 5.1, 2, and the fact that g belongs to K[N ], this rational fraction is equal to

NF((θf) g − f (θg))/g2, which exists by Proposition 5.4. �

6. Power series solutions of regular differential chains

Let C be a regular differential chain of R, defining a differential ideal A, let L = ldC and N =
ΘU \ΘL.

6.1. Purely algebraic solutions

Definition 6.1. Let G0 be a field extension of K. A map φ : ΘU → G0, which extends to a ring

homomorphism K[ΘU ] → G0, is a purely algebraic solution of A if φ annihilates all the elements

of A.

Informally speaking, a purely algebraic solution of a differential ideal A is obtained by view-

ing A as a non-differential ideal of the ring K[ΘU ] and determining a solution of it. The difficulty,

which comes from the fact that the set of unknowns is infinite, is overcome by means of the normal

form algorithm. Under technical conditions, the map φ can be uniquely defined by fixing its value

on the elements on N ∪ L only, as shown by the next two propositions.

Proposition 6.2. Any map φ built as follows provides a purely algebraic solution of A.

1. for all v ∈ N ∪ L, assign to φ(v), values, taken in some field extension G0 of K, which

annihilate the elements of C but does not annihilate their initials and separants,

2. for all v ∈ ΘL \ L, assign then to φ(v) the value of φ(r)/φ(h) where r is the remainder of

Ritt’s full reduction of v by C, and h satisfies h v = r mod A.

Proof. A proof can be found in (Boulier et al., 2009, Sect. 7). This result is implicitly given by

Seidenberg (1956, 1958, 1969) who refers to Ritt (1950). �

The assumption that the initials and the separants must not cancel is needed to avoid φ(h) to

be equal to 0 in the division φ(r)/φ(h). The normal form algorithm provides another method for

computing a purely algebraic solution of A.

Proposition 6.3. Any map φ built as follows provides a purely algebraic solution of A.

1. for all v ∈ N ∪ L, assign to φ(v), values, taken in some field extension G0 of K, which

annihilate the elements of C but does not annihilate the denominators of the inverses of the

initials and separants of C,

2. for all v ∈ ΘL \ L, assign then to φ(v) the value of φ(p)/φ(q) where p/q is the normal form

of v.

Proof. Recall that the function NF is applied to differential polynomials and not to rational differ-

ential fractions.

The map φ is well-defined. Since C is a squarefree regular chain, the ideal (C):H∞

C of the ring

K[N ∪ L] is not trivial and there exists a prime ideal p which contains C and does not contain any

element of HC . The field G0 may thus be chosen to be the field of fractions of K[N ∪ L]/p. Since

the map φ does not annihilate the denominators of the inverses of the initials and separants of C, it

does not annihilate any denominator of any element of NF(ΘU, C) by item 6 of Proposition 5.2.

The map φ is thus well-defined.

The map φ provides a purely algebraic solution of A. It is sufficient to prove that, for any p ∈

R one has φ(p − NF(p, C)) = 0 since, in the case p ∈ A, one has NF(p, C) = 0 by item 4 of
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Proposition 5.2 whence φ(p) = 0. Now, φ(v − NF(v, C)) = 0 for all v ∈ ΘU . It is thus suffi-

cient to prove that, for all p, p′ ∈ R, if φ(p − NF(p, C)) = 0 and φ(p′ − NF(p′, C)) = 0 then

φ(p + p′ − NF(p + p′, C)) = 0 and φ(p p′ − NF(p p′, C)) = 0. The case of the sum is clear by

item 1 of Proposition 5.5. Let us prove that φ(p p′ − NF(p p′, C)) = 0. One has NF(p p′, C) ≡
NF(p, C) NF(p′, C) mod A by item 2 of Proposition 5.5. Since normal forms are partially re-

duced w.r.t. C, the computation of NF(p p′, C) from the product NF(p, C) NF(p′, C) does not im-

ply any differentiation of elements of C. Thus, the congruence NF(p p′, C) ≡ NF(p, C) NF(p′, C)
mod (C) :I∞C holds. Since φ cancels the elements of C and does not annihilate their initials, one has

the relation φ(NF(p p′, C)) = φ(NF(p, C))φ(NF(p′, C)) hence φ(p p′ −NF(p p′, C)) = 0. �

Although Propositions 6.2 and 6.3 seem similar, it appears that Proposition 6.3 is slightly more

restrictive in the following sense: any set of values for L∪N satisfying Proposition 6.3 also satisfies

Proposition 6.2 but the converse is not true3.

Indeed, consider an inverse p/q of some initial or separant h of C. Then p h = q mod A. If

φ(q) 6= 0, then necessarily φ(h) 6= 0. However, one might have φ(h) 6= 0 and at the same time

φ(p) = φ(q) = 0, as the following (algebraic) example shows.

Example 2. Take C = {(v − w)u− z = 0, v2 − 1 = 0}, a single derivation δx and a ranking s.t.

u > v > w > z. Then L = {u, v} and N ∪ L = {u, v, wxi , zxi | i ≥ 0}.

Taking φ(u) = 0, φ(v) = −1, φ(w) = 1, φ(z) = 0 and φ(wxi) = φ(zxi) = 0 for any i ≥ 1,

satisfies the hypotheses of Proposition 6.2 since v − w is the only non trivial initial and separant,

and φ(v − w) = φ(v)− φ(w) = −1− 1 = −2.

However, an inverse of v−w is (v+w)/(1−w2) and φ(1−w2) = 0, so that the set of values

for φ does not satisfy the conditions of Proposition 6.3.

A similar example also shows that the same problem can occur with a separant.

Example 3. Take C = {u2 + (v −w)u = 0, v2 − 1 = 0}, a single derivation δx and fix a ranking

such that u > v > w. Then L = {u, v} and N ∪ L = {u, v, wxi | i ≥ 0}.

Taking φ(u) = 0, φ(v) = −1, φ(w) = 1 and φ(wxi) = 0 for any i ≥ 1, satisfies the

hypotheses of Proposition 6.2 since the separants 2u + v − w and 2 v satisfy φ(2u + v − w) =
0− 1− 1 = −2 and φ(2 v) = −2.

However, an inverse of the separant 2u+v−w has the irreducible form p/((w−1)2(w+1)2),
where p is some polynomial. Since φ((w− 1)2(w+1)2) = 0, the set of values for φ does not satisfy

the conditions of Proposition 6.3.

6.2. Formal power series solutions

This section is dedicated to the construction of formal power series solutions of systems of poly-

nomial differential equations. It is the first half of the way leading to analytic solutions. Reference

texts for this section are Seidenberg (1958, 1969). See also (Rust et al., 1999; Hubert and Le Roux,

2003). The m derivations δ1, . . . , δm are interpreted as m partial derivations w.r.t. m independent

variables x1, . . . , xm. If θ = δa1

1 · · · δam

m is a derivation operator, one denotes xθ = xa1

1 · · ·xam

m and

θ! = a1! · · · am!. One looks for formal power series solutions of A i.e. solutions of the form:

uj =
∑

cj,θ
xθ

θ!
·

The coefficients cj,θ belong to some field extension G0 of K which depends on the considered

system Σ or, more simply, in the field C. First remark: the above formal power series is centered

on the origin for simplicity but the arguments hold for formal power series centered on any element

of Rm. Second remark: the above setting covers also the case of differential systems with coefficients

in the field Q(x1, . . . , xm). Indeed, it is then sufficient to encode each independent variable xi as a

3Contrarily to what is stated in a preprint version (Boulier and Lemaire, 2007, Sect. 6, Lemma 3) of this paper.
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new differential indeterminate zi and to append to the system under study, the equations δj zi = 1 if

i = j and 0 otherwise. One thus assumes, without loss of generality, that K is a field of constants.

Proposition 6.4. Let G0 be a field extension of K and φ : ΘU → G0 be a map, extending to a ring

homomorphism K[ΘU ] → G0. Then φ is a purely algebraic solution of A if and only if the n–tuple

u = (u1, . . . , un) is a formal power series solution of A where

uj =
∑

θ∈Θ

φ(θuj)
xθ

θ!
, 1 ≤ j ≤ n.

Moreover, for each differential polynomial p ∈ R, if φ(p) 6= 0 then p(u) 6= 0.

Proof. See (Seidenberg, 1958, Lemma). If p ∈ R is a differential polynomial then one has p(u) =
∑

φ(θp)xθ/θ!. Therefore p(u) is zero if and only if φ(θp) is zero for all θ ∈ Θ. Thus φ is a purely

algebraic solution of A if and only if u is a formal power series solution of A. The last part of the

Proposition is clear. �

6.3. Analytic solutions

In the rest of this section, the differential ideal A is assumed to be prime, for simplicity. The results

however hold for non-prime ideals also, by considering any of their prime components.

The fact that every prime differential ideal admits an analytic solution is proven in Propo-

sition 6.6. This result is known since the work of Riquier (1910). Riquier’s Theorem, which is a

generalization of the Cauchy-Kovalevska Theorem, is the basis of (Ritt, 1950, chap. VIII) and of

the Embedding Theorem of Seidenberg (1958, 1969). Péladan-Germa (1997) clarified the relation-

ship between characteristic sets and the hypotheses of Riquier’s Theorem. More recently, Lemaire

(2002a) completely proved this latter anew, by using a more modern formalism and by distinctly

separating the proof of the existence of formal power series solutions and the analyticity proof. The

key result is:

Proposition 6.5. Assume the ranking is both Riquier and orderly. Let (u1, . . . , un) be a formal

power series solution of A, the coefficients cj,θ lying in the field of the complex numbers. Let

(ũ1, . . . , ũn) be the restriction to N of the solution i.e:

ũj =
∑

θ∈Θ

c̃j,θ
xθ

θ!
, 1 ≤ j ≤ n

defined by c̃j,θ = cj,θ if θuj ∈ N else zero. In the neighborhood of the origin, the series ũj are

analytic if and only if the series uj are analytic.

Proof. See (Lemaire, 2002a, thm, page 50) or Lemaire (2002b). �

Proposition 6.6. The differential ideal A admits an analytic solution.

Proof. The differential ideal A is presented by the chain C. A purely algebraic solution of A can

be computed, thanks to Proposition 6.2, by solving, in K[L ∪ N ], the non-differential polynomial

system C = 0, h 6= 0 where h denotes the product of the initials and separants of C. Among all

these solutions, choose one such that only finitely many nonzero values are assigned to the elements

of L ∪ N (there is no theoretical difficulty since there are only finitely many derivatives occuring

in C). The restrictions to N of these formal power series are analytic since they are polynomials.

According to Proposition 6.5, the formal power series are analytic whence A admits an analytic

solution. �
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7. Examples

The example features a PDE system (two dependent variables u(x, y) and v(x, y)). All its solutions

turn out to be polynomials.

> syst := [diff(u(x,y),x)ˆ2-4*u(x,y),

diff(diff(u(x,y),x),y)*diff(v(x,y),y)-u(x,y)+1,

diff(diff(v(x,y),x),x)-diff(u(x,y),x)];

/ 2 \

/d \2 | d | /d \

syst := [|-- u(x, y)| - 4 u(x, y), |----- u(x, y)| |-- v(x, y)| - u(x, y) + 1,

\dx / \dy dx / \dy /

/ 2 \

|d | /d \

|--- v(x, y)| - |-- u(x, y)|]

| 2 | \dx /

\dx /

The radical differential ideal that it generates can be represented by a single regular differential

chain. Computations are performed with the new DifferentialAlgebra MAPLE package.

> with (DifferentialAlgebra):

> R := DifferentialRing (derivations = [x,y], blocks = [[v,u]]);

> ideal := RosenfeldGroebner (syst, R);

ideal := [regular_differential_chain]

> ideal := ideal[1]:

Here are the differential polynomial which form the regular differential chain, denoted using the

“jet” notation.

> Equations (ideal, ’solved’, notation=jet);

-u[x] u[y] u + u[x] u[y] 2

[v[x, x] = u[x], v[y] = -1/4 ------------------------, u[x] = 4 u,

u

2

u[y] = 2 u]

Here is an example of a normal form computation, showing that normal forms commute with prod-

ucts.

> A := u[x]ˆ3:

> NFA := NormalForm (A, ideal);

NFA := 4 u[x] u

> NF_1_A := NormalForm (1/A, ideal);

u[x]

NF_1_A := 1/16 ----

2

u

> NormalForm (NFA * NF_1_A, ideal);

1

The following computations show that normal forms commute with derivations.

> NF1 := NormalForm (Tools:-Differentiate (A, y, R), ideal);

NF1 := 6 u[x] u[y]
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> DNF2 := Tools:-Differentiate (NFA, y, R);

DNF2 := 4 u[x, y] u + 4 u[x] u[y]

> NF3 := NormalForm (DNF2, ideal);

NF3 := 6 u[x] u[y]

The following computations apply the method sketched in this paper, for computing the beginning

of a formal power series for u(x, y). It turns out that this truncated series is actually a solution.

> serie := NormalForm(u,ideal) +

x * NormalForm(u[x],ideal) +

y * NormalForm(u[y],ideal) +

xˆ2/2 * NormalForm(u[x,x],ideal) +

x*y * NormalForm(u[x,y],ideal) +

yˆ2/2 * NormalForm(u[y,y],ideal);

2

2 x y u[x] u[y] y

serie := u + x u[x] + y u[y] + x + 1/2 ------------- + ----

u 2

> serie_at_0 := subs (u[x]=2*sqrt(u0), u[y]=sqrt(2*u0), u=u0, serie);

2

1/2 1/2 1/2 y 1/2 2

serie_at_0 := u0 + 2 u0 y + 2 u0 x + ---- + 2 x y + x

2

> eqns := Equations (ideal, leader=derivative(u));

/d \2 /d \2

eqns := [|-- u(x, y)| - 4 u(x, y), |-- u(x, y)| - 2 u(x, y)]

\dx / \dy /

> simplify (eval (eqns, u(x,y)=serie_at_0));

[0, 0]

Appendix A. Computation of the Algebraic Inverse

This section aims at providing the AlgebraicInverse function of Figure 3, which is called by the

Inverse function. Though purely algebraic, it is stated for differential polynomials. This function

first tests if the differential polynomial f , for which an inverse is sought, is zero modulo the ideal

defined by the chain C. If it is zero, then the exception “inversion of zero” is raised. If it is nonzero, it

performs an inverse computation in the polynomial ring G[x1, . . . , xn] where the xi are the leading

derivatives of the elements of C and G is the field obtained by adjoining all the other derivatives to the

field of coefficients K. The inverse computation in G[x1, . . . , xn] is performed by the two functions

AlgebraicInverseNonZero and ExtendedEuclideanAlgorithm, whose principle is known since

Della Dora et al. (1985); Moreno Maza and Rioboo (1995). These two functions call recursively

each other. They try to compute algebraic inverses of a polynomial modulo a zero-dimensional ideal,

by means of the Euclidean algorithm. They can only fail if some relationship

u1 f + u2 ck = u3 mod (C)

is exhibited, where f is the polynomial whose inverse is being computed, u3 is a common divisor

of f and the element ck of C in the ring G[x1, . . . , xn]/(C), and 0 < deg(u3, xk) < deg(ck, xk).
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In that case, the exception “inversion of a zero divisor” is raised and the non-trivial factor u3 of ck
is exhibited.

function AlgebraicInverse(f, C)
Parameters

C = {c1, . . . , cn} is a regular differential chain

f is a differential polynomial partially reduced w.r.t. C
Result

an inverse of f or one of the two exceptions:

“inversion of zero”

“inversion of a zerodivisor”

begin

Denote xk the leading derivative of ck and assume x1 < · · · < xn

Denote t1, . . . , tm the other derivatives occuring in C and f
From now on, perform all computations in the ring G[x1, . . . , xn] where G = K(t1, . . . , tm)
for k from 1 to n do

let ik be the leading coefficient of ck w.r.t. xk

the next call necessarily succeeds because C is a regular chain, and the inverses of its initials are

assumed to be precomputed

ık := AlgebraicInverseNonZero(ik, C)
ck := rem(ık ck, {c1, . . . , ck−1})

end do

C := {c1, . . . , cn}
the regular chain C generates the ideal (C) in G[x1, . . . , xn], and involves monic polynomials

f := rem(f, C)

if f = 0 then

raise exception “inversion of zero”

else

return AlgebraicInverseNonZero(f, C)
end if

end

FIGURE 3. The AlgebraicInverse function

Example 4. Apply AlgebraicInverse to f = z and C = {z − y − x, y2 − x3, (x − 1)(x +
1)(x2 − 2)}. The computation fails and exhibits the zerodivisor x − 1. The exhibited zero divisor

permits to split C into two regular chains C1 = {z − y − x, y2 − x3, (x + 1)(x2 − 2)} and

C2 = {z − y − x, y2 − x3, x − 1}. The inverse computation of z, restarted over C1, succeeds

and returns 1

2
((x2 + x − 1) y − x − 2). The inverse computation of z, restarted over C2, fails

and exhibits the zerodivisor y + 1. This zero divisor permits to split C2 into two regular chains

C21 = {z−y−x, y−1, x−1} and C22 = {z−y−x, y+1, x−1}. The inverse computation of z,

restarted over C21 returns 1/2. The inverse computation of z, restarted over C22, fails because z is

zero modulo C22.

The above example suggests that it is possible to implement a general normal form function

which, when applied to some fraction A = a/b and some regular differential chain C, returns a

result in all cases: if no exception is raised, then the result is a normal form else, it is not a normal

form but a sequence of two lists:

[[NF1, C1], [NF2, C2], . . . , [NFk, Ck]], [Ck+1, Ck+2, . . . , Cℓ].
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function AlgebraicInverseNonZero(f, C)
Parameters

C = {c1, . . . , cn} is a regular chain in G[x1, . . . , xn], and only involves monic polynomials

f is a polynomial in G[x1, . . . , xn], which does not lie in the ideal (C)
Result

an inverse of f in G[x1, . . . , xn]/(C) or the exception “inversion of a zerodivisor”

begin

if f ∈ G then

the polynomial f , which does not belong to (C), cannot be zero

return 1/f
else

let xk be the leading variable of f
u := ExtendedEuclideanAlgorithm(f, ck, xk, C)

one has u1 f + u2 ck = u3 mod (C)
if u3 = 1 then

one has u1 f = 1 mod (C)
return u1

else

the polynomial u3 divides ck and is different from ck since f does not lie in C
raise exception “inversion of a zerodivisor”: u3

end if

end if

end

FIGURE 4. The AlgebraicInverseNonZero function

The Ci are regular differential chains, defining differential ideals Ai such that

A = A1 ∩ A2 ∩ · · · ∩ Aℓ.

The rational fraction NFi is the normal form of A in R/Ai for 1 ≤ i ≤ k. The denominator b of A
is zero in R/Ai for k < i ≤ ℓ. The fact that purely algebraic splittings of regular differential chains

produce regular differential chains can be proven by using (Hubert, 2000, lem. 6.2 and thm. 3.10),

as pointed out in (Boulier and Lemaire, 2000, sect. 4.1).

Such a splitting handling function is implemented in the DifferentialAlgebra package. Let us

illustrate it over the above example:

> with (DifferentialAlgebra):

> R := DifferentialRing (derivations = [], blocks = [z,y,x]):

> C := Tools:-PretendRegularDifferentialChain

([z-y-x, yˆ2-xˆ3, (x-1)*(x+1)*(xˆ2-2)], R);

C := regular_differential_chain

# By default, the NormalForm function does not split cases

> res := NormalForm (1/z, C);

Error, (in DifferentialAlgebra:-NormalForm) regularization of a zero divisor

# A complete function is however implemented

> res := NormalForm (1/z, C, casesplit=true);

2

res := [[[1/2 y x + 1/2 y x - 1/2 y - 1/2 x - 1, regular_differential_chain],

[1/2, regular_differential_chain]], [regular_differential_chain]]
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function ExtendedEuclideanAlgorithm(f, g, xk, C)
Parameters

C = {c1, . . . , cn} is a regular chain in G[x1, . . . , xn] and only involves monic polynomials

f, g are polynomials in G[x1, . . . , xn] ; their leading coeff. w.r.t. xk do not lie in the ideal (C)
Result

a vector u = (u1, u2, u3) of polynomials in G[x1, . . . , xn], such that, in G[x1, . . . , xn]/(C),
the relationship u1 f + u2 g = u3 holds,

the polynomial u3 is a common divisor of f and g,

the leading coefficient of u3 w.r.t. xk is 1
or the exception “inversion of a zerodivisor”

begin

u := (1, 0, f)
v := (0, 1, g)

the property u1 f + u2 g = u3 mod (C) is a loop invariant

the set of common divisors of u3 and v3 modulo (C) is another loop invariant

while v3 6= 0 do

let ı be the leading coefficient of v3 w.r.t. xk

ı := AlgebraicInverseNonZero(ı, C)
compute the remainder componentwise

v := rem(ıv, C)
the leading coefficient of v3 w.r.t. xk is now 1

q := quo(u3, v3, xk)
t := v

v := rem(u− q v, {c1, . . . , ck−1})
if v3 is nonzero then, its leading coefficient w.r.t. xk does not lie in (C)

u := t

end do

the polynomial u3 is a common divisor of u3 and 0, hence a common divisor of f and g
return u

end

FIGURE 5. The ExtendedEuclideanAlgorithm function

> Equations (res [1,1,2], ’solved’);

2 2 3 2

[z = y + x, y = -x + 2 x + 2, x = -x + 2 x + 2]

> Equations (res [1,2,2], ’solved’);

[z = 2, y = 1, x = 1]

> Equations (res [2,1], ’solved’);

[z = 0, y = -1, x = 1]

The AlgebraicInverse algorithm may split cases while computing the normal form of a rational

fraction a/b, even if b is regular modulo the ideal defined by the regular chain C, since it computes

the inverses of many intermediate quantities. In principle, one could avoid these splittings by means

of Gröbner bases computations. An expression b for the inverse of b can be computed by applying the

Buchberger algorithm, over G, on the set C ∪{xn+1 b− 1}, where xn+1 is some new indeterminate

(Rabinowitsch trick). The normal form of a/b is then obtained by computing the normal form of the

polynomial a b. This method is useful when one wants to avoid splittings as much as possible. This

method is however costly, since it requires one Gröbner basis computation for each normal form
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computation. Moreover, we believe that the splittings performed by the AlgebraicInverse algorithm

are often very interesting, since they correspond to factorizations of the equations. They thus should

not be avoided.
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