
HAL Id: hal-00825086
https://hal.inria.fr/hal-00825086

Submitted on 22 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TFF1: The TPTP Typed First-Order Form with Rank-1
Polymorphism

Jasmin Blanchette, Andrei Paskevich

To cite this version:
Jasmin Blanchette, Andrei Paskevich. TFF1: The TPTP Typed First-Order Form with Rank-1
Polymorphism. CADE - 24th International Conference on Automated Deduction - 2013, Jun 2013,
Lake Placid, NY, United States. pp.414-420. �hal-00825086�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49786952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00825086
https://hal.archives-ouvertes.fr

TFF1: The TPTP Typed First-Order Form
with Rank-1 Polymorphism

Jasmin Christian Blanchette1 and Andrei Paskevich2,3

1 Fakultät für Informatik, Technische Universität München, Germany
2 LRI, Université Paris-Sud, CNRS, France

3 INRIA Saclay – Île-de-France, France

Abstract. The TPTP World is a well-established infrastructure for automatic
theorem provers. It defines several concrete syntaxes, notably an untyped first-
order form (FOF) and a typed first-order form (TFF0), that have become de facto
standards. This paper introduces the TFF1 format, an extension of TFF0 with
rank-1 polymorphism. The format is designed to be easy to process by existing
reasoning tools that support ML-style polymorphism. It opens the door to use-
ful middleware, such as monomorphizers and other translation tools that encode
polymorphism in FOF or TFF0. Ultimately, the hope is that TFF1 will be imple-
mented in popular automatic theorem provers.

1 Introduction

The TPTP World [15] is a well-established infrastructure for supporting research, devel-
opment, and deployment of automated reasoning tools. It owes its name to its vast prob-
lem library, the Thousands of Problems for Theorem Provers (TPTP) [14]. In addition,
it specifies concrete syntaxes for problems and solutions: Dozens of reasoning tools
implement the TPTP untyped clause normal form (CNF) and first-order form (FOF) for
classical first-order logic with equality.

It has often been argued that the gap between the features supported by provers and
those needed by applications is too wide, and that rich interchange formats are needed
to address this disconnect [10, 18]. A growing number of reasoners can process the
recently introduced TPTP “core” typed first-order form (TFF0) [17], with monomor-
phic types and interpreted arithmetic [9, 13], or the corresponding higher-order form
(THF0) [2]. A polymorphic version of THF0, the full THF, is in the works [16].

Despite the variety of this offering, there is a strong desire in part of the automated
reasoning community for a portable polymorphic first-order format. Many applications
require polymorphism, notably interactive theorem provers and program specification
languages; but lacking a suitable syntax, applications and provers must communicate
via monomorphic formats. To make matters worse, there is no entirely satisfactory way
to eliminate polymorphism: Monomorphization algorithms are necessarily incomplete,
and it is difficult to encode polymorphism in a complete yet also sound and efficient
manner, especially in the presence of interpreted types [3, 5, 11]. Tool authors are re-
duced to developing their own monomorphizers and type encodings, often using sub-
optimal schemes. Polymorphism arguably belongs in provers, where it can be imple-
mented simply and efficiently, as demonstrated by Alt-Ergo [4].

This paper describes the TFF1 format, an extension of TFF0 with rank-1 polymor-
phism. The extension was designed with the participation of members of the TPTP
community, reflecting its needs. Besides compatibility with TFF0 and conceptual in-
tegrity with the upcoming full THF, an important design goal was to ensure that the
format can easily be processed by existing reasoning tools that support ML-style poly-
morphism. TFF1 also opens the door to useful middleware, such as monomorphizers
and other translation tools. The complete specification is available online.1 The parts
that TFF1 inherits from TFF0 are described in the TFF0 specification [17].

2 Syntax

Briefly, the types, terms, and formulas of TFF1 are analogous to those of TFF0, ex-
cept that function and predicate symbols can be declared to be polymorphic, types can
contain type variables, and n-ary type constructors are allowed. Type variables in type
signatures and formulas are explicitly bound. Instances of polymorphic symbols are
specified by explicit type arguments, rather than inferred.

Types. The types of TFF1 are built from type variables and type constructors of fixed
arities. The usual conventions of TPTP apply: Type variables start with an uppercase
letter and type constructors with a lowercase letter. The types A, list(A), list(bird),
and map(nat, list(B)) are all examples of well-formed types.

As in TFF0, the type $i of individuals is predefined but has no fixed semantics,
whereas the arithmetic types $int, $rat, and $real are modeled by Z, Q, and R [17].
It is perfectly acceptable for a TFF implementation to restrict itself to “pure TFFk,”
without arithmetic. TFFk with arithmetic is sometimes labeled “TFAk.”

Type Signatures. Each function and predicate symbol occurring in a formula must be
associated with a type signature that specifies the types of the arguments and, for func-
tions, the result type. Type signatures can take any of the following forms:

(a) a type (predefined or user-defined);
(b) the Boolean pseudotype $o (the result “type” of predicate symbols);
(c) (τ1 * · · · * τn) > τ̃ for n > 0, where τ1, . . . , τn are types and τ̃ is a type or $o;
(d) !>[α1 : $tType, . . ., αn : $tType]: ς for n > 0, where α1, . . . ,αn are distinct type

variables and ς has one of the previous three forms.

In accordance with TFF0, the parentheses in form (c) are omitted if n = 1. The binder
!> in form (d) denotes universal quantification. If ς is of form (c), it must be enclosed
in parentheses. All type variables must be bound by a !>-binder.

Form (a) is used for monomorphic constants; form (b), for propositional constants,
including the predefined symbols $true and $false; form (c), for monomorphic func-
tions and predicates; and form (d), for polymorphic functions and predicates.

Type variables that are bound by !> without occurring in the type signature’s body
are called phantom type variables. These make it possible to specify operations and
relations directly on types and provide a convenient way to encode type classes.

1 http://www21.in.tum.de/~blanchet/tff1spec.pdf

Type Declarations. Type constructors can optionally be declared. The following decla-
rations introduce a nullary type constructor bird, a unary type constructor list, and a
binary type constructor map:

tff(bird, type, bird: $tType).
tff(list, type, list: $tType > $tType).
tff(map, type, map: ($tType * $tType) > $tType).

If a type constructor is used before being declared, its arity is determined by the first
occurrence. Any later declaration must give it the same arity.

A declaration of a function or predicate symbol specifies its type signature. Every
type variable occurring in a type signature must be bound by a !>-binder. The following
declarations introduce a monomorphic constant pi, a polymorphic predicate is_empty,
and a pair of polymorphic functions cons and lookup:

tff(pi, type, pi: $real).
tff(is_empty, type, is_empty : !>[A : $tType]: (list(A) > $o)).
tff(cons, type, cons : !>[A : $tType]: ((A * list(A)) > list(A))).
tff(lookup, type,

lookup : !>[A : $tType, B : $tType]: ((map(A, B) * A) > B)).

If a function or predicate symbol is used before being declared, a default type signature
is assumed: ($i * · · · * $i) > $i for functions and ($i * · · · * $i) > $o for predicates. If
a symbol is declared after its first use, the declared signature must agree with the as-
sumed signature. If a type constructor, function symbol, or predicate symbol is declared
more than once, it must be given the same type signature up to renaming of bound type
variables. All symbols share the same namespace.

Function and Predicate Application. To keep the required type inference to a minimum,
every use of a polymorphic symbol must explicitly specify the type instance. A symbol
with a type signature !>[α1 : $tType, . . ., αm : $tType]: ((τ1 * · · · * τn) > τ̃) must
be applied to m type arguments and n term arguments. Given the above type signa-
tures for is_empty, cons, and lookup, the term lookup($int, list(A), M, 2) and
the atom is_empty($i, cons($i, X, nil($i))) are well-formed and contain free oc-
currences of the type variable A and the term variables M and X.

In keeping with TFF1’s rank-1 polymorphic nature, type variables can only be in-
stantiated with actual types. In particular, $o, $tType, and !>-binders cannot occur in
type arguments of polymorphic symbols.

For systems that implement type inference, the following extension of TFF1 might
be useful. When a type argument of a polymorphic symbol can be inferred automati-
cally, it may be replaced with the wildcard $_. For example: is_empty($_, cons($_,

X, nil($_))). The producer of a TFF1 problem must be aware of the type inference
algorithm implemented in the consumer to omit only redundant type arguments.

Type and Term Variables. Every variable in a TFF1 formula must be bound. The vari-
able’s type must be specified at binding time:

tff(bird_list_not_empty, axiom,

![B : bird, Bs : list(bird)]:

~ is_empty(bird, cons(bird, B, Bs))).

If the type and the preceding colon (:) are omitted, the variable is given type $i. Every
type variable occurring in a TFF1 formula (whether in a type argument or in the type of
a bound variable) must also be bound, with the pseudotype $tType:

tff(lookup_update_same, axiom,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:

lookup(A, B, update(A, B, M, K, V), K) = V).

A single quantifier cluster can bind both type and term variables. Universal and ex-
istential quantifiers over type variables are allowed under the propositional connectives,
including equivalence, as well as under other quantifiers over type variables, but not in
the scope of a quantifier over a term variable, to avoid dependent types.

Example. The following problem gives the general flavor of TFF1. It declares and
axiomatizes lookup and update operations on maps and conjectures that update is
idempotent for fixed keys and values.

tff(map, type, map : ($tType * $tType) > $tType).
tff(lookup, type,

lookup : !>[A : $tType, B : $tType]: ((map(A, B) * A) > B)).
tff(update, type,

update : !>[A : $tType, B : $tType]:

((map(A, B) * A * B) > map(A, B))).
tff(lookup_update_same, axiom,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:

lookup(A, B, update(A, B, M, K, V), K) = V).
tff(lookup_update_diff, axiom,

![A : $tType, B : $tType, M : map(A, B), V : B, K : A, L : A]:

(K != L => lookup(A, B, update(A, B, M, K, V), L) =

lookup(A, B, M, L))).
tff(map_ext, axiom,

![A : $tType, B : $tType, M : map(A, B), N : map(A, B)]:

((![K : A]: lookup(A, B, M, K) = lookup(A, B, N, K)) =>

M = N)).
tff(update_idem, conjecture,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:

update(A, B, update(A, B, M, K, V), K, V) =

update(A, B, M, K, V)).

3 Type Checking and Semantics

Notation. In this section, we use standard mathematical notation to write types, terms,
and formulas. We use the symbols ×,→, and ∀ to write type signatures, and write o for
the Boolean pseudotype $o. It is convenient to treat ≈, ¬, ∧, and ∀ as logical symbols
and regard ⊥, >, 6≈, ∨,→,←,←→, 6←→, and ∃ as abbreviations. Equality could be seen
as a polymorphic predicate with the type signature ∀α. α×α→ o, but the type instance
is implicitly specified by the type of either argument, instead of explicitly via a type
argument; hence, it is preferable to treat it as a logical symbol.

Type Checking. Let γ be a type context, a function that maps every variable to a type.
A type judgment γ ` t : τ expresses that the term t is well-typed and has type τ in
context γ. A type judgment γ ` ϕ : o expresses that the formula ϕ is well-typed in γ.
We write f : ∀α1 . . .αm. τ1×·· ·×τn→ τ and p : ∀α1 . . .αm. τ1×·· ·×τn→ o to specify
type signatures of function and predicate symbols, where m and n can be 0. The typing
rules of TFF1 are as follows (where ρ is a type substitution):

γ ` u : γ(u)

f : ∀α1 . . .αm. τ1×·· ·×τn→ τ γ ` t1 : τ1 ρ · · · γ ` tn : τn ρ

γ ` f (α1 ρ, . . . , αm ρ, t1, . . . , tn) : τρ

p : ∀α1 . . .αm. τ1×·· ·×τn→ o γ ` t1 : τ1 ρ · · · γ ` tn : τn ρ

γ ` p(α1 ρ, . . . , αm ρ, t1, . . . , tn) : o

γ ` s : τ γ ` t : τ
γ ` s≈ t : o

γ ` ϕ : o γ ` ψ : o
γ ` ϕ ∧ ψ : o

γ ` ϕ : o
γ ` ¬ϕ : o

γ[u 7→ τ] ` ϕ : o
γ ` ∀u :τ. ϕ : o

γ ` ϕ[α′/α] : o
γ ` ∀α. ϕ : o

In the last rule, α′ is an arbitrary type variable that occurs neither in ϕ nor in the
values of γ. The renaming is necessary to reject formulas such as ∀α.∀u : α.∀α.∀v : α.
u ≈ v, where the types of u and v are actually different. By assuming that no type
variable can be both free and bound in the same formula, we can avoid explicit renaming
of type variables, and the last typing rule’s premise becomes γ ` ϕ : o.

Semantics. An interpretation I for a given set of type constructors, function symbols,
and predicate symbols is constructed as follows. First, we fix a nonempty collection D
of nonempty sets, the domains. The union of all domains is called the universe, U.

An n-ary type constructor κ is interpreted as a function κI : Dn→D. Let θ be a type
valuation, a function that maps every type variable to a domain. Types are evaluated
according to the equations JαKIθ , θ(α) and Jκ(τ1, . . . , τn)KIθ , κI

(
Jτ1KIθ , . . . , JτnKIθ

)
.

Since type evaluation depends only on the values of θ on the type variables occurring
in a type, we write JτKI to denote the domain of a ground type τ.

A predicate symbol p : ∀α1 . . .αm. τ1×·· ·×τn→ o is interpreted as a relation pI ⊆
Dm×Un. A function symbol f : ∀α1 . . .αm. τ1×·· ·×τn→ τ is interpreted as a function
fI on Dm×Un that maps any m domains D1, . . . ,Dm and n universe elements to an
element of JτKIθ , where θ maps each αi to Di.

Let ξ be a variable valuation, a function that assigns to every variable an element
of U. TFF1 terms and formulas are evaluated according to the following equations:

JuKIθ,ξ , ξ(u) J¬ϕKIθ,ξ , ¬JϕKIθ,ξ
J f (σ̄, t̄)KIθ,ξ , fI

(
Jσ̄KIθ ,Jt̄ KIθ,ξ

)
Jϕ ∧ ψKIθ,ξ , JϕKIθ,ξ ∧ JψKIθ,ξ

Jp(σ̄, t̄)KIθ,ξ , pI
(
Jσ̄KIθ ,Jt̄ KIθ,ξ

)
J∀u : τ. ϕKIθ,ξ , ∀a∈ JτKIθ . JϕK

I
θ,ξ[u 7→a]

Jt1 ≈ t2KIθ,ξ ,
(
Jt1KIθ,ξ = Jt2KIθ,ξ

)
J∀α. ϕKIθ,ξ , ∀D ∈ D. JϕKIθ[α 7→D], ξ

4 Applications

A number of applications already support TFF1. Geoff Sutcliffe has extended the TPTP
World infrastructure to process TFF1 problems and solutions. This involved adapting
the Backus–Naur form specification of the TPTP syntaxes, from which parsers are gen-
erated.2 Some TPTP tools still need to be ported to TFF1; this is ongoing work.

The Why3 [6] environment, which defines its own ML-like polymorphic specifica-
tion language, can parse pure TFF1. Why3 translates between TFF1 and a wide range
of formats, including FOF, SMT-LIB, and Alt-Ergo’s native syntax [5, 7]. In addition,
Why3’s TFF1 parser is being ported to Alt-Ergo [4].

HOL(y)Hammer [8] and Sledgehammer [12] integrate various automatic provers
in the proof assistants HOL Light and Isabelle/HOL. They have been extended to out-
put pure TFF1 problems for Alt-Ergo and Why3. Using Sledgehammer, we produced
987 problems to populate the TPTP library.3

5 Conclusion

The TPTP TFF1 format complements the existing TPTP offerings. For reasoning tools
that already support polymorphism, TFF1 is a portable alternative to the existing ad hoc
syntaxes. But more importantly, the format is a vehicle to foster native polymorphism
support in automatic reasoners. The time is ripe: After many years of untyped reasoning,
we have recently witnessed the rise of interpreted arithmetic embedded in monomorphic
logics. TFF1 lifts the most obvious restrictions of such systems.

The TPTP library already contains nearly a thousand TFF1 problems, and although
the format is in its infancy, it is supported by several applications, including the SMT
solver Alt-Ergo (via Why3). Work has commenced in Saarbrücken to add polymor-
phism to the superposition prover SPASS [19]. Given that many applications require
polymorphism, other reasoning tools are likely to follow suit. The annual CADE Auto-
mated System Competition (CASC) will surely have a role to play driving adoption of
the format. But regardless of progress in prover technology, equipped with a concrete
syntax and suitable middleware, users can already turn their favorite automatic theorem
prover into a fairly efficient polymorphic prover. Rank-1 polymorphism is, of course,
no panacea; higher ranks and dependent types could be part of a future TFF2.

For SMT (satisfiability modulo theories) solvers, the SMT-LIB 2 format [1] speci-
fies a classical many-sorted logic much in the style of TFF0 but with parametric sym-
bol declarations (overloading). Polymorphism would make sense there as well, as wit-
nessed by Alt-Ergo. However, the SMT community is still recovering from the upgrade
to SMT-LIB 2 and busy defining a standard proof format; implementers would not wel-
come yet another feature at this point. Moreover, with its support for arithmetic, TFF1
is a reasonable format to implement in an SMT solver if polymorphism is desired.

Acknowledgment. The present specification is largely the result of consensus among
participants of the polymorphic-tptp-tff mailing list, especially François Bobot,
Chad Brown, Florian Rabe, Philipp Rümmer, Stephan Schulz, Geoff Sutcliffe, and Josef

2 http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
3 http://www.cs.miami.edu/~tptp/TPTP/Proposals/TFF1.html

Urban. We are grateful to Geoff Sutcliffe, TPTP Master of Ceremonies, for giving TFF1
his benediction and adapting the TPTP BNF and other infrastructure. He, Mark Sum-
merfield, and several anonymous reviewers suggested many textual improvements to
this paper. We also thank Viktor Kuncak, Tobias Nipkow, Andrei Popescu, and Nicholas
Smallbone for their support and ideas. The first author’s research was supported by the
Deutsche Forschungsgemeinschaft project Hardening the Hammer (grant Ni 491/14-1).

References
1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard—Version 2.0. In: Gupta, A.,

Kroening, D. (eds.) SMT 2010 (2010)
2. Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0—The core of the TPTP language for higher-

order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNAI, vol.
5195, pp. 491–506. Springer (2008)

3. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and poly-
morphic types. In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 493–
507. Springer (2013)

4. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT
solvers. In: Barrett, C., de Moura, L. (eds.) SMT ’08. pp. 1–5. ICPS, ACM (2008)

5. Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 87–102.
Springer (2011)

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers.
In: Leino, K.R.M., Moskal, M. (eds.) Boogie 2011. pp. 53–64 (2011)

7. Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In: Pfenning,
F. (ed.) CADE-21. LNAI, vol. 4603, pp. 263–278. Springer (2007)

8. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. Submitted
9. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Du-

parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer (2007)
10. Kuncak, V.: Intermediate languages—From birth to execution. Boogie 2011 (2011)
11. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and

logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
312–327. Springer (2010)

12. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E.,
Schulz, S. (eds.) IWIL-2010 (2010)

13. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.)
ESCoR 2006. CEUR Workshop Proceedings, vol. 192, pp. 18–33. CEUR-WS.org (2006)

14. Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF
parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

15. Sutcliffe, G.: The TPTP World—Infrastructure for automated reasoning. In: Clarke, E.M.,
Voronkov, A. (eds.) LPAR-16. LNAI, vol. 6355, pp. 1–12. Springer (2010)

16. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP
THF infrastructure. J. Formal. Reasoning 3(1), 1–27 (2010)

17. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form
with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 406–
419. Springer (2012)

18. Voronkov, A.: Automated reasoning: Past story and new trends. In: Gottlob, G., Walsh, T.
(eds.) IJCAI 2003. pp. 1607–1612. Morgan Kaufmann (2003)

19. Wand, D., Weidenbach, C.: Private communication (June 2012)

