
HAL Id: hal-00825843
https://hal.archives-ouvertes.fr/hal-00825843

Submitted on 24 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular Composition Modulo Triangular Sets and
Applications

Adrien Poteaux, Éric Schost

To cite this version:
Adrien Poteaux, Éric Schost. Modular Composition Modulo Triangular Sets and Applications. Com-
putational Complexity, Springer Verlag, 2013, pp.1-54. �10.1007/s00037-013-0063-y�. �hal-00825843�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49786293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00825843
https://hal.archives-ouvertes.fr

MODULAR COMPOSITION MODULO

TRIANGULAR SETS

AND APPLICATIONS

Adrien Poteaux and Éric Schost

Abstract. We generalize Kedlaya and Umans’ modular composition
algorithm to the multivariate case. As a main application, we give fast
algorithms for many operations involving triangular sets (over a finite
field), such as modular multiplication, inversion, or change of order. For
the first time, we are able to exhibit running times for these operations
that are almost linear, without any overhead exponential in the number
of variables. As a further application, we show that, from the complexity
viewpoint, Charlap, Coley and Robbins’ approach to elliptic curve point
counting can be competitive with the better known approach due to
Elkies.

Keywords. Triangular set, modular composition, power projection,
finite fields, complexity

Subject classification. 68W30

1. Introduction

Our purpose in this paper is to give complexity results for operations involving
triangular sets. We start by recalling the definition.

Triangular sets. Let F be our base field, and let Y = Y1, . . . , Ys be inde-
terminates over F; we order them as Y1 < · · · < Ys. A (monic) triangular set
T = (T1, . . . , Ts), for the given variable ordering, is a family of polynomials in
F[Y] with the following triangular structure:

T

∣∣∣∣∣∣∣
Ts(Y1, . . . , Ys)

...
T1(Y1),

2 Poteaux & Schost

such that for all i, Ti is monic in Yi, and Ti is reduced modulo 〈T1, . . . , Ti−1〉.
Note that T is a zero-dimensional lexicographic Gröbner basis for the order
Y1 < · · · < Ys, with a triangular structure.

Such representations can be used to solve systems of equations, whereby
the solution set is described by one, or several, triangular set(s) as above (or
generalizations thereof, called regular chains, that are well suited to situations
of positive dimensions). There exists a vast literature dedicated to algorithms
with triangular sets, regular chains, and applications: without being exhaus-
tive, we refer the reader to ?????. In this paper, we will be concerned with
some basic subroutines at the heart of these algorithms: multiplication, inver-
sion, norm computation modulo a triangular set, as well as change of order on
the variables.

It is easy to show examples, involving very few variables, where these oper-
ations are useful. The following is taken from ?: suppose that we wish to find a
factor of the self-reciprocal polynomial T1 = Y 6−5Y 5+6Y 4−9Y 3+6Y 2−5Y +1.
The set of roots of T1 is globally invariant under the map α 7→ 1

α
, so the func-

tion α 7→ α + 1
α

is invariant for this action. Hence, it is natural to introduce
the bivariate triangular set

T

∣∣∣∣∣∣∣
T2 = Y2 − (Y1 + 1

Y1
) mod T1

= Y2 − (Y 5
1 − 5Y 4

1 + 6Y 3
1 − 9Y 2

1 + 5Y1 − 5)

T1 = Y 6
1 − 5Y 5

1 + 6Y 4
1 − 9Y 3

1 + 6Y 2
1 − 5Y1 + 1.

Now, change the order of Y1, Y2 in T; we obtain another triangular set that
generates the same ideal: ∣∣∣∣ Y 2

1 − Y2Y1 + 1
Y 3
2 − 5Y 2

2 + 3Y2 + 1.

We factor the last polynomial as Y 3
2 − 5Y 2

2 + 3Y2 + 1 = (Y 2
2 − 4Y2− 1)(Y2− 1),

and keep for instance the factor Y 2
2 −4Y2−1. Then, we restore the initial order

in the system. This yields∣∣∣∣ Y2 + Y 3
1 − 4Y 2

1 − 4
Y 4
1 − 4Y 3

1 + Y 2
1 − 4Y1 + 1,

where we can read off a factor of the initial polynomial T1. Hence, through
change of order, we were able to halve the degree of the polynomial to factor.
The last section of this paper will present a less trivial application of this idea
to elliptic curve point counting.

Modular composition modulo triangular sets 3

Complexity issues. Despite a growing literature, the complexity of the for-
mer operations remains imperfectly understood. For instance, in the previous
example, it is not clear a priori that the cost of change of order would not offset
the gains obtained by reducing the degree in the factorization.

To measure costs, we will write di = deg(Ti, Yi), and d = (d1, . . . , ds) will
be called the multidegree of T. Then, δd = d1 · · · ds is the natural complexity
measure associated to computations modulo 〈T〉, as it represents the dimension
of F[Y]/〈T〉. The objective of our work is to give algorithms with a running
time linear in δd, up to logarithmic factors.

The simplest non-trivial question is multiplying two polynomials A,B mod-
ulo 〈T〉, assuming A and B are initially reduced modulo 〈T〉. As of now, there
is no known algorithm with a quasi-linear cost. For instance, the modular mul-
tiplication algorithm of ? starts by expanding the product AB, then reduces
it modulo 〈T〉. As a result, an overhead exponential in the dimension appears:
after expansion, the product AB has δ′ = (2d1 − 1) · · · (2ds − 1) monomials;
we always have δ′ ≤ 2sδd and in the extreme case d1 = · · · = ds = 2 we have

δ′ = δ
log2(3)
d . Presently, the best generalist algorithm is that of ?, with a cost

of 4sδd base field operations, up to polylogarithmic factors; see also ? for some
particular cases.

The next question is that of inversion modulo 〈T〉, when possible. The best
previous known result for this question, due to ?, also has a cost of the form
Ksδd, up to polylogarithmic terms, for some (large) constant K. It should
be pointed out that this algorithm does more than inversion: it allows one to
handle zero-divisors modulo 〈T〉, by splitting T when needed.

Next, we consider norm computation: by analogy with the case of field
extensions, the norm of an element A in F[Y]/〈T〉 is the determinant of the
endomorphism of multiplication by A modulo 〈T〉; it coincides with the iterated
resultant resY1(· · · resYs(A, Ts) . . . , T1), which is used for instance in algorithms
for parametric systems(see e.g. ?). We do not know of a published complexity
estimate for this question; the techniques of ? could possibly be applied and
yield a result of the form Ksδd (up to the usual polylogarithmic factors).

The former algorithms run in quasi-linear time when s is fixed: the challenge
is to remove the exponential overhead in s. For our last question, change of
order, the situation is much worse. On input T, this problem consists in finding
a triangular set T′ for a new variable order, that generates the same ideal as T
(provided such a T′ exists). As of now, there is no quasi-linear algorithm for
this task, even when the number of variables is kept constant (actually, even
for s = 2).

4 Poteaux & Schost

Modular composition and power projection. A main ingredient for the
algorithms to follow are operations called modular composition and power pro-
jection. These operations are well-known for univariate polynomials (see ??),
in which case they respectively read as follows:

◦ modular composition: given polynomials G,H in F[Y], with deg(G) < d
and deg(H) = d, and F in F[X], with deg(F) < e, compute F (G) mod H

◦ power projection: given polynomials G,H in F[Y], such that deg(G) < d
and deg(H) = d, an F-linear form τ : F[Y]/H → F, and a bound e,
compute τ(Gi mod H) for all i < e.

Over an abstract field (in an algebraic complexity model), no quasi-linear al-
gorithm is known for these operations: the most well-known results are due
to ? and ?, with a cost of O(d(ω+1)/2) for e = d, where ω is a feasible exponent
for matrix multiplication (here we assume ω > 2, otherwise logarithmic factors
appear). For the best known values of ω ' 2.37 due to ???, we get an exponent
of about 1.69. ? showed that using rectangular matrix multiplication, one can
reduce the exponent to 1.67.

The starting point for this work is a recent result by ?: when F is a finite
field, they came up with quasi-linear time algorithms for these problems, in a
boolean RAM model (where bit operations, not field operations, are counted).
They actually do more, by considering an m-uple (G1, . . . , Gm) of polynomi-
als instead of G, and computing respectively F (G1, . . . , Gm) mod H, for some
multivariate F , or values of the form τ(Ga1

1 · · ·Gam
m).

Part of our tasks will be to extend these results to multivariate situations.
Indeed, it has been known for long that modular composition and power pro-
jection are important for algorithms involving triangular sets: this is in essence
due to ? for some particular cases, and detailed in ?.

To state the multivariate versions, we need the following notation: for d =
(d1, . . . , ds) in Ns, F[Y]d denotes the F-vector space of polynomials F ∈ F[Y]
with deg(F, Yi) < di for all i ≤ s. If T is a triangular set of multidegree d in
F[Y], RT will represent the residue class ring F[Y]/〈T〉. Remark that RT '
F[Y]d as a vector space; as a consequence, in all our algorithms, elements of
RT are represented on the monomial basis {Y a1

1 · · ·Y as
s | 0 ≤ ai < di for all i}.

Then, multivariate modular composition, with parameter e = (e1, . . . , em) ∈
Nm, is the following problem:

◦ multivariate modular composition: given F in F[X1, . . . , Xm]e, T and
(G1, . . . , Gm) in Rm

T , compute F (G1, . . . , Gm) ∈ RT.

Modular composition modulo triangular sets 5

Remark that the classical version of this question has m = s = 1, and Kedlaya-
Umans’ result has m arbitrary and s = 1 (under some restrictions on e). Re-
mark also that in the particular case m = 1 and F = X2

1 , modular composition
boils down to squaring modulo 〈T〉, so it is already non-trivial.

To discuss power projection, we let R∗T = HomF(RT,F) be the dual of
RT over F; naturally, the elements of R∗T will be given on the dual basis of the
monomial basis seen before. Then, the multivariate version of power projection,
with parameter e as above, reads as follows:

◦ multivariate power projection: given T, (G1, . . . , Gm) in Rm
T and τ in R∗T,

compute the values τ(Ga1
1 · · ·Gam

m), for 0 ≤ ai < ei, i = 1, . . . ,m.

Modular composition is F-linear in the coefficients of F ; the transpose map
is precisely power projection (this was noted by ? in the univariate case).
Indeed, the former problem amounts to multiplying the δd × δe matrix M
whose columns are the coefficients of the polynomials Ga1

1 · · ·Gam
m mod 〈T〉, for

0 ≤ a1 < e1, . . . , 0 ≤ am < em, by the δe× 1 column vector of coefficients of F .
Then, the dual problem amounts to multiplying the matrix M on the left by a
1× δd vector, which we see as the coefficient vector of a linear form τ ∈ R∗T.

Main results. We will revisit the questions for triangular sets discussed pre-
viously, and provide new estimates, under the additional assumptions that (i)
the base field is a finite field Fq and (ii) 〈T〉 is a radical ideal, in which case we
say that T is squarefree.

The following notation is in use: if S is a set and g is a real-valued func-
tion on S, plog(g) denotes a real-valued function h on S for which there exist
α, β > 0 such that h(s) ≤ α log2(max(g(s), 2))β holds for all s in S (so using
this notation allows us to omit big-Os). If we do not indicate otherwise, the
constant α implied in a plog() is universal; if it does depend on some param-
eters (typically a parameter ε), we indicate them in subscript. The constant β
will always be universal (it won’t depend on any parameter such as ε).

Our algorithms crucially rely on the results of ? cited previously. As a con-
sequence, the complexity results are expressed in a similar manner: typically,
for any ε > 0, one can obtain a running time of the form δ1+εd log(q) plogε(log q),
with a (large) constant hidden in the term plogε(log q). As in ?, these results
are expressed in a boolean RAM model (we may e.g. use the logarithmic cost
model, see ?).

To be complete, we must precise how the elements of Fq are encoded: ele-
ments of Fp, for p prime, are represented as integers in {0, . . . , p−1}; for q = pn,
Fq is assumed to be given as Fp[T]/〈P 〉, with P irreducible, so elements of Fq

6 Poteaux & Schost

are represented as polynomials over Fp of degree less than n. With this repre-
sentation, arithmetic operations in Fq can be done in time log(q) plog(log(q))
in our RAM model (disregarding the cost induced by fetching and storing data,
which depends on the data location in memory).

The algorithms are Las Vegas (we give expected running time, but results
are always correct), as we rely on the random selection of field elements. Thus,
we assume that our RAM can produce a random integer uniformly distributed
in the range {0, . . . , p− 1} in time log(p) plog(log(p)).

Finally, for modular composition and power projection, we add the con-
straint that e be of the form e = (e1, e2), that is, we take m = 2: this covers
the most useful applications.

Theorem 1.1. Fix ε > 0. Given a triangular set T of multidegree d =
(d1, . . . , ds) in Fq[Y1, . . . , Ys], one can do the following using an expected s2 δ1+εd log(q) plogε(log q)
bit operations:

◦ test whether T is squarefree,

◦ if T is squarefree, multiplication, invertibility test and inversion, norm
computation in RT.

With notation as above, for e = (e1, e2) in N2, one can do the following using
an expected s2 (δd + δe)

1+ε log(q) plogε(log q) bit operations:

◦ if T is squarefree, modular composition and power projection modulo
〈T〉, with parameter e.

We continue the presentation of our results with change of order. For this
question, we will need a stronger assumption than before: the characteristic of
Fq must be large enough.

Theorem 1.2. Fix ε > 0. Given a squarefree triangular set T of multidegree
d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], one can do the following using an expected
s2 δ1+εd log(q) plogε(log q) bit operations, provided the characteristic of Fq is
greater than δd:

◦ given a target order Yσ(1) < · · · < Yσ(s) on the variables, determine
whether the ideal 〈T〉 is generated by a triangular set T′ for this order;

◦ if so:

– compute T′;

– given A in RT, compute its image in RT′ ;

– given A in RT′ , compute its image in RT.

Modular composition modulo triangular sets 7

Comments and relation to previous work. For most items above, except
modular composition and power projection, the input and output bit sizes are
essentially δd log(q); for modular composition and power projection, the input
and output have bit size (δd + δe) log(q). Thus, our cost estimates which are
respectively s2 δ1+εd log(q) plogε(log q) and s2 (δd + δe)

1+ε log(q) plogε(log q) are
close to linear.

The term s2 is rather inconsequential. In many cases, we can make the
assumption that di ≥ 2 for all i. Indeed, if di = 1, Ti has the form Yi −
ri(Y1, . . . , Yi−1) so if they are not essential to the problem at hand, Yi and Ti
can be dismissed altogether. Under this assumption, s becomes logarithmic in
δd.

For a fixed ε, recall that the constant factor in plogε(log q) is fixed as well.
Thus, for multiplication and inversion, our results complement former ones: in a
fixed number of variables, previous results of the form Ksδd plog(δd) operations
in F are marginally better, as they do not involve the factor δεd; our results get
better when s grows large with respect to δd, for instance when di = 2 for all i.
In this case, our results are of the form δ1+εd (forgetting about the dependency

in q), whereas no previous result did better than δ
log2(3)
d .

For modular composition and power projection, our results extend those
of ?, which hold only for s = 1 (those results actually cover different cases for
e than we do: they have e = (e, . . . , e)). Other results known for s > 1 are due
to ? and ?, which have m = 1 and s = 2, and ?, which discusses m = 2 and
s = 2. These last works are based on Brent and Kung’s idea, so the best cost
they can obtain has the form δ

(ω+1)/2
d , for δe ' δd.

For change of order, the situation is similar: no previous algorithm achieved
a quasi-linear running time, even in the simplest case s = 2. Some previous ap-
proaches by ? are based on resultant and gcd computations, but it is unknown
how to obtain a subquadratic cost in δd with such techniques: on examples
such as the one given at the beginning of this introduction, even using a fast
resultant algorithm, known techniques (either evaluation / interpolation or the
direct approach of ?) take quadratic time. The algorithms of ? (which are
limited to s = 2) use modular composition and power projection as we do;
however, they rely on the techniques inspired by Brent and Kung’s algorithm
discussed above, with a cost of order δ

(ω+1)/2
d .

Main ideas and practical aspects. For both Theorem 1.1 and Theo-
rem 1.2, the idea is to introduce a primitive element modulo 〈T〉 (that is,
a generator of RT), which allows us to replace multivariate operations by uni-
variate ones.

8 Poteaux & Schost

The delicate point is the conversion between the multivariate and univariate
representations. The basic idea, using trace formulas, is well-known. The key
problem is how to compute the required traces efficiently: this is an instance of
power projection, which we will solve using Kedlaya and Umans’ idea. There is
a subtle point here: a direct generalization of Kedlaya and Umans’ algorithm
gives a cost of the form Ksδ1+εd , for some constant K (when δe ' δd). This
is already better than previous results (as this is almost linear in δd for fixed
s), but it turns out that one can remove the exponential overhead Ks alto-
gether. This is done by using this algorithm only for bivariate triangular sets
(with s = 2), since then a term of the form Ks becomes irrelevant, and doing
the conversion from multivariate to univariate representations by handling one
variable after the other, using only bivariate algorithms.

All algorithms are completely explicit, but it remains a challenge to make
them competitive in practice. The central issue is to obtain an efficient imple-
mentation of our multivariate versions of Kedlaya and Umans’ algorithms for
modular composition and power projection. Just as with their original version,
the constants hidden in the complexity estimates make a direct implementa-
tion of these algorithms slower than the classical solutions based on Brent and
Kung’s idea for inputs of realistic size. Further work is needed to solve this
issue.

We also want to point out that the “higher-level” algorithms we build on
top of modular composition and power projection (such as multiplication, in-
version, change of order, etc) have an interest on their own; they are simple to
understand and easy to implement. All they require is a subroutine for bivari-
ate modular composition and power projection. For instance, they could also
be implemented on top of the algorithms for modular composition and power
projection given in ?, at the cost however of a worse theoretical complexity.

Contents

1 Introduction 1

2 Preliminaries 9

3 Modular composition and power projection 11

3.1 Useful facts . 11

3.2 The case e = (e, . . . , e) . 13

3.3 The case e = (e1, e2) . 17

Modular composition modulo triangular sets 9

4 Representations of zero-dimensional ideals 19
4.1 Primitive representations . 20
4.2 Mixed representations . 21
4.3 Trace formulas . 22

5 Proof of Theorem 1.1 24
5.1 A worked example . 24
5.2 The bivariate case . 26
5.3 The general case . 27
5.4 Proof of Theorem 1.1 . 29

6 Proof of Theorem 1.2 31
6.1 A worked example . 31
6.2 The bivariate case . 34
6.3 The general case . 35
6.4 Proof of Theorem 1.2 . 39

7 An illustration from elliptic curve point counting 40

2. Preliminaries

This section recalls a few known algorithmic and complexity results involving
triangular sets and finite fields. These results will be used all along this paper.

Algebraic complexity and bit complexity. Our first remark concerns
the two models of computation that will be used in the paper. Both are RAM
models: the algebraic RAM of ? and the boolean one. We will often use
implicitly the following principle: given an algorithm written for an algebraic
RAM over an abstract ring R, doing T operations in R, we will deduce an
algorithm in the boolean model that solves the same problem over Fq in time
T log(q) plog(T) plog(log(q)); the plog(T) term allows us to take into account
the logarithmic cost induced by fetching and storing data. This assumes that
the cost of index manipulations, loop control, etc, is negligible, and that all
data is stored in the first TO(1) memory locations; this will be the case in our
examples.

The transposition principle. Let r, s ≥ 1 and let M be an r × s matrix
with entries in a field F. The transposition principle (?, Theorem 13.20) states
that the existence of an algebraic circuit for the matrix-vector product b 7→Mb

10 Poteaux & Schost

implies the existence of a circuit with the same size, up to O(r+ s), to perform
the transposed matrix-vector product c 7→M tc. We will rely on the same idea,
but in an algebraic RAM model; we will not offer a general proof, but rather
indicate case-by-case how to do the transposition.

Note that for boolean models, there is no such transposition result; as a
consequence, extra care must be taken when discussing transposed algorithms
in this context (as already pointed out in ?).

Arithmetic modulo triangular sets. We continue by describing basic al-
gorithms for triangular sets. Let T be a triangular set of multidegree d =
(d1, . . . , ds) in F[Y]. We are concerned here with the cost of multiplication and
reduction modulo T. Theorem 1 in ? shows the following:

(F1) given A and B in F[Y]d, one can compute the product AB mod 〈T〉 in
4sδd plog(δd) operations in F.

(F2) given d′ = (d′1, . . . , d
′
m), with d′i ≥ di for all i, and A in F[Y]d′ , the

remainder A mod 〈T〉 can be computed in 4sδd′ plog(δd′) operations in
F.

Finite field embeddings. Given a finite field Fq, and a positive integer t,
we are interested in the cost of finding an embedding Fq → Fq′ , with q′ =
qt. Following our convention, we suppose that Fq is given as Fp[T]/〈P 〉, with
deg(P) = r, and we will look for Fq′ as Fp[T ′]/Q, with deg(Q) = rt. Then, the
key results we will use are the following.

(F3) One can construct in
√
p plog(q′) operations in Fp two polynomials Q and

V in Fp[T ′] such that ι : Fp[T]/〈P 〉 → Fp[T ′]/Q defined by T 7→ V is an
embedding Fq → Fq′ . Given Q and V , one can compute ι(x) for x in Fq,
and ι−1(y) for y in ι(Fq), in plog(q′) operations in Fp.

Let us justify this claim. First, we compute an irreducible polynomial Q of
degree rt in Fp[T ′] using

√
p plog(q′) operations in Fp as in ?. Then, we factor

Q in Fq[T ′] for a similar cost, as in ?. Take a factor ψ of Q in Fq[T ′] and lift it
canonically to Fp[T, T ′]. We then consider the system∣∣∣∣ ψ(T, T ′)

P (T)

and change the order of the variables. Since this system generates a maximal
ideal, the change of order results in a set of two equations of the form∣∣∣∣ T − V (T ′)

Q(T ′).

Modular composition modulo triangular sets 11

The map ι : Fp[T]/〈P 〉 → Fp[T ′]/Q defined by T 7→ V (T ′) realizes the requested
embedding Fq → Fq′ . The polynomial V can be computed using a number of
Fp-operations polynomial in rt, thus in plog(q′), e.g. by plain linear algebra;
once V is known, computing ι(x), for x ∈ Fq, takes a similar time, by modular
composition. Finally, given y ∈ Fq′ in the range of ι, one can recover its
preimage in time plog(q′), by linear algebra again.

3. Modular composition and power projection

In this section, we give our first algorithms for multivariate modular composi-
tion and power projection; we work modulo a triangular set T of multidegree
d ∈ Ns, and we take a parameter e ∈ Nm. The cases we will need in the further
sections have m, s ≤ 2; for convenience, the following theorem emphasizes this
special case.

Theorem 3.1. Fix ε > 0 and positive integers m, s in {1, 2}. Given a tri-
angular set T in Fq[Y] of multidegree d ∈ Ns, one can solve the problems of
multivariate modular composition and multivariate power projection modulo
〈T〉, with parameter e ∈ Nm, using (δd + δe)

1+ε log(q) plogε(log(q)) bit opera-
tions.

We will actually have to prove slightly more: first, we study the case where m
is arbitrary and e = (e, . . . , e) ∈ Nm, then the case m = 2 and e arbitrary (the
former case is needed to deal with the latter). In our notation, Kedlaya and
Umans dealt with the case s = 1 and e = (e, . . . , e).

In the complexity analysis, we will assume that s is arbitrary, and fixed:
the cost estimates will actually hide factors exponential in s. This will however
induce no harm later on, since, as we said above, these results will be employed
with s ≤ 2 in the next sections.

3.1. Useful facts. We start with some known results about topics such as
multivariate polynomial evaluation. These results will be used in this section
only.

Multivariate evaluation. We consider the problem of evaluating a multi-
variate polynomial at a set of points, as well as its transpose. The following
is (up to a minor modification) the quasi-linear result of (?, Corollary 4.3
and Theorem 7.6). One difference is that we write the dependency in q as
log(q) plog(log(q)) rather than log(q)1+o(1); this is possible by slightly modi-
fying the proof given in that reference (by augmenting by 1 the value of a

12 Poteaux & Schost

parameter t used in the proof). The other difference is that we fix the num-
ber of variables m (the original statement had the condition m = eo(1)), which
allows us to dispense with the original condition that e be large enough.

The result we quote holds in a boolean model, so we take Fq as a base field.
Given e in Nm and a set B ⊂ Fmq of cardinality N , we define

EvalB : Fq[X]e → FNq
F 7→ [F (b) | b ∈ B];

the transpose map is EvaltB : FNq → Fq[X]∗e.

(F4) Fix ε > 0 and a positive integer m. Given e ∈ Nm of the form e =
(e, . . . , e), a set B ⊂ Fmq of cardinality N and F ∈ Fq[X]e, one can
compute EvalB(F) in (δe +N)1+ε log(q) plogε,m(log(q)) bit operations.

(F5) Fix ε > 0 and a positive integer m. Given e ∈ Nm of the form e =
(e, . . . , e), a set B ⊂ Fmq of cardinality N and u ∈ FNq , one can compute

EvaltB(u) in (δe +N)1+ε log(q) plogε,m(log(q)) bit operations.

Fact F5 is from (?, Theorem 7.6). That reference has the extra assumption
that N = δe; we briefly discuss how to lift this assumption. If N ≥ δe, the
input of EvaltB has larger cardinality than the output. Then, we do as in (?,
Theorem 7.7), by solving dN/δee instances of size δe and adding the results. If
N ≤ δe, we do not have enough points, so we add δe − N dummy points and
pad the input vector with zeros. In both cases, the cost fits into our claimed
bound.

Structured evaluation and interpolation. Next, we discuss multivariate
evaluation and interpolation at special sets of points. The following results
hold over an abstract field F. Let e = (e1, . . . , em) be in Nm, and consider a
subset of Fm of the form B = B1 × · · · × Bm, with Bi of cardinality ei (thus,
B is an m-dimensional grid). For input polynomials with support in F[X]e,
evaluation and interpolation at such a grid are simple problems.

(F6) given F ∈ F[X]e and B as above, one can compute EvalB(F) in δe plog(δe)
operations in F.

(F7) given values v = [vb | b ∈ B] and B as above, there exists a unique
polynomial F ∈ F[X]e such that EvalB(F) = v; one can compute F in
δe plog(δe) operations in F.

The multivariate algorithms simply consists in applying the classical univariate
algorithms, variable by variable; see for instance ?.

Modular composition modulo triangular sets 13

Reformating a polynomial. One of the main ideas used in ?, and before
it in the algorithm of ?, is to simultaneously increase the number of variables
and decrease the degrees of a polynomial. Our definition slightly extends the
one used there, by allowing arbitrary partial degrees. In what follows, as in the
previous paragraph, our polynomials will have coefficients in an abstract field
F.

Given e = (e1, . . . , em) ∈ Nm, we will be interested in mapping polynomials
in F[X1, . . . , Xm]e to polynomials in more variables, with lower degree. Let
(`1, . . . , `m) be positive integers; to each variable Xi we will associate `i new
variables Xi,0, . . . , Xi,`i−1, so that the total number of new variables is m′ =
`1 + · · ·+ `m.

Consider a vector e′ = (e′1, . . . , e
′
1, . . . , e

′
m, . . . , e

′
m) ∈ Nm′ , such that each e′i

is repeated `i times. This will be our new degree vector, so that we put the
constraint e′i

`i ≥ ei. Then, we can define the F-linear map Λe,e′ by

Λe,e′ : F[X1, . . . , Xm]e → F[X1,0, . . . , Xm,`m−1]e′

Xa1
1 · · ·Xam

m 7→ X
a1,0
1,0 · · ·X

a1,`1−1

1,`1−1 · · ·X
am,0

m,0 · · ·X
am,`m−1

m,`m−1 ,

where ai,0, . . . , ai,`−1 are the coefficients of the expansion of ai in base e′i. Next,
given an F-algebra R, we define the map Λ?

e,e′ as

Λ?
e,e′ : Rm → Rm′

G = (G1, . . . , Gm) 7→ (Gi, G
e′i
i , . . . , G

e′i
`i−1

i)i=1,...,m.

The key equality is then the following: for F in F[X1, . . . , Xm]e and G in Rm,
we have F (G) = Λe,e′(F)

(
Λ?

e,e′(G)
)
. Computing Λe,e′(F) and Λ?

e,e′(G) induces
a cost, which we summarize here:

(F8) Given F in F[X1, . . . , Xm]e, one can compute Λe,e′(F) in O(δe′) opera-
tions in F. Given G in Rm, one can compute Λ?

e,e′(G) using O(log(δe′))
multiplications in R.

The first point is obvious: we simply fill an array of size δe′ . For the second

point, for a fixed i ≤ m, we must compute Gi, G
e′i
i , . . . , G

e′i
`i−1

i . This is done
using `i exponentiations by e′i, that is, O(`i log(e′i)) multiplications in R. The
total is thus O(log(e′1

`1 · · · e′m
`m)) = O(log(δe′)).

3.2. The case e = (e, . . . , e). We can now turn to modular composition and
power projection, starting with the case where e = (e, . . . , e). This situation
is very close to (?, Theorem 3.1), as the only (conceptually trivial) difference

14 Poteaux & Schost

is that we work modulo a triangular set, instead of a single polynomial. The
proof we give follows the one given in that reference: the key idea developed
in ?, and previously in ?, is to reduce the problem to multipoint evaluation.

In the following theorem, s and m are fixed, so the cost estimate hides
the dependency in these parameters. The dependency in m could easily be
controlled, by requiring m = eo(1), as in (?, Theorem 3.1). With respect to s,
however, the cost would turn out to involve a factor of the form 4s, due to the
application of facts F1 and F2; as said before, this is not harmful since we will
use this result with s ≤ 2.

Theorem 3.2. Fix ε > 0 and positive integers m, s. Given a triangular set
T in Fq[Y] of multidegree d ∈ Ns, one can solve the problem of multivariate
modular composition modulo 〈T〉, with parameter e = (e, . . . , e) ∈ Nm, using
(δd + δe)

1+ε log(q) plogε,s,m(log(q)) bit operations.

Proof. Without loss of generality, we may assume that ε ≤ 1. Given a
triangular set T ∈ Fq[Y1, . . . , Ys] of multidegree d = (d1, . . . , ds), (G1, . . . , Gm)
inRm

T and F in Fq[X1, . . . , Xm]e, we will show how to compute F (G1, . . . , Gm) ∈
RT. The algorithm follows that of (?, Theorem 3.1), up to handling reduction
modulo multivariate polynomials. In all that follows, remember that we have
fixed ε, s,m, so they should be seen as constants.

The idea is to proceed by evaluation and interpolation. To enable this, we
will replace (m,d, e, q) by better suited parameters (m′,d′, e′, q′). First, we
define ` = d2s/(mε)e, m′ = `m and e′ = de1/`e. Remark that ` and m′ are
bounded from above by a constant. On the other hand, we have the lower
bound m′ ≥ 2s/ε: m′ will our new number of variables; it is large enough, but
not too large.

Let next e′ be the vector (e′, . . . , e′) of lengthm′. Finally, let d = max(d1, . . . , ds),
and define d′ = (d′1, . . . , d

′
s), with d′i = m′e′di. Before going further, we estab-

lish the following inequalities:

◦ There exists a constant c1 depending on (ε,m, s) such that δe′ ≤ c1δ
1+ε
e .

Indeed, we have δe′ = de1/`e`m. We deduce the inequalities

δe′ ≤ (e1/` + 1)`m and thus δe′ ≤ δe(1 + e−1/`)`m.

There exists c0 depending on (ε,m, s) such that (1 + e−1/`)` admits the
upper bound c0e

ε for all e, and the conclusion follows by raising to the
power m and taking c1 = cm0 .

Modular composition modulo triangular sets 15

◦ For ε ≤ 1, there exists a constant c2 depending on (ε,m, s) such that

δd′ ≤ c2δ
ε
eδd. Indeed, we have δd′ = (m′e′)sδd. The equality e′ = δ

1/m′

e′

implies

m′e′ = m′δ
1/m′

e′ , so that (m′e′)s = m′
s
δ
s/m′

e′ .

Recall that m′ ≥ 2s/ε; then, the former equality gives (m′e′)s ≤ m′sδ
ε/2
e′ .

The upper bounds δe′ ≤ c1δ
1+ε
e ≤ c1δ

2
e enable us to conclude, by taking

c2 = m′sc
ε/2
1 .

We will need to ensure that the base field contains at least m′e′d elements.
The final correction we do is thus to change q into q′, defined below; in what
follows, in any case, our base field will be Fq′ .

◦ If q ≥ m′e′d, we do nothing and we let q′ = q.

◦ Else, we construct an irreducible polynomial of degree n = dlogq(m
′e′d)e

over Fq and an embedding ι : Fq → Fq′ , with now q′ = qn. By fact F3, this
can be done in

√
p plog(q′) operations in Fp. Remark that q′ ≤ qm′e′d ≤

(m′e′d)2, so that a quantity polylogarithmic in q′ is polylogarithmic in
m′e′d, and thus in δd + δe. Since p ≤ q, and q ≤ m′e′d,

√
p is O(

√
δdδe),

with a constant depending on ε, s,m, so the time for building Fq′ is (δd +
δe) plogε,s,m(δd + δe) operations in Fp.
Fact F3 also shows that applying and inverting ι on its image, can be
done in plog(q′) operations in Fp. In view of what was said before, this
is plogε,s,m(δd + δe) operations. As a consequence, the sum of all costs
related to ι and ι−1 will as well be (δd + δe) plogε,s,m(δd + δe) operations
in Fp.

We can now explain the algorithm. To compute F (G1, . . . , Gm) mod 〈T〉, we
will actually compute F ′(G′1, . . . , G

′
m′) mod 〈T〉, with

F ′ = Λe,e′(F) and (G′1, . . . , G
′
m′) = Λ?

e,e′(G1, . . . , Gm) mod 〈T〉.

We saw (Section 3.1, fact F8) that computing F ′ and (G′1, . . . , G
′
m′) takes O(δe′)

operations in Fq′ and O(log(δe′)) multiplications modulo 〈T〉. Fact F1 shows
that the cost of one multiplication modulo 〈T〉 is 4sδd plog(δd) operations in
Fq′ , so the total is (4sδd + δe′) plog(δd + δe′) operations in Fq′ , which we may
rewrite as (δd + δe′) plogs(δd + δe′).

To compute F ′(G′1, . . . , G
′
m′) mod 〈T〉, we will first compute ϕ = F ′(G′1, . . . , G

′
m′),

then reduce it modulo 〈T〉. The reduction will raise no difficulty; the delicate
step is the computation of ϕ.

16 Poteaux & Schost

This will be done by evaluation and interpolation. Remark that ϕ lies in
Fq′ [Y]d′ . Thus, we choose subsets B1, . . . , Bs of Fq′ of cardinalities d′1, . . . , d

′
s;

this is possible by assumption on q′. We first compute all values g′b = (G′1(b), . . . , G
′
m′(b)) ∈

Fm′q′ for b ∈ B1 × · · · ×Bs, then all values f ′b = F ′(g′b); we finally compute ϕ by
interpolating the values f ′b at B1 × · · · ×Bs.

Let us postpone the cost of the evaluation of F ′ at the points g′b, and esti-
mate all other costs first. To compute all g′b, we evaluate each G′i at B1×· · ·×Bs,
for i ≤ m′. By fact F6, each evaluation takes δd′ plog(δd′) operations in Fq′ , for a
total ofm′δd′ plog(δd′) operations in Fq′ . Sincem′ is bounded by a constant, this
is δd′ plogε,s,m(δd′). By fact F7, this also controls the cost of interpolation. Fi-
nally, since s is constant, Fact F2 implies a cost of 4sδd′ plog(δd′) = δd′ plogs(δd′)
operations in Fq′ for the reduction of ϕ modulo 〈T〉.

The total cost for all previous steps is bounded from above by (δd′ +
δe′) plogε,s,m(δd′ + δe′) operations in Fq′ .

We finish by estimating the cost of computing all f ′b. Since m′ is bounded
by a constant, we can apply fact F4 with parameters e′ and N = δd′ , to get
a cost of (δd′ + δe′)

1+ε log(q′) plogε,s,m(log(q′)) bit operations. In view of the
claim of the previous paragraph, the total time fits into this bound as well.
Using the bounds given previously on δe′ and δd′ , and a quick simplification,
this becomes (δd + δe)

1+3ε log(q′) plogε,s,m(log(q′)) for ε ≤ 1.
Remember that q′ ≤ qm′e′d, so that log(q′) is at most log(q)+plogε,s,m(δeδd).

The polylogarithmic terms in δeδd admit as well an upper bound of the form
c(ε,m, s)(δd + δe)

ε, and the conclusion follows, up to replacing ε by ε/4. �

We continue with a description of the transposition of this algorithm, that
deals with power projection. The reasoning follows the one of (?, section 7.2).

Theorem 3.3. Fix ε > 0 and positive integers m, s. Given a triangular set
T in Fq[Y] of multidegree d ∈ Ns, one can solve the problem of multivariate
power projection modulo 〈T〉, with parameter e = (e, . . . , e) ∈ Nm, using
(δd + δe)

1+ε log(q) plogε,s,m(log(q)) bit operations.

Proof. We will show how to transpose the algorithm given in the proof of
the previous theorem. Seen as a linear map in F , the former algorithm replaces
F by F ′ = Λe,e′(F), performs a multipoint evaluation of F ′, then a multivariate
interpolation at a grid, and finally a reduction modulo 〈T〉.

We explain here how to transpose these four steps in reverse order (the
other steps, which are non-linear, are unchanged). The last step is a modular
reduction. Its transpose is described in ? in the case s = 1 and in ? for s = 2;

Modular composition modulo triangular sets 17

in general, it suffices to transpose step-by-step the reduction algorithm of ?,
and the cost remains unchanged.

The third step is a multivariate interpolation at a grid of dimension s, which
is done by interpolating one variable after the other. The transposed algorithm
thus requires to perform s transposed univariate interpolations; we refer to ??
for such an algorithm. Again, the cost remains unchanged. The second step is a
multidimensional multipoint evaluation, with monomial support e′, at N = δd′
points; its transpose is handled by invoking fact F5 (instead of fact F4 for the
forward direction). Finally, the first step is an injection, whose transpose is a
projection, and takes linear time.

The costs of all transposed steps are thus the same as the ones for the
forward direction, and as a consequence, the overall running time admits the
same bound. �

3.3. The case e = (e1, e2). The results of the previous subsection assume
that e ∈ Nm has the special form (e, . . . , e). What we will actually need in
the sequel are the cases m = 1 (which is thus covered) and m = 2, but in this
case with e = (e1, e2) arbitrary. This subsection shows how to handle this case
using the former theorems. Again, the number of variables s in our triangular
set is fixed.

Theorem 3.4. Fix ε > 0 and a positive integer s. Given a triangular set
T in Fq[Y] of multidegree d ∈ Ns, one can solve the problem of multivariate
modular composition modulo 〈T〉, with parameter e = (e1, e2) ∈ N2, using
(δd + δe)

1+ε log(q) plogε,s(log(q)) bit operations.

Proof. Given a triangular set T ∈ Fq[Y1, . . . , Ys] of multidegree d, (G1, G2)
in RT and F in Fq[X1, X2](e1,e2), we will show how to compute F (G1, G2) ∈ RT.
Since the order of the variables X1 and X2 is irrelevant, we may assume that
e1 ≤ e2. We will distinguish two cases, depending on whether e2 ≤ e

1/ε
1 or not.

Suppose first that e2 ≤ e
1/ε
1 holds. Let

`1 =

⌈
1

ε

⌉
, `2 =

⌈
1

ε
loge1(e2)

⌉
and e = deε1e;

as a consequence of our assumption on e1, e2, both `1 and `2 are bounded by
constants (since ε is fixed). Define the vector e′ = (e, . . . , e) in N`1+`2 , and let
further

F ′ = Λe,e′(F)

18 Poteaux & Schost

and
(G′1,1, . . . , G

′
1,`1
, G′2,1, . . . , G

′
2,`2

) = Λ?
e,e′(G1, G2) mod 〈T〉,

so that we have

F (G1, G2) mod 〈T〉 = F ′(G′1,1, . . . , G
′
1,`1
, G′2,1, . . . , G

′
2,`2

) mod 〈T〉.
We saw in fact F8 that F ′ and allG′i,j can be computed inO(δe′) operations in Fq
and O(log(δe′)) multiplications modulo 〈T〉. This will be negligible compared
to what follows.

Knowing the G′i,j, we are left with an instance of modular composition
modulo 〈T〉 with parameter e′. Because `1+`2 is bounded by a constant, we can
apply Theorem 3.2, giving a running time of (δd + δe′)

1+ε log(q) plogε,s(log(q))
bit operations. Next, using all equalities written before, we obtain the upper
bound

δe′ = e`1+`2 ≤ (2 eε1)
1
ε
+ 1

ε
loge1 (e2)+2 ≤ 2

1
ε
+ 1

ε2
+2δ1+εe

using the upper bound e ≤ 2 eε1 and, for the exponents, dxe ≤ x + 1. Thus,

(δd + δe′)
1+ε admits the upper bound 2

1
ε
+ 1

ε2
+2(δd + δe)

1+3ε for ε ≤ 1. This
finishes the proof in this case (up to replacing ε by say ε/3).

Next, we consider the case e2 ≥ e
1/ε
1 ; in particular, we have e1 ≤ δεe. Write

F (X1, X2) =
∑e1−1

i=0 Fi(X2)X
i
1, with deg(Fi) < e2 for all i, and recall that we

want to compute

F (G1, G2) mod 〈T〉 =

e1−1∑
i=0

Fi(G2)G
i
1 mod 〈T〉.

We proceed as follows:

1. We first compute Fi(G2) mod 〈T〉, for 0 ≤ i ≤ e1 − 1. Each of these
computations is an instance of modular composition modulo 〈T〉 with
parameter (e2) ∈ N1, that is, with m = 1. By Theorem 3.2, the cost
of this step is e1(δd + e2)

1+ε log(q) plogε,s(log(q)) bit operations. Since
e1 ≤ δεe, this is at most (δd + δe)

1+2ε log(q) plogε,s(log(q)).

2. Then, we use these values in a Horner scheme to get the result in e1 mul-
tiplications and additions in RT; this gives us a cost of e1δd plogs(δd) op-
erations in Fq. Using again the bound e1 ≤ δεe, this is (δd+δe)

1+ε plog(δd)
operations in Fq, and thus (δd+δe)

1+ε plogs(δd+δe) log(q) plog(log(q)) bit
operations. The latter cost admits the upper bound (δd+δe)

1+2ε log(q) plogε,s(log(q)).

Replacing ε by ε/2 concludes the proof. �

We conclude this section with the transposed version of the former algo-
rithm.

Modular composition modulo triangular sets 19

Theorem 3.5. Fix ε > 0 and a positive integer s. Given a triangular set
T in Fq[Y] of multidegree d ∈ Ns, one can solve the problem of multivariate
power projection modulo 〈T〉, with parameter e = (e1, e2) ∈ N2, using (δd +
δe)

1+ε log(q) plogε,s(log(q)) bit operations.

Proof. As in the proof of the previous theorem, we assume that e1 ≤ e2 and
we consider the two cases e2 ≤ e

1/ε
1 or e2 ≥ e

1/ε
1 . In the forward direction, both

cases involve modular composition (which was handled using Theorem 3.2), so
the transpose will rely on power projection.

◦ In the first case, the linear part of the algorithm amounts to replacing F
by F ′ and solving an instance of modular composition modulo 〈T〉, with
parameter e′; we use Theorem 3.3 to do the transposed operation, power
projection, in the same amount of time as in the forward direction.

◦ In the second case, the first step consists in solving e1 instances of modular
composition modulo 〈T〉, with parameter (e2); their transposes are all
handled by Theorem 3.3. The second step is simply Horner’s rule modulo
〈T〉, and can be transposed without difficulty (see e.g. ?).

In both cases, the costs of all transposed steps are the same as the ones for the
forward direction, so the overall running time admits the same bound. �

4. Representations of zero-dimensional ideals

In this section, we change our focus: we discuss representations of zero-dimensional
algebraic sets using either univariate polynomials, triangular sets, or an inter-
mediate data structure.

For our discussion, we consider a zero-dimensional ideal I in F[Y] = F[Y1, . . . , Ys],
where F is a perfect field; we do not necessarily assume that I is defined by a
triangular set for any order. Finally, we let R = F[Y]/I be the residue class
ring modulo I, and let δ be the dimension of the F-vector space R.

To A ∈ R, we associate the multiplication-by-A endomorphisms of R, writ-
ten MA. The minimal polynomial and the characteristic polynomial of A, re-
spectively written mA ∈ F[Y] and χA ∈ F[Y], are then defined as those of
MA. Let V be the zero-set of I in Fs, where F is an algebraic closure of F.
Then, when I is radical, because of our perfectness assumption, we have the
factorization (over F)

(4.1) χA =
∏
y∈V

(Y − A(y))

20 Poteaux & Schost

and mA is the squarefree part of χA. Finally, the trace tr(A) is, by definition,
the trace of the endomorphism MA; note that the trace is an F-linear form.

4.1. Primitive representations. Primitive representations will allow us to
work modulo I using only univariate polynomials. To start with, we say that
A ∈ R is a primitive element if the powers of A generate R. This is the
case if and only if χA = mA; when I is radical, this is the case if and only if
χA has no multiple root. In all that follows, we will be concerned only with
primitive elements of the form A =

∑
i≤s `iYi (as in many previous works, such

as ?????). The following well-known result gives a condition on such an A to
be a primitive element.

Lemma 4.2. If I is radical, there exists a non-zero homogeneous polynomial
∆ in F[L1, . . . , Ls] of degree less than δ2/2 such that if ∆(`1, . . . , `s) 6= 0,
A = `1Y1 + · · ·+ `sYs is a primitive element.

Proof. The argument is well-known: A = `1Y1 + · · · + `sYs is a primitive
element if and only if the form (y1, . . . , ys) 7→ `1y1 + · · · + `1ys separates the
zeros of I, that is, if `1(y1 − y′1) + · · · + `s(ys − y′s) is non-zero for all y and
y′ distinct zeros of I. Thus, it suffices to take for ∆ the product of the linear
forms L1(y1 − y′1) + · · · + Ls(ys − y′s), for all pairs (y, y′); ∆ has coefficient in
F, as it is the square root of the discriminant of

∏
y∈V (T − L1y1 − · · · − Lsys),

which has coefficients in F. There are at most δ(δ− 1)/2 such pairs (y, y′), and
the conclusion follows. �

When A =
∑

i≤s `iYi is a primitive element, R and F[Y]/〈P 〉 are isomorphic,
with P = mA; then, deg(P) = δ. In this case, a primitive representation
P = (P,V, `) contains the information necessary to encode this isomorphism:
it consists of polynomials P and V = (V1, . . . , Vs) in F[Y], and ` = (`1, . . . , `s)
in Fs, with deg(Vi) < δ for all i, such that the mappings

ψP : R → F[Y]/〈P 〉
Y1, . . . , Ys 7→ V1, . . . , Vs

and
ϕP : F[Y]/〈P 〉 → R

Y 7→
∑

i≤s `iYi

are isomorphisms, inverses of one another. In particular, Y =
∑

i≤s `iVi.

Modular composition modulo triangular sets 21

4.2. Mixed representations. We continue our discussion, with the purpose
of introducing an intermediate data structure, between triangular sets and
primitive representations.

We start with a variation on the notion of primitive element. For j ≤
s, let Ij be the ideal I ∩ F[Y1, . . . , Yj] and let Rj be the residue class ring
F[Y1, . . . , Yj]/Ij.

We say that A ∈ R is a primitive element of level j if A is in Rj, and if
the powers of A generate Rj. The following lemma will be helpful to quantify
linear forms that are primitive elements of level j; the proof is the same as that
of Lemma 4.2.

Lemma 4.3. Suppose that I is radical. Then for j ≤ s, there exists a non-zero
homogeneous polynomial ∆j in F[L1, . . . , Lj] of degree less than δ

2/2 such that
if ∆j(`1, . . . , `j) 6= 0, A = `1Y1 + · · ·+ `jYj is a primitive element of level j.

A mixed representation M = (P,V, `) of I of format (j, s− j + 1) consists
in a triangular set P = (P, Pj+1, . . . , Ps) in F[Y, Yj+1, . . . , Ys], for the order
Y < Yj+1 < · · · < Ys, some polynomials V = (V1, . . . , Vj) in F[Y] and ` =
(`1, . . . , `j) in Fj, such that we have mutually inverse isomorphisms

ΨM : R → RP

Y1, . . . , Yj 7→ V1, . . . , Vj
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

and
ΦM : RP → R

Y 7→
∑

i≤j `iYi
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

In particular,
∑

i≤j `iVi = Y . Also, in this case,
∑

i≤j `iYi is a primitive
element of level j, Rj is isomorphic to F[Y]/〈P 〉, and Rj′ is isomorphic to
F[Y, Yj+1, . . . , Yj′]/〈P, Pj+1, . . . , Pj′〉 for j′ > j.

In other words, a mixed representation provides us with a primitive rep-
resentation for the first j variables, and has a triangular shape for the last
variables. The “format” (j, s− j + 1) provides a quick way to know how many
elements are in V and ` (here, j), and in P (here, s − j + 1). When j = s,
a mixed representation is thus the same thing as a primitive representation.
When j = 1, if we additionally suppose that `1 = 1, we have V1 = Y , so up
to renaming Y as Y1, ΨM maps Y1, . . . , Ys to themselves, and P is a triangular
set that generates I.

The following technical lemma will be useful in Section 6.

22 Poteaux & Schost

Lemma 4.4. Suppose that I is radical and that |F| ≥ δ2. Then for j ≤ s, the
following are equivalent:

◦ the ideal I admits a mixed representation of format (j, s− j + 1)

◦ for i = j, . . . , s − 1, there exists a positive integer di+1 such that Ri+1 is
a free Ri-module with basis 1, Yi+1, . . . , Y

di+1−1
i+1 .

Proof. Suppose that I admits a mixed representation M = (P,V, `) of
format (j, s − j + 1), with polynomials P = (P, Pj+1, . . . , Ps) in variables
Y, Yj+1, . . . , Ys. Through ΨM , we see that for i = j, . . . , s − 1, Ri+1 has the
form Ri[Yi+1]/〈Pi+1〉; the second assertion in the lemma follows.

Conversely, we always have that Ri+1 = Ri[Yi+1]/Ii+1. Suppose Ri+1 is a

free Ri-module with basis 1, Yi+1, . . . , Y
di+1−1
i+1 . Then, there exists a polynomial

Pi+1 in Ri[Yi+1], monic of degree di+1 in Yi+1, that belongs to Ii+1 (this is
the characteristic polynomial of the multiplication by Yi+1); one verifies that
Pi+1 actually generates Ii+1 in Ri[Yi+1]. As a consequence, we get that R =
Rj[Yj+1, . . . , Ys]/〈Pj+1, . . . , Ps〉. Using our assumption on the cardinality of
F, Lemma 4.3 ensures the existence of a primitive element of level j of the form
`1Y1 + · · · + `jYj (since F is large enough, there must be a point in Fj where
∆j does not vanish); this allows us to write Rj ' F[Y]/〈P 〉, and the conclusion
follows. �

4.3. Trace formulas. Finally, we describe how using trace formulas enables
one to perform various conversions. The following claims are classical: see
e.g. ? for similar results using another linear form and ? for a more general
case, where I is not supposed to be radical.

Lemma 4.5. Suppose that I is radical and let A and B be in R. Then, one
can do the following in δ plog(δ) operations in F:
◦ given (tr(Aj))j<2δ, decide whether A is a primitive element, and if so,
compute its minimal polynomial mA;

◦ given mA and (tr(BAj))j<δ, compute a polynomial V ∈ F[Y] of degree
less than δ, such that if B can be expressed as a polynomial in A, then
B = V (A) in R.

Remark that in the second item, we do not suppose that A is a primitive
element, so that B may not be expressible in the form V (A); the point is that
if it is the case, we can find V . We do not include the cost of the verification
that B = V (A), since this would involve modular composition, which we do
not know how to do in time δ plog(δ).

Modular composition modulo triangular sets 23

Proof. We start from the following classical formula (which is essentially a
generating series version of Newton-Girard’s identities)

(4.6)
∑
j≥0

tr(Aj+1)Y j ∈ F[[Y]] = − 1

revδ(χA)

d revδ(χA)

dY
,

where we write revd(P) = Y dP (1/Y) for any P ∈ F[Y] and d ≥ 0. To re-
cover χA using this equality, algorithms using Newton’s formula (such as ?)
require divisions by integers 2, . . . , δ, which may not be possible in small char-
acteristic. Instead, we will use the Berlekamp-Massey algorithm; it allows us
to compute the minimal polynomial µA of the sequence (tr(Aj+1)) from the
values (tr(Aj))j<2δ.

Since I is radical, A is a primitive element if and only if χA has no multiple
root, or equivalently if revδ(χA) has no multiple root, or equivalently if the
rational function in Equation (4.6) is reduced. This is the case if and only if
µA has degree δ; when this is the case, we have µA = mA = χA. This proves
the first point, since Berlekamp-Massey’s algorithm runs in time δ plog(δ).

The second point is in (?, Theorem 5), up to an inconsequential difference
(that result is proved using another linear form than the trace). �

The previous lemma allows one to compute a primitive representation by
means of trace computations. We now discuss how to compute a triangular
representation. While the idea of using trace formulas remains, the computa-
tions are more involved. For this reason, we consider only bivariate situations.
The following result is from (?, Section 3); it requires a stronger assumption
on the characteristic than the previous lemma (as we use a bivariate version of
Newton’s identities). This assumption may most likely be lifted, but we leave
this generalization to future work.

Lemma 4.7. Suppose that I ⊂ F[Y1, Y2] is radical and let p be the character-
istic of F. If p > δ, then one can do the following using δ plog(δ) operations in
F:

◦ given (tr(Y j
1))j<δ, verify whether I is generated by a triangular set (T1(Y1), T2(Y1, Y2)),

and if so compute T1;

◦ given T1 and (tr(Y i
1Y

j
2))i<d1,j<d2 , with d1 = deg(T1) and d2 = δ/d1, com-

pute T2.

24 Poteaux & Schost

5. Proof of Theorem 1.1

We will now prove our first main theorem, on the cost of multiplication, inver-
sion, norm computation, modular composition and power projection modulo
a triangular set. The algorithms in this section will solve these problems by
computing a primitive representation, since the questions mentioned in Theo-
rem 1.1 can all be solved in quasi-linear time for univariate polynomials.

The basic idea to convert to a primitive representation uses trace formulas
(by means of Lemma 4.5); it mainly amounts to solving some instances of power
projection and modular composition. The delicate question is how to perform
efficiently these power projections, or modular compositions. Section 3 gave
algorithms that are efficient when the number of variables s is fixed, but not
when s is allowed to grow (recall that the estimates of that section hide an
exponential dependency in s).

To solve this issue, we will not proceed directly. The key step is to first
solve the problem for s = 2, that is, for bivariate triangular sets, as this alle-
viates the issue of the exponential cost in s; this is done in Section 5.2. For
higher values of s, with T = (T1, . . . , Ts), we will then first deal with (T1, T2),
finding a univariate polynomial P such that Fq[Y1, Y2]/〈T1, T2〉 ' Fq[Y]/〈P 〉,
then continue with (P, T3), and so on. This is done in Section 5.3. The proof
of Theorem 1.1 is then given in Section 5.4. First, though, we show the details
of our conversion algorithm on an example in three variables.

5.1. A worked example. The following example, with s = 3 over F101, will
be used in this section and in the next one. We start from T = (T1, T2, T3)
given by

T

∣∣∣∣∣∣
T3 = Y 2

3 + 100Y1
T2 = Y 2

2 + Y1
T1 = Y 2

1 + 1.

We will show how to establish that Y1 + Y2 + Y3 is a generator of RT =
F101[Y1, Y2, Y3]/〈T〉, as well as expressions for Y1, Y2, Y3 in terms of Y .

As said before, we do not proceed directly: the key is to first solve the
problem for (T1, T2). This is done by introducing the linear combination Y1+Y2,
and using a bivariate change of order algorithm (coming from Lemma 4.5) to
yield the isomorphism

F101[Y1, Y2]/〈T1, T2〉 → F101[Y]/〈P 〉
Y1 7→ V1
Y2 7→ V2

Y1 + Y2 ← [Y,

Modular composition modulo triangular sets 25

with P = Y 4 + 2Y 2 + 97Y + 2 and

V1 = 68Y 3 + 34Y 2 + 2Y + 32

V2 = 33Y 3 + 67Y 2 + 100Y + 69.

Re-introducing Y3, this can be readily extended to the following isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[Y, Y3]/〈T′〉
Y1 7→ V1
Y2 7→ V2
Y3 7→ Y3

Y1 + Y2 ←[Y,

where T′ is the bivariate triangular set (P (Y), T3(V1, V2, Y3)) in F101[Y, Y3].
Next, we apply the bivariate algorithm to T′; this gives the isomorphism

F101[Y, Y3]/〈T′〉 → F101[Z]/〈P ′〉
Y 7→ V ′

Y3 7→ V ′3
Y + Y3 ← [Z,

with this time P ′ = Z8 + 4Z6 + 99Z4 + 52Z2 + 9 and

V ′ = 51Z7 + 30Z6 + 32Z5 + 30Z4 + 48Z3 + 14Z2 + 3Z + 78

V ′3 = 50Z7 + 71Z6 + 69Z5 + 71Z4 + 53Z3 + 87Z2 + 99Z + 23.

Composing the previous results, this leads to the following isomorphism, which
is what we were looking for:

F101[Y1, Y2, Y3]/〈T〉 → F101[Z]/〈P ′〉
Y1 7→ W1

Y2 7→ W2

Y3 7→ W3

Y1 + Y2 + Y3 ←[Z,

with

W1 = V1(V
′) mod P ′

= Z7 + 64Z5 + 96Z3 + 5Z

W2 = V2(V
′) mod P ′

= 50Z7 + 30Z6 + 69Z5 + 30Z4 + 53Z3 + 14Z2 + 99Z + 78

W3 = V ′3
= 50Z7 + 71Z6 + 69Z5 + 71Z4 + 53Z3 + 87Z2 + 99Z + 23.

26 Poteaux & Schost

5.2. The bivariate case. In this subsection, we handle the bivariate case
only. Let Fq be our base field and consider a triangular set T = (T1, T2) in
Fq[Y1, Y2], of multidegree d = (d1, d2). In the following proposition, we give
cost estimates on the computation of a primitive representation P = (P, `,V),
and on the cost of applying ψP : RT → Fq[Y]/〈P 〉 and its inverse ϕP . We
must make the assumption that q is large enough, so as to be sure that there
exist enough primitive elements of the requested form. Then, the algorithm to
find P is Las Vegas: we choose the candidate primitive element at random,
but we can always verify whether our choice is correct.

We choose additionally to set one of the `i to 1, as this will be useful in the
next section.

Proposition 5.1. For ε > 0, one can do the following in an expected δ1+εd log(q) plogε(log(q))
bit operations: for T = (T1, T2) of multidegree d = (d1, d2) in Fq[Y1, Y2], such
that q ≥ δ2d,

◦ determine whether T is squarefree;

◦ if so, after choosing either `1 = 1 or `2 = 1, compute a primitive repre-
sentation P = (P,V, `) of T, with ` = (`1, `2).

Further, one can do the following using δ1+εd log(q) plogε(log(q)) bit operations:

◦ given P and B in RT, compute ψP(B) ∈ Fq[Y]/〈P 〉;

◦ given P and B in Fq[Y]/〈P 〉, compute ϕP(B) ∈ RT.

Proof. To test whether T generates a radical ideal, it is enough to compute
the gcd of T1 and dT1/dY1, as well as a gcd of T2 and ∂T2/∂Y2 modulo T1, and
check whether all are constant. The first computation is a simple application
of the half-gcd algorithm, and takes time d1 plog(d1). The second one is more
delicate, as it involves the half-gcd algorithm with coefficients modulo T1, and
T1 may not be irreducible: this question is treated by ?, with an algorithm of
cost δd plog(δd), with δd = d1d2. This settles the first point.

To determine whether A = `1Y1 + `2Y2 is a primitive element, we compute
the traces (tr(Aj))j<2δd and apply Lemma 4.5. Computing these traces requires
to first compute the traces of the monomial basis modulo 〈T〉: it is shown in ?
that this can be done in quasi-linear time. Then, we are left with an instance of
power projection with parameter e = (2δd). Invoking Theorem 3.1, this takes
δ1+εd log(q) plogε(log(q)) bit operations; the other δd plog(δd) Fq-operations that
appear in Lemma 4.5 are not more expensive. Because q ≥ δ2d, Lemma 4.2

Modular composition modulo triangular sets 27

shows that at least half of the linear combinations A = `1Y1 + `2Y2, with either
`1 = 1 or `2 = 1, are primitive elements. Thus, we expect to have to go through
this process at most twice.

If A is a primitive element, we next compute tr(Y1A
i)i<δd and tr(Y2A

i)i<δd ;
again, this is done by invoking Theorem 3.1. From these values, Lemma 4.5
shows how to deduce V1 and V2 in quasi-linear time. Thus, we have obtained
P = (P, (V1, V2), `), proving the second point.

Given P andB inRT, computing ψP(B) amounts to computingB(V1, V2) mod
P . This is an instance of modular composition modulo P with parameter
d ∈ N2, so it can be done in δ1+εd log(q) plogε(log(q)) bit operations by Theo-
rem 3.1. This proves the third point.

Given P and B in Fq[Y]/〈P 〉, computing ϕP(B) amounts to computing
B(`1Y1 + `2Y2) mod 〈T〉. This is an instance of modular composition modulo
〈T〉 with parameter (δd) ∈ N1; it can be done in δ1+εd log(q) plogε(log(q)) bit
operations by Theorem 3.1. This proves the last point. �

5.3. The general case. We will now extend the former construction to a
higher number of variables. Suppose thus that s is arbitrary, and let T =
(T1, . . . , Ts) be a triangular set of multidegree d = (d1, . . . , ds) in Fq[Y], with
Y = Y1, . . . , Ys. As explained before, our idea is to deal first with (T1, T2),
and continue this way until there is only one variable left. We start from a
primitive representation P = (P, (V1, V2), (`1, `2)) of (T1, T2); as in the previous
subsection, we choose to add the constraint that either `1 = 1 or `2 = 1, for
future use. We can then define

P =

∣∣∣∣∣∣∣∣∣
Ps = Ts(V1, V2, Y3, . . . , Ys) mod P)
...
P3 = T3(V1, V2, Y3) mod P
P

This is a triangular set in Fq[Y, Y3, . . . , Ys] of multidegree d′ = (d1d2, d3, . . . , ds) ∈
Ns−1. It follows from this construction that we have the following isomorphisms,
inverse of one another:

RT → RP

Y1, Y2 7→ V1, V2
Y3, . . . , Ys 7→ Y3, . . . , Ys

and
RP → RT

Y 7→ `1Y1 + `2Y2
Y3, . . . , Ys 7→ Y3, . . . , Ys.

In other words, we have obtained a mixed representation M of format (2, s−1)
of T, and the mappings above are none other than the isomorphisms ΨM and
ΦM associated with it. The following lemma summarizes all the costs involved.

28 Poteaux & Schost

Lemma 5.2. Fix ε > 0. Then, for d in Ns and T = (T1, . . . , Ts) of multidegree
d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], such that q ≥ δ2d, one can do the following in
an expected s δ1+εd log(q) plogε(log(q)) bit operations:

◦ determine whether 〈T1, T2〉 is a radical ideal;

◦ if so, after choosing either `1 = 1 or `2 = 1, compute a mixed representa-
tion M = (P,V, `) of T of format (2, s− 1), with ` = (`1, `2).

Further, one can do the following in δ1+εd log(q) plogε(log(q)) bit operations:

◦ given M and B in RT, compute ΨM (B) ∈ RP;

◦ given M and B in RP, compute ΦM (B) ∈ RT.

Proof. The first point was proved in Proposition 5.1, as well as the estimate
on the cost of computing a primitive representation P = (P, (V1, V2), (`1, `2))
of (T1, T2), with either `1 = 1 or `2 = 1. To compute all other polynomials
in P, we need to apply some modular compositions: for i ≤ s, Pi is obtained
applying ψP to all coefficients of Ti, assuming we view Ti as a polynomial
in Y3, . . . , Yi. This requires d3 · · · di applications of ψP for Ti, for a total
of d3 + · · · + d3 · · · ds ≤ sd3 · · · ds applications. Each application takes time
(d1d2)

1+ε log(q) plogε(log(q)) bit operations by Proposition 5.1. This proves
the second point, since (d1d2)(d3 · · · ds) = δd. The third and fourth points are
proved similarly. �

Our idea is now straightforward: continue is a similar manner with P, intro-
ducing a primitive representation for (P, P3), until we are left with univariate
polynomials.

Proposition 5.3. Fix ε > 0. For d in Ns and T = (T1, . . . , Ts) of multidegree
d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], such that q ≥ δ2d, one can do the following in
an expected s2 δ1+εd log(q) plogε(log(q)) bit operations:

◦ determine whether T is a radical ideal;

◦ if so, compute Ms−1, . . . ,M1, with Mi = (Pi,Vi, `i), such that

– Ms−1 is a mixed representation of T, of format (2, s− 1),

– for i = s− 2, . . . , 1, Mi is a mixed representation of Pi+1, of format
(2, i),

– for i = s− 1, . . . , 1, `i = (`i,1, `i,2), with either `i,1 = 1 or `i,2 = 1.

Modular composition modulo triangular sets 29

With notation as before, let P be the minimal polynomial of M1, let Ψ =
ΨM1 ◦ · · · ◦ ΨMs−1 and let Φ be its inverse. Then, one can do the following in
s δ1+εd log(q) plogε(log(q)) bit operations:

◦ given Ms−1, . . . ,M1 and B in RT, compute Ψ(B) ∈ Fq[Y]/〈P 〉;

◦ given Ms−1, . . . ,M1 and B in Fq[Y]/〈P 〉, compute Φ(B) ∈ RT.

Finally, one can do the following in s2 δ1+εd log(q) plogε(log(q)) bit operations:

◦ given Ms−1, . . . ,M1, compute a primitive representation P = (P,V, `)
for T such that Ψ = ΨP and Φ = ΦP .

Besides, if we choose a priori j ≤ s, one can ensure that ` = (`1, . . . , `s) is such
that `j = 1.

Proof. To compute Ms−1, . . . ,M1, apply s times Lemma 5.2. The cost of
applying Ψ and Φ follows similarly from Lemma 5.2. At this point, to determine
P = (P,V, `), it suffices to compute V = (V1, . . . , Vs) and ` = (`1, . . . , `s). The
Vi are obtained by computing Ψ(Yi), thus requiring s applications of Ψ.

Finally, to compute (`1, . . . , `s), and ensure `j = 1, let us determine the
image of Y by Φ: a quick check shows that it is given by Y 7→ `1,1 · · · `s−1,1Y1 +
`1,1 · · · `s−2,1`s−1,2Y2 + · · · + `1,1`2,1`3,2Ys−2 + `1,1`2,2Ys−1 + `1,2Ys, so that the
coefficient of Yj is `1,1 · · · `s−j,1`s−j+1,2 (where undefined terms are set to 1).
Choosing `1,1 = · · · = `s−j,1 = 1 and `s−j+1,2 = · · · = `s−1,2 = 1 ensures that
this coefficient equals 1. �

5.4. Proof of Theorem 1.1. We will finally use the former results to solve
the questions stated in Theorem 1.1; in all that follows, ε > 0 is fixed. We
start from a triangular set T of multidegree d = (d1, . . . , ds) in Fq[Y1, . . . , Ys].
To solve the questions of Theorem 1.1, we will want to apply Proposition 5.3.
To apply this result, we need to ensure that the base field Fq has cardinality
at least δ2d:

◦ if q ≥ δ2d, we just let q′ = q,

◦ if q < δ2d, we use fact F3 to build an extension Fq′ of Fq of degree dlogq(δ
2
d)e,

and embed all coefficients of T in Fq′ ; remark that q′ ≤ qδ2d ≤ δ4d. From
fact F3, the cost of finding the embedding is

√
p plog(q′) Fp-operations,

where p is the characteristic of Fq; this fits into the bound δd plog(δd)
Fp-operations. The cost of mapping an element of Fq to Fq′ , and back, is
plog(δd) Fp-operations. Thus, in all problems, the costs of all embeddings
and of all back conversions will fit into the bound δd plog(δd), or (δd +
δe) plog(δd) for modular composition and power projection.

30 Poteaux & Schost

From now on, our base field is Fq′ . For all questions below, we start by testing
whether T is squarefree, and if so, we compute a primitive representation P =
(P,V, `) of T (over Fq′). By Proposition 5.3, this can be done in an expected
s2 δ1+εd log(q′) plogε(log(q′)) bit operations. Applying ΨP and its inverse can
then be done in time s δ1+εd log(q′) plogε(log(q′)), by the same proposition. This
setup allows us to do operations in RT by mapping to Fq′ [Y]/〈P 〉, solving the
univariate problem, and mapping back to RT:

◦ Multiplication is straightforward, since multiplication modulo P can be
done in δd plog(δd) operations in Fq′ .

◦ The same holds for inversion: to test whether A ∈ RT is a unit, and
invert it if possible, we will attempt to invert A′ = ΨP(A) modulo P ,
and pull back the inverse. This amounts to computing the extended gcd
of A′ and P : A is a unit in RT if and only if this gcd is 1, in which
case the cofactor provides the desired inverse. The cost of extended gcd
computation is again δd plog(δd) operations in Fq′ .

◦ Computing the norm of A modulo 〈T〉 works in a similar manner. Recall
that the norm is the determinant of the endomorphism MA of multiplica-
tion by A modulo 〈T〉. Given A′ = ΨP(A), the norm of A is thus given
by the resultant of A′ and P . The cost of computing this resultant is
δd plog(δd) operations in Fq′ .

◦ We consider next modular composition: given (G1, . . . , Gm) in Rm
T , e ∈

Nm and F in Fq[X1, . . . , Xm]e, we want to compute F (G1, . . . , Gm) ∈ RT.
As in the theorem, we will work under the assumption that m ≤ 2. Then,
we get our result by computing

ΦP

(
F (G′1, . . . , G

′
m) mod P

)
,

with G′i = ΨP(Gi). This requires m + 1 ≤ 3 applications of ΦP or
ΨP , and a modular composition modulo P . The latter can be done in
(δd + δe)

1+ε log(q′) plogε(log(q′)) bit operations by Theorem 3.1.

◦ We use a similar strategy for power projection. On input (G1, . . . , Gm) in
Rm

T , e ∈ Nm and τ in R∗T, we want to compute the values τ(Ga1
1 · · ·Gam

m),
for 0 ≤ ai < ei, i ≤ m. Again, we suppose that m ≤ 2. Then, the algo-
rithm is the transpose of the one for modular composition: we compute
all G′i as above, then the linear form τ ′ = Φt

P(τ) defined modulo P , and
obtain our result by computing all τ ′(G′1

a1 · · ·G′m
am) by univariate power

projection.

Modular composition modulo triangular sets 31

The cost analysis is the same as before; the only missing ingredient is the
cost of applying the transpose map Φt

P . It is however straightforward to
transpose the algorithm we gave for Φ. Indeed, this algorithm boils down
to s − 1 applications of maps of the form ΦMi

. Each of them is done
through modular composition with m = 1 and s = 2. The transposed
map uses power projection with the same parameters; using Theorem 3.1,
we obtain the same asymptotic estimate as in the forward direction.

Summing all contributions, and using the upper bound plog(δd) ≤ cδεd, for some
constant c depending on ε, all costs are of the form s2 δ1+εd log(q′) plogε(log(q′)),
or s2 (δd + δe)

1+ε log(q′) plogε(log(q′)) for those involving a parameter e.
It remains to express these estimates in terms of log(q) instead of log(q′).

In any case, log(q′) is at most log(q) + 2 log(δd), so that any cost of the form
log(q′) plogε(log(q′)) is actually in δεd log(q) plogε(log(q)). Up to replacing ε by
ε/2 everywhere, this proves Theorem 1.1.

6. Proof of Theorem 1.2

We will now answer the last question, change of order, thereby proving The-
orem 1.2. In the previous section, the approach consisted in introducing suc-
cessive mixed representations to progressively convert from a triangular repre-
sentation to a univariate one; here, we will go in the opposite direction. As
before, we start with a worked example. Then, we deal with the algorithm in
the bivariate case, and extend the results to an arbitrary number of variables
in a second step.

6.1. A worked example. We first illustrate our strategy on the example of
the previous section. We are given the triangular set

T

∣∣∣∣∣∣
Y 2
3 + 100Y1
Y 2
2 + Y1
Y 2
1 + 1,

for the order Y1 < Y2 < Y3, defined over F101. We will show how to determine
a triangular set T′ for the order Y3 < Y1 < Y2 that generates the same ideal as
T. In the previous section, up to a slight change of notation, we obtained the
isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[Y]/〈P 〉
Y1 7→ V1
Y2 7→ V2
Y3 7→ V3

32 Poteaux & Schost

with P = Y 8 + 4Y 6 + 99Y 4 + 52Y 2 + 9 and

V1 = Y 7 + 64Y 5 + 96Y 3 + 5Y

V2 = 50Y 7 + 30Y 6 + 69Y 5 + 30Y 4 + 53Y 3 + 14Y 2 + 99Y + 78

V3 = 50Y 7 + 71Y 6 + 69Y 5 + 71Y 4 + 53Y 3 + 87Y 2 + 99Y + 23.

This will be our starting point here; all operations that follow are either bivari-
ate change of orders, or modular compositions.

Introducing Y2. Let A = V1 + V3: this plays the role of a “random” linear
combination of V1, V3, that correspond to the lowest variables for the new or-
der. Since A has been chosen “random” enough, we can express V1 and V3 as
polynomials in A: Lemma 4.5 gives us two polynomials V ′1 and V ′3 in F101[Z]
such that V1 = V ′1(A) mod P and V3 = V ′3(A) mod P . Explicitly, we have
V ′1 = 68Z3 + 67Z2 + 2Z + 69 and V ′3 = 33Z3 + 34Z2 + 100Z + 32.

Consider now the polynomials (P (Y), Z − A(Y)), which form a triangular
set for the order Y < Z. Using trace computations as in Lemma 4.7, we can
determine a triangular set (Q(Z), R(Z, Y)) for the order Z < Y , that generates
the same ideal; explicitly, we get∣∣∣∣ R = Y 2 + 99Y Z + 68Z3 + 68Z2 + 2Z + 69

Q = Z4 + 2Z2 + 4Z + 2.

At this point, we have thus determined an isomorphism

F101[Y]/〈P 〉 → F101[Z, Y]/〈Q(Z), R(Z, Y)〉
Y 7→ Y
A 7→ Z

which maps V1 to V ′1 and V3 to V ′3 . Remembering that Y = V1+V2+V3 = A+V2,
we deduce that the image of V2 is Y − Z.

This leads us to define S = R(Z, Y + Z) mod Q, or, explicitly, S = Y 2 +
68Z3 + 67Z2 + 2Z + 69. Then, we get the isomorphism

F101[Y]/〈P 〉 → F101[Z, Y]/〈Q(Z), S(Z, Y)〉
Y 7→ Y + Z
A 7→ Z
V2 7→ Y.

Remembering that F101[Y]/〈P 〉 is isomorphic to F101[Y1, Y2, Y3]/〈T〉, we finally
obtain

F101[Y1, Y2, Y3]/〈T〉 → F101[Z, Y]/〈Q(Z), S(Z, Y)〉
Y1 7→ V ′1(Z)
Y2 7→ Y
Y3 7→ V ′3(Z).

Modular composition modulo triangular sets 33

At this stage, we have obtained a representation by means of the bivariate
triangular set (Q(Z), S(Z, Y)), with Y ' Y2 as highest variable.

Introducing Y1. To reintroduce Y1, the process is similar, except that we
are left to work modulo Q. Consider the triangular set (Q(Z), T −V ′3(Z)), and
perform as before a bivariate change of order; we obtain (F (T), G(T, Z)), with∣∣∣∣ G = Z + 100T 2 + 100T

F = T 4 + 1.

Thus, we have the isomorphism

F101[Z]/Q → F101[T, Z]/〈F (T), G(T, Z)〉
Z 7→ Z
V ′3 7→ T ;

since Z = V ′1 +V ′3 , the image of V ′1 is Z−T . As before, this leads us to introduce
H = G(T, Z + T) mod F = Z + 100T 2. This gives us an isomorphism

F101[Z]/Q → F101[T, Z]/〈F (T), H(T, Z)〉
Z 7→ Z + T
V ′3 7→ T
V ′1 7→ Z.

Finally, we let K(T, Z, Y) be obtained by applying the former map coefficient-
wise to S(Z, Y); explicitly, we obtain the polynomial K(T, Z, Y) = Y 2 + T 2,
and the isomorphism

F101[Z, Y]/〈Q,S〉 → F101[T, Z, Y]/〈F,H,K〉
V ′3 7→ T
V ′1 7→ Z
Y 7→ Y.

Taking into account the result of the previous paragraph, we deduce by com-
position the isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[T, Z, Y]/〈F,H,K〉
Y3 7→ T
Y2 7→ Y
Y1 7→ Z.

Renaming (T, Z, Y) as (Y3, Y1, Y2), we see that our result is

T′

∣∣∣∣∣∣
K(Y3, Y1, Y2) = Y 2

2 + Y 2
3

H(Y3, Y1) = Y1 + 100Y 2
3

F (Y3) = Y 4
3 + 1.

34 Poteaux & Schost

6.2. The bivariate case. The former example shows the importance of bi-
variate change of order. In this subsection, we give the details of the actual
operation we need. We start from a univariate polynomial P in Fq[Y], and
A, V ∈ Fq[Y], both reduced modulo P ; our question is to determine whether
there exists an isomorphism of the form

Fq[Y]/〈P 〉 → Fq[Z, Y]/〈Q(Z), S(Z, Y)〉
A 7→ Z
V 7→ Y,

where (Q(Z), S(Z, Y)) is a bivariate triangular set in Fq[Z, Y]. We will say
that hypothesis (h) holds if such a triangular set exists.

Our purpose is to decide whether (h) holds, and if so, to compute (Q(Z), S(Z, Y)).
To help, we will additionally impose the relation Y = V + B(A) mod P , for
some given polynomial B in Fq[Z]. Then, (h) holds if and only if there exists
an isomorphism of the form

Fq[Y]/〈P 〉 → Fq[Z, Y]/〈Q(Z), R(Z, Y)〉
A 7→ Z
Y 7→ Y,

the polynomials R and S being related by S(Z, Y) = R(Z, Y + B) mod Q.
Equivalently, (h) holds if and only if the ideal 〈P (Y), Z − A(Y)〉 is generated
by a triangular set of the form (Q(Z), R(Z, Y)). The following lemma shows
how to use these remarks to solve our question; we rely on trace computations,
where all traces are computed modulo P .

Lemma 6.1. Let d = deg(P), and suppose that q = pn, with p prime and
p > d, and that P is squarefree. Given B such that Y = V +B(A) mod P , one
can do the following using d plog(d) operations in Fq:

◦ given (tr(Aj))j<d, verify whether (h) holds, and if so compute Q,

◦ given Q and (tr(Y iAj))i<d1,j<d2 , with d2 = deg(Q) and d1 = d/d2, com-
pute S.

Proof. The proof is a consequence of Lemma 4.7. In view of the remarks
above, given (tr(Aj))j<d, we can use that lemma to verify whether (h) holds
(and compute Q) using d plog(d) operations in Fq. If the condition holds, from
the traces (tr(Y iAj))i<d1,j<d2 , we deduce R in a similar amount of time. Finally,
S is deduced by a polynomial shift, with coefficients taken modulo Q. Using
the divide-and-conquer algorithm of ?, this takes time d plog(d) as well. �

Modular composition modulo triangular sets 35

The following equivalent form of assumption (h) will be useful in the next
subsection. The proof is similar to that of Lemma 4.4.

Lemma 6.2. Let SA be the Fq-algebra generated by A in Fq[Y]/〈P 〉. Then
assumption (h) holds if and only if Fq[Y]/〈P 〉 is a free SA-module, generated
by powers of V of the form 1, V, . . . , V e.

Proof. Since Y = V +B(A), the second condition is equivalent to Fq[Y]/〈P 〉
being a free SA-module, generated by powers of Y of the form 1, Y, . . . , Y e. We
use this latter condition in the rest of the proof.

Let I be the ideal 〈P (Y), Z − A(Y)〉, so that Fq[Y]/〈P 〉 is isomorphic to
Fq[Z, Y]/I. Then, SA is isomorphic to the subalgebra Fq[Z]/Q of Fq[Z, Y]/I,
whereQ is the minimal polynomial of Amodulo P . If (h) holds, then Fq[Y]/〈P 〉
is isomorphic to Fq[Z, Y]/〈Q(Z), R(Z, Y)〉, and the conclusion follows.

Conversely, suppose that Fq[Y]/〈P 〉 is a free SA-module, generated by pow-
ers of Y of the form 1, Y, . . . , Y e. Let R(Z, Y) be the characteristic polynomial
of Y in this free SA-module, so that deg(R, Y) = e + 1; to conclude, we prove
that (Q(Z), R(Z, Y)) generates I. Obviously, both Q and R are in I. Con-
versely, take F in I and let F ′ be its remainder modulo 〈Q(Z), R(Z, Y)〉. Then,
deg(F ′, Y) ≤ e, so we can write F ′ =

∑
i≤e fi(Z)Y i. Since F ′ is in I, all fi

must be zero modulo Q, that is, identically zero, and F ′ itself must be zero. �

6.3. The general case. Suppose now that s is arbitrary, let Y = Y1, . . . , Ys,
and let I be a zero-dimensional radical ideal in Fq[Y]. We let R be the residue
class ring Fq[Y]/I, and let δ be the dimension of R over Fq. In all that follows,
p denotes the characteristic of Fq.

Our goal here is to decide whether there exists a triangular set T for the
order Y1 < · · · < Ys such that 〈T〉 = I, and if so compute it. Our input is
a univariate representation P = (Q,λ,W) of I, with λ = (λ1, . . . , λs) and
λs = 1.

Starting from P, we will reintroduce the variables Ys, . . . , Y1 one by one,
in this order, and eventually deduce T (or prove there is no such T). Remark
that P can be seen as a mixed representation Ms of format (s, 1) for I. We
will use it as the starting point for an iterative process, constructing mixed
representations Mj of formats (j, s− j + 1), for j = s− 1, . . . , 1.

We will thus say that (Hj) holds if I admits a mixed representation of
format (j, s− j + 1). Then, we have the following:

◦ By the former remark, (Hs) holds.

36 Poteaux & Schost

◦ (H1) holds if and only the triangular set T we are looking for exists; in
this case, writing M1 = (P1,V1, `1), and assuming `1 = (1), we have
T = P1 (up to renaming the variables).

◦ Assuming q ≥ δ2, if (Hj−1) holds, then (Hj) holds (this is a consequence
of Lemma 4.4).

Thus, starting from s, it is sufficient to iteratively test whether (Hs−1), . . . , (H1)
hold, and if so compute corresponding mixed representations. If the test fails
at any j, we know that T does not exist. The following lemma shows how to
do the iterative step, from format (j, s− j + 1) to (j − 1, s− j + 2).

Lemma 6.3. Fix ε > 0, and suppose that the inequalities q ≥ δ2 and p > δ
hold. Given a mixed representation M = (P,V, `) of format (j, s− j + 1) for
I, with ` = (`1, . . . , `j) and `j = 1, one can do the following using an expected
s δ1+ε log(q) plogε(log(q)) bit operations:

◦ decide whether (Hj−1) holds;

◦ if so, compute a mixed representation M ′ = (P′,V′, `′) of format (j −
1, s− j + 2) for I, with `′ = (`′1, . . . , `

′
j−1) and `′j−1 = 1.

Further, one can do the following using δ1+ε log(q) plogε(log(q)) bit operations:

◦ given M , M ′ and A in RP, compute its image through the isomorphism
ΨM ′ ◦ ΦM : RP → RP′ .

◦ given M , M ′ and A in RP′ , compute its image through the isomorphism
ΨM ◦ ΦM ′ : RP′ → RP.

Proof. Let M = (P,V, `) be a mixed representation of format (j, s−j+1)
for I, with P = (P, Pj+1, . . . , Ps) in Fq[Y, Yj+1, . . . , Ys], V = (V1, . . . , Vj) in
Fq[Y], ` = (`1, . . . , `j), and `j = 1.

Our first purpose is to find `′ = (`′1, . . . , `
′
j−1) in Fj−1q , with `′j−1 = 1 such

that
∑

i≤j−1 `
′
iYi is a primitive element of level j − 1. To do so, we choose

`′ at random, and test whether Y1, . . . , Yj−1 can be written as polynomials in∑
i≤j−1 `

′
iYi modulo I. Recall that associated to M , we have mutually inverse

isomorphisms
ΨM : R → RP

Y1, . . . , Yj 7→ V1, . . . , Vj
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

Modular composition modulo triangular sets 37

and
ΦM : RP → R

Y 7→
∑

i≤j `iYj
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys.

Applying ΨM , the former condition is equivalent to testing whether V1, . . . , Vj−1
can be written as polynomials in A =

∑
i≤j−1 `

′
iVi modulo P . This is done as

follows:

◦ we compute the traces tr(Ak)k<2δ and tr(ViA
k)k<δ, for i ≤ j − 1 (these

are traces defined modulo P)

◦ using Lemma 4.5, we first compute the minimal polynomial Q of A mod-
ulo P , then candidates polynomials V ′1 , . . . , V

′
j−1 in Fq[Z]

◦ we test whether V ′i (A) = Vi mod P for i ≤ j − 1.

For a fixed `′, in view of Lemma 4.5 and Theorem 3.1, going through this
process takes an expected s δ1+ε log(q) plogε(log(q)) bit operations. Since q ≥
δ2, Lemma 4.3 shows that we expect to test 2 choices of `′ before finding a
primitive element of level j − 1. Thus, the expected cost to find `′ and V′ is
s δ1+ε log(q) plogε(log(q)) bit operations.

Recall that (Hj) holds by assumption. Using the notation of Section 4.2, Lemma 4.4
implies that (Hj−1) holds if and only if Rj is a free Rj−1-module, with a basis
consisting of the first powers of Yj. Through ΨM , we have the isomorphism
Rj ' Fq[Y]/〈P 〉, Rj−1 is the subring of Rj generated by A, and Yj is mapped
to Vj.

Let B =
∑

i≤j−1 `iV
′
i , so that we have Y = Vj +B(A) mod P (because `j =

1). This remark allows us to apply Lemma 6.2: this shows that (Hj−1) holds if
and only if assumption (h) of the last subsection holds, for the polynomials P ,
A and Vj. Using Lemma 6.1, we can thus decide whether (Hj−1) holds, and if
so compute polynomials (Q(Z), S(Z, Y)) that form a triangular set in Fq[Z, Y],
and such that we have isomorphisms

ψ : Fq[Y]/〈P 〉 → Fq[Z, Y]/〈Q,S〉
Y 7→ Y +B

and
ϕ : Fq[Z, Y]/〈Q,S〉 → Fq[Y]/〈P 〉

Z 7→ A
Y 7→ Vj.

38 Poteaux & Schost

Remark in particular that ψ sends V1, . . . , Vj−1, Vj to V ′1 , . . . , V
′
j−1, Y . Comput-

ing all traces required by Lemma 6.1 and doing all post-processing fits into the
same time bound as before.

Next, we reintroduce the variables Yj+1, . . . , Ys. We consider the triangular
set P′ = (Q,S, P ′j+1, . . . , P

′
s) in Fq[Z, Y, Yj+1, . . . , Ys], with

P ′k = Pk(Y +B, Yj+1, . . . , Yk) mod Q.

Recalling that we writeRP = Fq[Y, Yj+1, . . . , Ys]/〈P〉 andRP′ = Fq[Z, Y, Yj+1, . . . , Ys]/〈P′〉,
we deduce the existence of the mutually inverse isomorphisms

Ψ : RP → RP′

Y 7→ Y +B
Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys

and
Φ : RP′ → RP

Z 7→ A
Y 7→ Vj

Yj+1, . . . , Ys 7→ Yj+1, . . . , Ys;

as before, the former map sends V1, . . . , Vj−1, Vj to V ′1 , . . . , V
′
j−1, Y . Let us fix k

and determine the cost of computing P ′k: this is done by applying ψ coefficient-
wise, which amounts to a total of deg(Pj+1, Yj+1) · · · deg(Pk, Yk) applications.
By Theorem 3.1, each of them takes time d1+ε log(q) plogε(log(q)), with d =
deg(P). Since d deg(Pj+1, Yj+1) · · · deg(Pk, Yk) = δ, all P ′k can be computed in
an expected s δ1+ε log(q) plogε(log(q)) bit operations.

Composing with ΨM and ΦM with Ψ and Φ, we obtain the following:

R → RP′

Y1, . . . , Yj−1 7→ V ′1 , . . . , V
′
j−1

Yj, . . . , Ys 7→ Y, Yj+1, . . . , Ys.

and
RP′ → R
Z 7→

∑
i≤j−1 `

′
iYi

Y, Yj+1, . . . , Ys 7→ Yj, . . . , Ys.

Thus, M ′ = (P′,V′, `′) is a mixed representation of format (j − 1, s − j + 2)
for I, and the previous maps are ΨM ′ and ΦM ′ .

The final point to discuss is the cost of applying the isomorphisms Ψ = ΨM ′◦
ΦM and Φ = ΨM ◦ΦM ′ . Both of them leave Yj+1, . . . , Ys unchanged, so these op-
erations amount to apply deg(Pj+1, Yj+1) · · · deg(Pk, Yk) times ψ and ϕ, respec-
tively. By Theorem 3.1, each application takes time d1+ε log(q) plogε(log(q)),
so the total time is δ1+ε log(q) plogε(log(q)). �

Modular composition modulo triangular sets 39

As a consequence of the former lemma, we deduce the following result,
which is the main point in this section. The proof is now straightforward.

Proposition 6.4. Fix ε > 0. Then, given P = (Q,λ,W) as above, such that
q ≥ δ2 and p > δ, one can do the following in an expected s2 δ1+ε log(q) plogε(log(q))
bit operations:

◦ decide whether there exists a triangular set T for the order Y1 < · · · < Ys
that generates I

◦ if so, compute Ms, . . . ,M1, with Mi = (Pi, `i,Vi), such that

– Ms = P,

– for i = s−1, . . . , 1, Mi is obtained from Mi+1 by means of Lemma Lemma 6.3,

– T = P1.

Further, one can do the following in s δ1+ε log(q) plogε(log(q)) bit operations:

◦ given M1, . . . ,Ms and A in Fq[Y]/Q, compute its image in RT

◦ given M1, . . . ,Ms and A in RT compute its image in Fq[Y]/Q.

6.4. Proof of Theorem 1.2. Finally, we prove Theorem 1.2. On input, we
are given a triangular set T for the order Y1 < · · · < Ys, with multidegree d,
and a target order Yσ(1) < · · · < Yσ(s) on the variables. We assume that the
characteristic p of the base field satisfies p > δd.

We want to decide whether the ideal 〈T〉 is radical, and if so, whether there
exists a triangular set T′ for the order Yσ(1) < · · · < Yσ(s) that generates the
same ideal as T. We also wish to do the change of bases RT → RT′ and back.

First, if needed, we extend the base field, to ensure that the assumption
q ≥ δ2d holds. This is done as in Section 5.4; since all the costs incurred by this
field extension will fit in our target time complexity, for simplicity, we will still
denote our base field by Fq.

Applying Proposition 5.3, we can decide if T is squarefree, and if so, com-
pute a primitive representation P = (P,V, `), with `σ(s) = 1, giving us inverse
isomorphisms

ΨP : RT → Fq[Y]/〈P 〉 and ΦP : Fq[Y]/〈P 〉 → RT.

Let W1 = Vσ(1), . . . ,Ws = Vσ(s) be the images of Yσ(1), . . . , Yσ(s) through ΨP ,
and let λ = (λ1, . . . , λs), with λi = `σ(i). Finally, let Z1, . . . , Zs = Yσ(1), . . . , Yσ(s).

40 Poteaux & Schost

As a result, Q = (P,W,λ) is a primitive representation for the ideal I = 〈T〉
in Fq[Z], with λs = 1.

We are thus in a position to apply Proposition 6.4: this provides us with
the triangular set T′ (or proves it does not exist). The total time reported
in Proposition 5.3 and Proposition 6.4 is an expected s2 δ1+ε log(q) plogε(log(q))
bit operations.

To perform the change of basis RT → RT′ , we first convert from RT to
Fq[Y]/〈P 〉 by means of Proposition 5.3; this takes s δ1+ε log(q) plogε(log(q)) bit
operations. Then, mapping Fq[Y]/〈P 〉 to RT′ is done by means of the second
part of Proposition 6.4, for a similar amount of time. The inverse change of
basis RT′ → RT is done by first converting from RT′ to Fq[Y]/〈P 〉, then to
RT, using again Proposition 5.3 and Proposition 6.4. The time estimate is the
same.

7. An illustration from elliptic curve point counting

In this section, we describe a situation similar to the example given in the
introduction, where change of order was used to simplify factorization.

The following construction originates from point-counting algorithms for
elliptic curves over finite fields. The objective is to count the number of points of
an elliptic curve E : Y 2 = X3+AX+B over Fp; this is a fundamental operation
in elliptic curve cryptology, see for instance ?. In large characteristic, the best
algorithms are based on the landmark contribution of ? and its improvements
by ? and ?.

These algorithms operate by Chinese Remaindering, by determining |E|
modulo various primes `. For a given `, Schoof’s algorithm finds |E| mod ` by
doing a search modulo the division polynomial ψ`. This polynomial has degree
(`2 − 1)/2; its roots are the (pairwise distinct) X-coordinates of the `-torsion
points on |E|.

Elkies proposed to improve this phase, by working only modulo a factor f`
of ψ` of degree (`− 1)/2. This factor is obtained as follows:

◦ let Φ` ∈ Z[J, J ′] be the `th modular polynomial and let ϕ` = Φ` mod p;

◦ compute a root α of ϕ`(J, j(E)), where j(E) is the j-invariant of E (or
determine that no such root exists);

◦ if such a root exists, deduce f` from α.

We will not give more details here. It is enough to note that Φ` is a bivariate
polynomial of degree `2, with coefficients of bit-size about `, so the cost of

Modular composition modulo triangular sets 41

Elkies’ construction is Ω(`3) bit operations. The primes ` for which the root α
exists are called Elkies primes; conjecturally, for a given E, about half of the
primes are Elkies primes. As a consequence, one may make the assumption that
` ≤ log(p); then, the cost for a given ` is an expected ` log(p)2 bit operations,
up to logarithmic factors, see ?.

We will discuss here an alternative to Elkies’ construction, due to ?. A cost
analysis is given in ?, with a result of the form `4 + ` log(p) operations in Fp
for a given `, which is `4 log(p) + ` log(p)2 bit operations (omitting logarithmic
factors in both cases). We will show that our results allow us to reduce the
cost and make it comparable to the one of Elkies’ algorithm.

Again, the purpose is to find a suitable factor f` of ψ`; now, this is done
by purely “algebraic” means, whereas Elkies’ approach relies on transcendental
arguments. Let [m] denote the multiplication-by-m map on E; then, there exist
rational functions γm, ηm in Fp(X) such that for all (x, y) in E, we have

[m](x, y) = (γm(x), yηm(x));

γm has a pole at x if and only if [m](x, y) is a zero on E. Let R = Fp[X]/ψ`,
and for m < `, let gm ∈ R be the image of γm in R; γm mod ψ` is well-defined,
as one easily sees that its denominator has no common root with ψ`. Finally,
define A =

∑(`−1)/2
i=1 gi.

Lemma 7.1. Let mA be the minimal polynomial of A modulo ψ`.

◦ mA has degree at most `+ 1.

◦ if deg(mA) = `+ 1, then χA = m
(`−1)/2
A .

Proof. Let x be a root of ψ`, and let P = (x, y) be a corresponding `-
torsion point on E. Then, A(x) is the sum of the abscissas of the points
P, . . . , [(` − 1)/2]P . In particular, A(x) = A(g2(x)) = · · · = A(g(`−1)/2(x));
thus, the roots of ψ` can be partitioned into `+ 1 subsets over each of which A
takes a constant value. The conclusion follows from Equation (4.1) of Section 4.

�

Let us suppose that we are in the case where deg(mA) = `+ 1 (this is true
“in general”, see ?). Then, the former lemma implies that the ideal 〈ψ`(Y), Z−
A(Y)〉 is generated by the triangular triangular set (P (Z), Q(Z, Y)), with P =
mA, deg(P) = ` + 1 and deg(Q, Y) = (`− 1)/2. Furthermore, Charlap, Coley
and Robbins prove that ` is an Elkies prime if and only if P has a root α in
Fp; in this case, Q(α, Y) is the factor f` we are looking for.

42 Poteaux & Schost

The following theorem gives a cost estimate on the computation of this
factor, which shows it to be roughly as costly as Elkies’ approach: if one could
take ε = 0 below, the second term would become dominant, and the overall
cost would be ` log(p)2 plog(log(p)), as for Elkies’ algorithm.

Theorem 7.2. Fix ε > 0. If ` ≤ log(p), one can compute an Elkies fac-
tor, or one can determine that none exists, in an expected

(
`2+ε log(p) +

` log(p)2
)

plogε(` log(p)) bit operations.

Proof. First, we compute ψ`, by the standard binary powering scheme, see
for instance ?; this can be done using `2 log(p) plog(` log(p)) bit operations.

Next, we show how to compute A for the cost of O(log(`)) modular com-
positions modulo ψ`, using binary powering techniques inspired by the trace
computation of ? (see also ? for a previous instance of the following com-

putation). Let τ be a generator of F∗` ; then, A =
∑(`−1)/2−1

i=0 gτ i . For g ≥ 0,
let

Gk = g
τ2k

and Ak =
2k−1∑
i=0

gτ i .

For simplicity, we show here how to computeAk. Since we have ga(gb) mod ψ` =
gab, it is sufficient to compute

◦ G0, G1, . . . , Gk by means of Gj+1 = Gj(Gj) mod ψ`

◦ A0, A1, . . . , Ak by means of Aj+1 = Aj(Gj) + Aj mod ψ`.

The slightly more general question of computing A (which involves summa-
tion bounds that are not powers of 2) is handled similarly. In any case, this
requires O(log(`)) modular compositions modulo ψ`; the cost is an expected
`2+ε log(p) plogε(log(p)) bit operations, by Theorem 1.1.

Once A is known, we apply the change of order algorithm of Theorem 1.2
to the system (ψ`(Y), Z − A(Y)); this is valid, since ψ` is squarefree, and
p ≥ `2. This gives us the triangular set (P (Z), Q(Z, Y)) for the same expected
`2+ε log(p) plogε(log(p)) bit operations. Finally, we find a root α of the minimal
polynomial P (if any) in an expected ` log(p)2 plog(` log(p)) bit operations (?,
Corollary 14.16). We deduce the factor Q(α, Y) by evaluation, for a cost linear
in `2 log(p), up to logarithmic factors. �

Modular composition modulo triangular sets 43

Acknowledgements

Adrien Poteaux was supported by the EXACTA grant of the National Sci-
ence Foundation of China (NSFC 60911130369), the French National Research
Agency (ANR-09-BLAN-0371-01) and the European union (PITN-GA-2008-
214584 SAGA). Éric Schost is supported by NSERC and the Canada Research
Chair program.

Adrien Poteaux
LIFL, UMR-CNRS 8022
Université Lille 1
France
adrien.poteaux@lifl.fr

Éric Schost
Computer Science Department
The University of Western Ontario
London, ON, Canada
eschost@uwo.ca

