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Abstract—Next generation sequencing technologies produce
large amounts of data at very low cost. They produce short
reads of DNA fragments. These fragments have many overlaps,
lots of repeats and may also include sequencing errors. The
assembly process involves merging these sequences to form the
original sequences. In recent years many software programs
have been developed for this purpose. All of them take
significant amount of time to execute. Velvet is a commonly
used de novo assembly program. We propose a method to
reduce the overall time for assembly by using pre-processing
of the short read data on FPGAs and processing its output
using Velvet. We show significant speed-ups with slight or no
compromise on the quality of the assembled output.
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I. INTRODUCTION

Next-generation sequencing (NGS) platforms generate

enormous amount of data at very low cost at much greater

speeds when compared to older sequencing platforms. This

has opened up various opportunities for biologists to analyze

this data for various purposes including design of personal-

ized drugs.

A complete set of all genes along with non-coding DNA

in an organism is called a genome. The NGS machines

generate short fragments called “reads” of length thirty five

to few hundreds of base-pairs. These reads are part of a

large genome containing millions of base-pairs (the size ¿

of the human genome = 3x109 bp). Sequence Assembly

is a computational biology problem where the genome is

assembled using the reads generated from the NGS ma-

chine. The construction of genome is more complex than

the well studied shortest super-string construction problem.

The problem becomes more computationally intensive as

the sequencing machine generates reads with errors.The

complexity of problem further increases due to repeats

which are some common regions (sequences) in the genome.

Also NGS machines have a constraint on the length of the

reads generated. If the length of the read is less than the

repeat, identifying the portion of the genome from where

the read came from becomes very difficult and is practically

impossible to solve.

De novo assembly in software is done using one of the

two graph based methods- the overlap layout consensus

(OLC) and the de Bruijn. In this paper, we propose a hybrid

approach where we generate the overlap and layout using the

OLC technique and build the consensus using a de Bruijn

method. The key innovation is to use a (parallel) hardware

implementation to remove the ‘redundancy’ in the input

read data and using state of the art highly computationally

intensive de Bruijn based Velvet software [1] to build the

consensus sequence. Even though de novo assembly is

slower than mapping based assembly, it has its advantages

and is widely used by bioinformaticians. We attempt to

accelerate it using FPGA based accelerators. We estimate

speed-ups of 13x using our approach.

The main contributions of this paper are the following

1) Novel way to speed-up de novo assembly of NGS data

using FPGAs.

2) Hardware-software co-design to achieve this.

3) Efficient implementation of hardware on FPGA.

Section II describes the work done by other research

groups that have been reported in the literature. In section III

we describe the overall approach and high level implementa-

tion used for initial analysis and to do feasibility study. This

study leads us to prepare an overall methodology to achieve

speed-ups using FPGAs which is described in section IV.

Section V shows some of the results and this is followed by

conclusion in section VI.

II. RELATED WORK

Several groups have attempted to accelerate NGS short

read mapping using FPGAs. Corey B. Olson et al. [2] has

shown acceleration of short read mapping on FPGA. The

authors compare their results with BFAST software [3] and

show 250x improvement and 31x when compared to Bowtie

[4]. Edward Fernandez et al. [5] and O. Knodel et al.[6]

have also accelerated NGS short read mapping. The Convey

GraphConstructor (CGC) use FPGAs to accelerate de novo

assembly and show speedups of 2.2x to 8.4x [7].

III. FASSEM ASSEMBLY

We chose to accelerate de Bruijn based assembly, as

they take less amount of time to execute when compared

to OLC based assemblers. We use the fact that there is

a lot of redundancy in short read sequencing. The de

Bruijn based software assemblers takes several GBs of RAM

space while executing [8]. Efficient implementation of de
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Figure 1: FAssem approach
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Figure 2: FAssem software flow for estimation

Bruijn based assemblers on an FPGA is difficult due to the

memory resource constraints in current FPGAs. We model a

hybrid approach where we implement a part of OLC based

assemblers on FPGA to remove the redundancy present in

the reads. We run the de Bruijn based graph assembler in

software on the reduced set of reads from the FPGA.

This approach allows us to effectively use the FPGA

resources for removing redundancy in the reads. A high

level design of our approach is shown in Fig. 1. The

reads are passed through Redundancy Remover Unit (RRU)

implemented in FPGA, which acts as preprocessor. The

output from the RRU is given to Velvet for constructing

the final contigs.

Our idea is based on an open source software known

as Mapsembler [9]. We used this software to study the

benefits of our approach. Mapsembler is a software which

does targeted assembly. It takes NGS raw reads and a set

of input sequences (starters). The software determines if the

starter is read coherent, i.e. starter is a part of the original

sequence. The neighborhood of the starter is given as output

if the starter is read coherent. All the k-mers in all of the

starters are hashed and stored in a hash table. The hash table

consists of starter number and the corresponding position of

the k-mer in that particular starter. A read is taken from the

NGS read set and the respective k-mers are searched in the

hash table. If the k-mer is already hashed, the corresponding

starters are tried for extension with the reads.

The main thrust in our approach is to find the overlap

region between reads and store the overlap region only

once. The overall flow diagram is as shown in Fig. 2.

We do a streaming design where processing elements are

connected in series. We consider N processing elements. ‘n’

random reads are stored as starters. A read is taken from the

remaining read set and checked if it can extend any of the

starters starting from the first starter. If the read can extend

the starter, the starter is extended and the read is deleted.

If the read does not extend the starter, the read is stored in

a new read set. We use the term “round” frequently in the

rest of the paper which means that all the reads from the

read set are compared once with current set of starters and

tried for extensions. After all the reads are exhausted in the

“extension” process, the starters which could not be extended

are stored in the output file. These starters are replaced by

new random reads in the next round.

This process of reducing the redundancy in the new

readset is repeated with the new read set and replaced

starters. This redundancy reduction is repeated for several

rounds till the number of reads is less than the starters. The

output file now contains intermediate reads of longer length

from which redundant information has been removed. The

output file is given to Velvet software for generating contigs

and removing errors.

IV. HARDWARE IMPLEMENTATION

We implement the RRU in FPGA. The hardware model

differs from the software model significantly. In the hard-

ware model, we do not implement the hash based searching

of k-mers due to constrained memory resources. The model

we propose is equivalent to the software model in terms

of other functions like extending. In this model the reads

are compared with the starter and tried for extension at its

ends. In each cycle the read is shifted and checked if it

can extend the starter. The extension phase is expensive as

the number of cycles needed for extension is equivalent to

the difference of read length and k-mer length. From the

software implementation, it is observed that for a single

round, the number of reads used for extension are very

small when compared to reads that extend the starters. To

take advantage of this feature, we propose a pre-filter block.

The pre-filter is added before the extension phase. The

pre-filter filters the probable reads that might not extend

the starter and pass only the reads that might extend the

starter. Pre-filter compares the signature of the reads with

the signature of the starter. This Signature is called the

ReadVector and is constructed by encoding the 4-mers in

binary format. 4-mer was chosen for signature because the

vector width would be 256 corresponding to 4
4. If we choose

a signature with more than 4-mer, then the signature will
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Figure 3: Block diagram of hardware implementation.

become much more lengthy and hence would require large

memory for its storage and larger amount of resources for

doing the pre-filter. For example, the readvector for read

AAAAAAAGGGGG is “100100...001”.

We use AlphaData board for hardware implementation

[10]. The board has a PCIe bridge which is used for data

transmission between host and vice versa. The Memory

interface unit connects the on-board memory and the PCIe

bridge. In our design we use the “Memory Interface” unit

to send data to a “Pre-Processor”. From the pre-processor

a series of “Processing Elements” (PEs) are connected

through a set of fifos. The last PE is connected to a “Post

Processor” connected back to memory interface unit. The

expanded diagram showing different stages is shown in Fig.

3. The Memory interface unit and PCIe bridge are shown

twice both at left and right to simplify the diagram, but refers

to the same unit.

The read set in fasta input file format is sent from the host

to the FPGA board through PCIe bus. In order to remove

communication delay between host and FPGA board, we

consider the double buffering model, where the data is

buffered in two buffers. One of the buffers is used for

transferring data from the host, while the other will be used

for processing the data. Similarly, we use double buffering

at the output too. For initializing the starters, we encode

the most significant three bits of the read. The fourth bit

is used for marking the read that it has extended as a

starter. In order to reconstruct the starters, the starter and

the position of the extension is sent as output through the

fifoSet. Reconstruction of starters is done in software.

V. RESULTS AND DISCUSSION

Zhang et al. [8] have done a comparison of de novo

assembly softwares. The authors have provided scripts for

generating the read-set from the genome. We used these

scripts to generate the read files for ecoli, swinepox and

human influenza. For evaluating our approach, we generated

the single ended readset with 100x coverage for read-length

36 and 75 and 1% error rate similar to what was reported

by Zhang et al. [8]. For the software only flow time, Velvet

software was run using the readset directly on a desktop

computer with Intel (R) Core (TM) 2 Duo CPU E4700

running at 2.60GHz with 4GB RAM. We have implemented

the RRU on FPGA and obtained the clock period and utilized

FPGA resources after running place and route tools provided

by Xilinx ISE 14.1 [11]. We use these parameters to estimate

the speed-ups for running the Velvet on the output of RRU

after each round. From place and route tools, the maximum

clock frequency for the whole of the design was found to

be 200 MHz. We get better performance by using multiple

clocks. The sequence coder and generate units were able to

run at a maximum frequency of 350 MHz on Virtex-6 FPGA.

The maximum frequency of operation for the rest of the units

was 200 MHz. A total of 15 PEs could be implemented on

Xilinx Virtex-6 XC6VLX130T FPGA. Note that for design

with larger number of PEs where multiple FPGAs would be

required, we have not considered inter FPGA transfer time

in our estimates. We assume FPGAs are connected in series

and the data is streamed from the host, through the FPGAs

and finally, back to the host.

Table I: Maximum speed-ups over software.
Sample Swinepox Swinepox H. Influenza H. Influenza Ecoli Ecoli

Read-length 75 36 75 36 75 36

PE \Size 30.8 MB 48.4 MB 449 MB 729.7 MB 1.2 GB 2.1 GB

30 PE 3.5x 5.2x 1.1x 1.09x 1.2x 1.09x

300 PE 13x 11.9x 3.2x 3.6x 2.5x 2.1x

1000 PE 6.5x 10.5x 6.8x 6.0x 4.4x 5.02x

3000 PE 4.8x 7x 6.8x 10x 6.5x 9.2x

Fig. 4a and 4b show the graphs of the speed-ups at

different rounds for swinepox with read length 36 using

30 PE. We have considered the worst case time by setting

the threshold value for the pre-filter to zero. Similarly, we

have the results on ecoli, swinepox and human influenza,

not shown here due to space constraints. We observe same
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Figure 4: Consolidated results

trends. The reduction in size of the input file in terms of

base-pairs to Velvet software is shown in Fig. 4c. For a

larger genome like ecoli, we need to have more processing

elements to get significant speed-ups. The maximum speed-

ups are tabulated in Table I. The speed-ups in each case first

increases, reaches a peak and then tapers down. The initial

increase can be attributed to the high reduction of input

file size during the initial rounds. After these initial rounds,

the redundancy removal is more limited and so the time

taken by Velvet is almost constant. The FPGA processing

time is incremental in nature and hence goes on increasing

after each round. Even though there is not much redundancy

removal during the later rounds, the hardware unit takes at

least as many cycles as the number of reads and writes in

each PE.

The most popular metrics to measure quality are the

maximum length of the contigs and the “N50”. N50 is the

minimum length of the contig such that summing up the

length of only those contigs whose length is more than N50

cover 50% of the genome. From the various experiments

conducted we observed that by not allowing mismatches

during extension, there was no (significant) loss in quality

of output as shown in results.

VI. CONCLUSION

NGS sequence assembly is becoming very important as

it has opened many opportunities in personalized medicine,

meta-genomics, etc. De novo assembly has its own advan-

tages over comparative mapping based assembly, but take

more time to execute. We have come up with an hybrid

approach which uses techniques from OLC method and

de Bruijn method for accelerating assembly using FPGAs.

From the results we find that the speed-up is dependent on

the nature and size of input data. For a fixed number of

PEs, the speed-up first increases and then tapers down with

larger number of rounds as FPGA processing time starts

dominating. Maximum speed-up increases with number of

PEs and reduces after reaching peak. We estimate speed-ups

up-to 13x using our hybrid approach.
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