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Abstract
3D video retrieval is a challenging problem lying at the heart of many primary research areas in computer graph-
ics and computer vision applications. In this paper, we present a new 3D human shape matching and motion
retrieval framework. Our approach is formulated using Extremal Human Curve (EHC) descriptor extracted from
the body surface and a local motion retrieval achieved after motion segmentation. Matching is performed by an
efficient method which takes advantage of a compact EHC representation in open curve Shape Space and an elas-
tic distance measure. Moreover, local 3D video retrieval is performed by dynamic time warping (DTW) algorithm
in the feature space vectors. Experiments on both synthetic and real 3D human video sequences show that our ap-
proach provides an accurate shape similarity in video compared to the best state-of-the-art approaches. Finally,
results on motion retrieval are promising and show the potential of this approach.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information storage and retrieval]: Content
Analysis and Indexing—I.3.5 [Computer graphics]: Computational Geometry and Object Modeling —

1. Introduction

While human analysis in 2D image and video has received
great interest during the last two decades, 3D human body
is still a little explored field. Relatively few authors have
so far reported works on 3D static analysis of 3D human
body, but still less on 3D human video analysis. Parallel to
this, 3D video sequences of human motion is more and more
available. In fact, their acquisition with a multiple view re-
construction systems or animation and synthesis approaches
[CBK05] [dAST∗08a] received a considerable interest over
the past decade.

Most of the research topics on these 3D video recently fo-
cus mainly on performance, quality improvements and com-
pression methods [TNM09] [dAST∗08b]. Consequently, 3D
videos are yet mainly only used for display. However, the
acquisition of long sequences produces massive amounts of
data which make the datasets difficult to handle: hence the
need to develop efficient and effective segmentation and re-
trieval systems for managing the database and searching for
relevant information quickly.

In this paper, we propose a novel descriptor for 3D human
shape representation and 3D video matching. We then focus
on the task of video segmentation and comparisons between

motion segments for video retrieval, based on geodesic fea-
ture sets and elastic distance measure.

A 3D video of human motion, is considered to be com-
posed of consecutive poses. As a first step of the retrieval
pipeline, our geometric features called Extremal Human
Curve (EHC) descriptor are extracted from body surface.
Based on extremal features (4 end-effectors and head) and
geodesics between each pair of them, our descriptor is in-
variant to rotation and scale. Every 3D frame will be repre-
sented by a collection of open curves whose comparison will
be performed in a Riemannien Shape Space using an elastic
metric.

For direct comparison of the video sequences, the mo-
tion segmentation can play an important role in the dynamic
matching by splitting automatically the continuous 3D video
data into meaningful segments that describe basic move-
ments, called clips. Finally, we perform a dynamic time
warping (DTW) between each pair of clips for every fea-
ture set using elastic distance measure. Based on this DTW-
distances, we perform a ranking and obtain a ranked list of
clips for each clip of the example dataset.

As key contributions in this paper:

• EHC: Use of this surface-based shape descriptor



[SWD13] to model 3D dynamic surface of human by a
sequence of EHC, taking advantage of its structure which
is invariant to isometric transformations.
• Characterization of the sequence as a collection of trajec-

tories thanks to EHC representation in open curve Shape
Space.
• Motion segmentation and retrieval using trajectories set

and similarity metric using DTW in its feature space.

The outline of this paper is as follows. The next section dis-
cusses related works in the area of motion segmentation and
retrieval. The extremal curves extraction and the elastic met-
ric used for their comparison are presented in section III.
In section IV, our framework used for motion segmentation
and retrieval is presented. In section V, evaluation of our de-
scriptor and experimental results for video segmentation and
retrieval are performed. Finally, we conclude in section VI
by summarizing our results and discussing issues for future
works.

2. Related work

Few solutions related to 3D mesh video retrieval and shape
similarity metrics have been found in the literature.

Some works have been addressed the problem of shape
similarity for 3D video, and resolve the problem of video
retrieval by matching frames and comparing correspondent
ones using a specified metric. In [YA07], a modified shape
distribution histogram has been employed as feature repre-
sentation of 3D models. The similar motion retrieval is real-
ized by Dynamic Programming matching using the feature
vectors and Euclidian distance. In [KGH09], the problem of
human action matching in outdoor sports broadcast environ-
ments is dressed. Shape histograms are constructed using a
spherical coordinate system, and presenting the surface by
an implicit function. Matching is achieved using Kullback
Leibler divergence combined with a HMM.

The problem of 3D shape matching in temporal se-
quences, where the goal is to discriminate the same object
in different poses, is addressed by [HHS10]. To do, classic
shape histograms: shape distribution, spin image, shape his-
togram and spherical harmonics are used as static descrip-
tors and extended to temporal ones using a time filter. A
comparison of these shape descriptors combined with self-
similarities has been made by Huang et al. [HHS10] and
their experiments have showed that Shape Histogram gives
the best performance for different people and motions. How-
ever, these similarity metrics evaluate only spatial shape de-
scriptors and do not usually capture any geometrical infor-
mation about the 3D human body pose and joint positions
/ orientations. This prevents its use in certain applications
that require accurate estimation of the pose (and the joints in
some cases) of the body parts. Tung et al. [TS05] proposed
Multi-resolution Reeb-Graph as a skeleton-based-shape de-
scriptor, where its evaluation has shown a competitive per-
formance with spatial shape descriptors [HTN∗10]. It was

also used for video understanding as long as it is structured
representation of the articulated structure [TM12]. However,
in practice Reeb-Graph is sensitive to change in surface
topology due to reconstruction error in real 3D video se-
quences.

Some other works have trends to accumulate static hu-
man shape or pose descriptors over time, or to capture the
involvement of shape and pose changes in the sequence. Var-
ious representations of the body tracked in the time are used
to deduce a motion vector in order to perform motion re-
trieval [HTTM11]. Such descriptors are: motion history vol-
ume (MHV), 3D optical flow, cylinder ellipsoid body model,
skeletal and quadratic body model. More details about 3D
video retrieval are recently presented in [DTP12].

In our approach, we propose to extend the use of EHC
[SWD13] descriptor to model 3D video sequences of people
in order to perform motion retrieval. For this purpose, a mo-
tion segmentation is performed on continuous sequence to
split it into elementary action segments. These later present
a human motion as a temporal sequence of poses, each
characterized by EHC representation associated to human
mesh. Elements of EHC representation are open curves in
3D space, which are viewed as point in shape space of open
curves and hence each sequence will be represented by a tra-
jectory on this shape space. Dynamic time warping is used
to align different trajectories and it gives a similarity score
between two local motions.

3. Human body shape and pose descriptor

We aim to present a body shape as a skeleton based shape
representation. This skeleton will be extracted on the surface
of the mesh by connecting extremal features located on the
extremities of the body. The main idea behind the use of
this representation is to analyze pose variation with elastic
deformation of the body, using representative curves on the
surface.

3.1. EHC descriptor

We chose to detect the body extremities as feature points
resulting from the intersection of their two sets of lo-
cal extrema, extracted by cross-analysis approach using
geodesic based scalar functions defined over the body sur-
face [TVD06]. Since it is based on geodesic distance evalu-
ation, These extremities are stable and invariant to geomet-
rical transformations and model pose (Figure 1). Now, let M
be a body surface and E = {e1,e2,e3,e4,e5} a set of feature
points on the body representing the output of feature points
extraction. Let β denote the open curve on M which joints
two feature points of M {ei,e j}. To obtain β, we seek for
geodesic path Pi j between ei and e j. We repeat this step to
extract extremal curves from the body surface ten times so
that we do all possible paths between elements of E. As il-



lustrated on the right of Figure 1 the body is represented
using these extremal curves M ∼

⋃
βi j.

Figure 1: Feature points extracted from human body surface
and correspondent extremal curves.

We have chosen to represent the body pose by a collec-
tion of curves for two reasons. Firstly, these curves connect
limbs and give obviously a good representation of the body
shape and pose, using a reduced representation of the mesh
surface. Secondly, elastic analysis shapes of curves inside
Shape Space is more efficient [JKSJ07]. However, to com-
pare correspondent extremal curves we need a distance to
evaluate how much the shape of the corresponding curves is
similar. The distance we are going to use is called an elastic
metric. It will be explained in more details in section 3.2.

3.2. Elastic distance

While human body is an elastic shape, its surface can be sim-
ply affected by a stretch (raising hand) or a bind (squatting).
In order to analyze human curves independently to this elas-
ticity, we need an elastic metric within a Shape Space frame-
work.

Let β : I→R3, for I = [0,1], represents an extremal curve
obtained as described above. To analyse the shape of β, we
shall represent it mathematically using a square-root velocity

function (SRVF), denoted by q(t) .
= β̇(t)/

√
‖β̇(t)‖. q(t) is

a special function introduced by [JKSJ07] that captures the
shape of β and is particularly convenient for shape analysis.

The set of all unit-length curves in R3 is given by C =
{q : I→ R3|‖q‖ = 1} ⊂ L2(I,R3). With the L2-metric on
its tangent spaces, C becomes a Riemannian manifold. Since
the elements of C have a unit L2 norm, C is a hypersphere in
the Hilbert space L2(I,R3). In order to compare the shapes
of two extremal curves, we can compute the distance be-
tween them in C under the chosen metric. This distance is
found to be the length of the minor arc connecting the two
elements in C. The geodesic length between any two points
q1,q2 ∈ C is given by:

dc(q1,q2) = cos−1(〈q1,q2〉) , (1)

and the geodesic path α : [0,1]→C, is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

where θ = dc(q1,q2). In order to handle the variability due

to re parametrization or rotation, we define orbits of the ro-
tation group SO(3) and the re-parametrization group Γ as
equivalence classes in C. We define the equivalent class con-
taining q as:[q] = {

√
γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} . The

set of such equivalence class is called the shape space S of
elastic curves [JKSJ07]. Two extremal curves with different
elasticity or orientation are viewed as the same point on S.
We denote by ds the geodesic distance between the corre-
sponding equivalence classes [q1] and [q2] in shape space S,

and we denote by q∗2 (t) =
√

˙γ∗(t)O∗q2(γ
∗(t))) the optimal

element of [q2], associated with the optimal rotation O∗ and
re-parametrization γ

∗ of the second curve, then

ds([q1], [q2])
.
= dc(q1,q

∗
2 ) , (2)

In practice, SVD is used to compute optimal rotation
and the dynamic programming is performed for optimal
parametrization.

3.3. Shape similarity

The elastic metric applied on extremal curve-based descrip-
tors can be used to define a similarity measure. Given two 3D
meshes x, y and their descriptors x′ = {qx

1,q
x
2,q

x
3, ...,q

x
N} and

y′ = {qy
1,q

y
2,q

y
3, ...,q

y
N}, the mesh-to-mesh similarity can be

represented by the curve pairwise distances d:

s(x,y) = d(x′,y′) =
∑

N
i=1 ds(qx

i ,q
y
i )

N
. (3)

where N is the number of curves used to describe the mesh.
The average of curve distances between two descriptors can
capture the similarity between their mesh poses. In case of
change of shape in even one curve, the global distance will
be affected and increase indicating that the poses are differ-
ent. In Figure 2, a geodesic path between each corresponding
two extremal curves, taken from two human bodies doing
different poses, is computed in Shape Space. The evolution

Figure 2: Geodesic path between extremal human curves of
a neutral pose with raised hands.

of hand-foot curve between a pose with raised hand and an-
other with hand down looks very natural under the elastic
matching. Since we have geodesic paths denoting optimal
deformations between individual curves, we can combine
these deformations by an arithmetic distance to obtain full



deformations between two poses. Thanks to this global dis-
tance, we can compare human shape in different poses. For
small deformation, the distance will be small and it is going
to increase for models doing big different poses.

Comparing correspondent curves requires the identifica-
tion of end-points as head, right/left hand and right/left foot,
which is a not affordable in practice. This requirement is im-
portant to perform the curve matching separately between
models. In order to overcome this problem, our method takes
advantage from morphology of the human body. In fact, the
head end-point is comment point between shortest curves
among all possible geodesics between the five end-points.
Besides, identification of the couple of hand/foot as cor-
responding to the same side of the body is deduced from
geodesic paths connecting right hand to left foot end-points
or left hand to right foot end-points which is always the
longest on the human body surface. For 3D video sequences,
once the end-points are correctly detected from the starting
frame in the video sequence, a simple algorithm of end-point
tracking over time is performed.

4. Motion segmentation and 3D video retrieval

Based on our EHC representation of the shape model, it is
possible to compare two video sequences by matching their
correspondent extremal curves using the geodesic distance
in shape space (Equation 2). However, a sequence of hu-
man action can be composed of several distinct actions, and
each one can be repeated several times. Therefore, the mo-
tion segmentation can play an important role in the dynamic
matching by dividing the whole 3D video data into small,
meaningful and manageable elementary actions called clips.
EHC descriptor will be employed to segment continuous se-
quences into clips.

4.1. Motion segmentation

Video segmentation has been studied for various applica-
tions: gesture recognition, motion synthesis and indexing,
browsing and retrieval. Most of works on the 3D video seg-
mentation use the motion capture data, and very few of them
were applied to dynamic 3D mesh. One of them is presented
in [XYA05], where a histogram of distance among vertices
on 3D mesh was generated to perform the segmentation
through threesholding step defined empirically. In [YA06],
the motion segmentation has been automatically conducted
by analyzing the degree of motion using modified shape dis-
tribution, but they make such assumption: actions are mainly
Japanese dances and the sequence of motion is paused for a
moment and consider such moments as segmentation points.

In our work, we consider the issue of segmenting a 3D
video with unknown temporal correspondence, where the
mesh can change both connectivity and topology. We pro-
pose an approach fully automatic to segment a 3D video

efficiently without making neither thresholding step nor as-
sumption in the motion’s nature.

In motion segmentation, the purpose is to split automat-
ically the continuous sequence into segments exhibit basic
movements, called clips. As we need to extract meaning-
ful clips, the segmentation is overly fine and can be con-
sidered as finding the alphabet of motion. For a meaningful
segmentation, motion speed is an important factor. In fact,
when human changes motion type or direction, the motion
speed becomes small and this results in dips in velocity. We
exploit this by finding the local minima for the change in
type of motion and local maxima for the change in direction.
The extrema detected on velocity curve should be selected as
segment points. In Figure 3, the vector of motion degree for
human walk is shown. We show frames detected in maxima
(the actor changes the foot’s direction) on the top of the plot,
and frames belonging to the minima (the actor raise the other
foot) on the bottom. In this work, we consider only change
in type of motion as a meaningful clip. Like this, clips with
slight variations and a small number of frames are avoided.

Figure 3: Detected extrema on extracted feature vector on a
walk motion.

Note that optimum local minimum, that detect precise
break points where the motion change, is selected in a pre-
defined neighborhood. For this, we fix a size of window to
test the efficiency of the local minimum in this condition. To
calculate the speed variation, the degree of motion will be
computed thanks to the distance between each two succes-
sive EHC in the sequence. The variations of a sequence are
represented in vector of speed and a further smoothing filter
is applied to obtain the final degree of motion vector.

4.2. Clip matching

To seek for similar clips, example based queries are em-
ployed in a content-based retrieval context. Two motions
can be considered similar even if there are changes in the
shape of the actor and the speed of the action. This prob-
lem is similar to time-series retrieval where a distance met-
ric is used to look for in a database the sequences whose
distance to the query is below a threshold value. Each clip



is represented as a temporal sequence of human poses, char-
acterized by EHC representation associated to shape model.
Then, extremal curves are tracked in each sequence to char-
acterize a trajectory of each curve in the shape space (Fig-
ure 4 (a)). Finally, the trajectories of each curve are matched
and a similarity score is obtained. However, due to the vari-
ations in execution rates of the same clip, two trajectories do
not necessarily have the same length. Therefore, a temporal
alignment of these trajectories is crucial before computing
the global similarity measure (Figure 4 (b)).

(a) Motion characterization

(b) DTW between trajectories

Figure 4: Alignment process of different trajectories that
model the motion.

In order to solve the temporal variation problem, we use
DTW algorithm [Gio09]. This algorithm is used to find opti-
mal non-linear warping function to match a given time-series
with another one, while adhering to certain restrictions such
as the monotonicity of the warping in the time domain. The
optimization process is usually performed using dynamic
programming approaches given a measure of similarity be-
tween the features of the two sequences at different time in-
stants. The global accumulated costs along the path define a
global distance between the query clip and the motion seg-
ments found in the database. Since DTW can operate with
any measure of similarity between different temporal fea-
tures, we adapt it to features that reside on Riemannian man-
ifolds. Hence, we use the geodesic distance between differ-
ent shape points ds(qi,q j), proposed in equation 2, as a dis-
tance function between the shape features at different time
instants.

In practice, the first step is to follow independently curve
variation in time resulting on N trajectories in the Shape
Space. In fact, each frame in the 3D video sequence can
be represented by a predetermined number (N) of extremal
curves, splitting the sequence into N parts, where each one
represents the trajectory of an open curve in the Shape
Space. Then, DTW will be applied in the feature space for

each tracked curve index. The distance between two clips
will be the average distance given by each correspondent tra-
jectories comparison.

5. Experiments and discussions

To show the practical relevance of our method, we perform
an experimental evaluations on several databases, and com-
pare EHC descriptor performance, separately, to the most ef-
ficient descriptors of the state-of-the-art methods. We mea-
sure the efficacy of our descriptor to capture the shape sim-
ilarity in 3D video sequences of different actors and actions
from a public database. We evaluate this later against Tem-
poral Shape Histogram [HHS10], Multi-resolution Reeb-
graph [HTN∗10] and other classic shape descriptors, using
provided ground truth. Finally, the performance of EHC de-
scriptor to segment sequences and to retrieve clips is eval-
uated using a ground-truth dataset from simulated data. A
real video sequence was also used to test the efficiency of
our descriptor.

5.1. Shape similarity for 3D video sequences

The performance of EHC is evaluated against various shape
similarity metrics for 3D video sequences of people with un-
known temporal correspondence from the i3DPost dataset
[SH03]. Performances of similarity measures are compared
by evaluating Receiver Operator Characteristics (ROCs) for
classification against ground-truth of a comprehensive data
set of synthetic 3D video sequences consisting of animations
of several people performing different motions. The similar-
ity metric is represented by elastic measure values between
each pair of models. The temporal ground truth similarity
between two frames is defined as a combination of shape
and velocity similarity as described in [HHS10]. In order
to classify frames as similar or dissimilar a threshold is set
on temporal ground truth similarity matrix. An example of
self-similarity matrix computed using ground-truth descrip-
tor, static and temporal descriptors is shown in Figure 5. This
figure illustrates also the effect of time filtering with increas-
ing temporal window size for ECD descriptors on a periodic
walking motion.

Figure 5: Similarity measure for "Fast Walk" motion in a
straight line compared with itself. Coldest colors indicate
most similar frames. (a) Temporal Ground-Truth (TGT), (b-
d) Self-similarity matrix computed with TEHC with window
size 3, 5 and 7 respectively.



Before all, we analyzed the performance of all possible
combinations of curves on the shape similarity measure-
ments and best combination is considered for all follow-
ing experiments [SWD13]. We then compare our descriptor
with the most popular descriptors. The comparison includes
Shape Histograms (SHvr), Spin Image (SI), Shape Distribu-
tion (SD), and Spherical Harmonics Representation (SHR)
using a time window of size 7. Results are shown in Fig-
ure 6 and observations resulting from the analysis of these
results are the following: First, our descriptor outperforms

Figure 6: Evaluation of ROC curves. EHC is one of the top
performers for shape retrieval in 3D video.

classic shape descriptors (SI, SHR, SD) and shows compet-
itive results with SHvrS and aMRG. Multiframe shape-flow
matching required in SHvrS allows the descriptor to be more
robust but the computational cost will increase by the size of
selected time window. Second, EHC descriptor by its simple
representation, demonstrates a comparable recognition per-
formance to aMRG. It is efficient as the curve extraction is
instantaneous and robust as the curve representation is in-
variant to elastic and geometric changes thanks to the use of
the elastic metric. Third, the result analysis for each action
shows that EHC gives a smooth rates that are stable and are
not affected by the complexity of the motion [SWD13]. Such
complex motions are rock and roll, vogue dance, faint, shot
arm. However, this is not the case for SHvrS where perfor-
mance recognition falls suddenly with complex motions as
presented in figure 18 at [HHS10].

5.2. Motion segmentation

Plotting the distance between EHC representation of succes-
sive frames gives a very noisy curve. The break points from
this curve do not define semantic clips and the extracting of
minima leads to an over-segmentation of the sequence (see
Fig7 (Top)). To obtain more significant local minima, we
convolve the curve with a time-filter allowing to take into ac-
count the motion variation, not only between two successive

frames but also in a time window. The motion degree after
convolution is shown in Figure 7(Bottom). Break points are
more precise and delimits significant clips corresponding to
step change in the video sequence. The window size is de-
fined empirically and fixed to 6 for all types of actions.

Figure 7: Speed curve smoothing.

In Figure 8, we show some results of motion segmenta-
tion on a slow and a fast walk. Although the walk speed in-
crease, the action segmentation remains significant and does
not change and corresponds to the step change of the actor.
Segmentation for Rockn’roll dance motion is also illustrated
in Figure 8(bottom). Thanks to the selection of local minima
in a precise neighbourhood, only significant break points are
selected.

Figure 8: Segmentation results on various motion: (top) slow
walk (middle) fast twalk (bottom) dance :Rockn’roll.

5.3. Motion retrieval

In the previous experiments, the temporal shape similarity
performed by the state-of-the-art methods and compared to



our descriptor. In this experiment, we advocate the usage
of the EHC representation and the motion segmentation for
motion retrieval, where a query consists of a clip. As in a
classical retrieval procedure, in response to a given query,
our approach looks for in the benchmark database and re-
turns an ordered list of responses called the ranked list.
The evaluation of the algorithm is then transformed to the
evaluation of the quality of the ranked list. For our experi-
ments, we use 13 different actions from the i3DPost dataset
[SH03], performed by two actors making a total of 26 ac-
tions. A motion segmentation stage is performed on these
action sequences giving a total of 144 clips categorized into
14 classes. The action sequences consist mainly of differ-
ent styles of walking, running and some dancing sequences.
Classes grouped together present different styles of walking,
running and dancing steps. For example, a step change in
a walk may represent a class and groups similar clips done
with different speed and in different trajectories. We notice
that Right to Left change step is grouped in a different class
than Left to Right change step.

The similarity metric represented by elastic measure val-
ues between each pair of clips allows us to generate a con-
fusion matrix for all classes of clips, in order to evaluate
the recognition performance by computing dynamic retrieval
measures thanks to a manually annotated ground truth. An
example of the matrix representing the similarity evaluation
score among clips in sequences performed by a female ac-
tress against the clips of sequences of actions performed by
a male actor is showed in Figure 9. The coldest the color is,
the more similar the two clips are.

Figure 9: Similarity matrix evaluation between clips. The
coldest the color is, the more similar the two clips are.

Thanks to the use of DTW, it is noticed that similarity
score between same clips done in different speed is small
(see Figure 9). The matching between the clip representing

change in step in slow walk (25frames) and fast walk (18
frames)(Figure 8, top and middle row) is small.

Besides, our approach succeed to retrieve clips doing the
same action in different ways. For example (see Figure 9),
the walk circle clips can be matched with the clips of slow
walk action done in a straight line. This can be explained
by the use of the elastic metric to compare and match curve
trajectories, which is independent to rotation. Although the
actors performing the actions are different, it is observed that
similar clips yield smaller similarity score. Like shown for
Rocknroll dance action, when steps of the dance performed
by different actors are correctly retrieved.

Retrieval performances are tested using the 28 actions per-
formed by the two actors (Jigna and Adrien from the i3DPost
dataset [SH03]). In the experiment, each clip from sequences
are used as query. The clips from the segmented sequences
present in the dataset are used as candidates. The query it-
self is not included in candidates. The used evaluation algo-
rithm involves the evaluation measures used by information
retrieval community (1st tier 2nd tier, NN and E-measure).
It is demonstrated that 79.26% of similar motion clips are
included in the first tier and more than 90% (93%) of clips
are correctly retrieved in the second tier. Besides, accuracy
of nearest neighbor is 99.1%. It is a rather good perfor-
mance (Figure 10) considering that only such low-level fea-
ture as the EHC is utilized in the matching. The problem is
that EHC is based on geodesics on 3D shapes, and our ap-
proach for retrieval is based on extremal curves trajectories
in the sequence. However, extracted sequential curves that
present the trajectory tend to change completely of path on
the models while moving and thereby mislead the matching
performed by DTW.

We also apply our retrieval approach to real captured 3D
video sequences of people [VBMP08]. Self similarity exam-
ple with an actor in a walking motion (walking in circular
way) and its similarity curve are shown in Figure 11. The
query clip is a Right-Left step change in the first position be-
fore doing a circle with the walk motion and retrieved clips
are frames in the same class found later in the sequence when
the actor is turning.

Figure 10: Recall/Precision curve for clip similarity.



Figure 11: Experimental results for 3D video retrieval using
motion of "walk in circle".

6. Conclusion

In this work, body shape is firstly represented as a set of
geodesic curves extracted from shape surface using extremal
feature points and presented as open curves in shape space
where they become invariant to translation, scale and elastic-
ity. Then, an elastic metric is calculated between two shape
models in order to estimate their similarity. We extended this
descriptor to 3D video retrieval, where a motion segmen-
tation is performed on continuous sequence to split it into
elementary action segments called clips. These later are rep-
resented by a temporal trajectories of selected human curves
on the open curve shape space. Video retrieval is then per-
formed by matching the trajectories using DTW algorithm
on the features that reside in Rienmanian manifolds and
operate with the elastic metric defined in the shape space.
Moreover, our approach achieves a performance accuracy of
93.44% for video retrieval as second tier, which is encourag-
ing and shows the potential of this approach.

Finally, we would encourage future works to extend our
approach to investigate more challenging applications like
3D human action modelling using HMM like approach.
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