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ABSTRACT
The goal of this paper is to present and experiment the com-
puter aided analysis of phase portraits of some ordinary dif-
ferential equations. The latter are piecewise affine, and have
been primitively introduced as coarse-grained models of gene
regulatory networks. Their simple formulation allows for nu-
merical investigation, but their typical phase portrait is still
largely unknown. They have been shown to present all the
main aspects of nonlinear dynamics, including chaos. But it
is still of interest to simulate random versions of these mod-
els, and to count and classify their attractors. This paper
presents algorithms that allow for an automatic treatment
of this kind, and apply it to four-dimensional sample sys-
tems. Contrary to previous studies, the latter have several
thresholds in each direction, a fact whose consequences on
the number and nature of attractors is discussed.

Categories and Subject Descriptors:
G.1.7 [Numerical Analysis]: Ordinary Differential Equations,
I.6.1 [Simulation and Modeling]: Simulation Theory.
General Terms: Algorithms.
Keywords: Piecewise Affine Dynamical Systems, Symbolic-
Numeric Algorithms, Biological Networks.

1. INTRODUCTION
In this paper a special class of piecewise affine (PWA)

differential equations is considered. Equations of this class
may be written as :

dx

dt
= Γ(x)− λx, (1)

where x ∈ U ⊂ R
n
+, λ ∈ R+ and Γ : U → R

n
+ is a piecewise

constant map. As such, Γ is not well defined on its whole do-
main U . An alternative definition will be proposed later in
this section. We denote its component functions (γ1 . . . γn).
Since in practice each coordinate xi is bounded, it is rele-
vant to set U = [0, M]n for some positive M.
This kind of equations arise in theoretical biology, as a model
of genetic and biochemical interaction networks. Their first
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formulation was proposed by L. Glass in the seventies [8, 9,
10]. These equations include some classical models of neu-
ral networks as a particular case [7, 17]. In most of these
cited works, each γi is only allowed to take two distinct val-
ues, and is thus determined by a boolean function of x. We
call binary systems this subclass of models. In general, γi

may take a finite number of distinct values, corresponding
to rectangular regions in U . Hence, (1) is strongly related to
discrete-valued dynamical systems. In a biological context,
those latter have been studied under a logical formalism [23],
using the tools of qualitative dynamics [1], or as discrete dy-
namical systems over finite fields [16].
From a modelling viewpoint, each coordinate xi of vector
x represents a characteristic quantity of the ith member in
a finite population of n interacting elements. For example,
xi is the concentration of a protein whose production is in-
duced from gene i, or xi is the voltage of a single neuron i.
The positive coefficient λ represents a degradation rate. In
more general formulations, it should be written as a diago-
nal matrix. However, uniform decay rates are supposed in
most works on systems of the form (1), for it greatly simpli-
fies the analysis. This fact will appear in section 2.
Γ = (γ1 . . . γn), on the other hand, describes coupling in the
system. As it is piecewise constant, the domain of interest
U is partitioned into rectangles of the form :

Ba = Ba1... an =

n∏

i=1

[θi,ai
, θi,ai+1],

where the letter B stands for ’box’, since we will call such
regions this way afterwards. This rectangular partition is
biologically relevant. Actually, the processes involved here
are submitted to rapid changes around some threshold val-
ues of the variables. More realistic models represent this
by using sigmoidal functions, or so-called logoid functions,
see [19], which tend to Heaviside step functions in the limit
of infinite slope at threshold values. This limit correspond
to piecewise constant production rates in rectangular regions
of phase space. The thresholds are denoted

Θi = {θi,j | j = 1 . . . pi} (2)

in each direction i, where pi ∈ N is the number of distinct
qualitative states for the ith variable. We suppose they are
given in an ordered way : θi,j < θi,j+1. Although extreme
values 0 and M are not proper thresholds, we conventionally
set θi,1 = 0 and θi,pi

= M, so that boxes actually form a
partition of U .
Since Γ is constant on each box, which in turn is completely
determined by its subscript a, it will be useful to consider Γ



as a map from the set of subscripts, A =
n∏

i=1

Npi
to R

n. We

denote Npi
= {1 · · · pi}. The set A will sometimes be called

an alphabet in the sequel.
A discretizing mapping d :

⋃
a
int(Ba) → A can be intro-

duced here ; it associates to a point the subscripts of the box
inside which it lies. It allows to relate the initial dynamical
system (1) to a purely discrete one, with state space A. This
is a major tool in studying the dynamics of PWA systems
like those we consider here. Observe that d, as well as Γ,
are not defined on the boundaries of boxes. This will be
discussed in section 2.1.
Although these systems are conceived as simplifications of
smooth nonlinear ones, they provide a wide variety of dy-
namical behaviours, which are still unsatisfactorily described.
Images through d of the orbits of the initial system can be
seen as infinite words on the alphabet A. Among these
words, the images of equilibrium points and periodic so-
lutions of the continuous systems are periodic. However,
some periodic words do not conversely correspond to peri-
odic trajectories, but may be the images of stable foci, or
even correspond to an empty set of trajectories. The prob-
lem of distinguishing which periodic words corresponds to
limit cycles, and which correspond to foci, has been adressed
early in the study of PWA systems like (1), by different au-
thors [11, 12, 18, 22]. All but the last reference concern the
binary case, in which the only threshold in each direction is
translated to zero, allowing a simplified analysis. In partic-
ular, trajectories on a given ray through the origin converge
to the same limit. Hence, it is possible to project the phase
portrait on a sphere Sn−1 centered at the origin. Using such
a projection, it has been proven that 3 dimensional binary
systems cannot exhibit chaos [18], while some complicated
periodic trajectories are proven to happen in a class of 4
dimensional systems [7].
More complex trajectories, represented by ’irrational’ words
on the alphabet A, can be investigated using explicit compu-
tations. Actually, some recent studies [3, 5] improve known
results about recurrent trajectories via analyzing a Poincaré
return map, in the context of binary systems. This map
is a fractional linear one, and an eigen-analysis of its lin-
ear term determines the existence and stability of its fixed
points. Moreover, fixed points of this map shall only occur
in a polyhedral cone that depends on the system’s param-
eters. This cone corresponds to a forward invariant set of
trajectories.
This paper’s theoretical background is mainly an extension
of those results on the return map and its fixed points, in
the case of multiple thresholds. Those, along with prelimi-
nary working hypotheses and notations are provided in sec-
tion 2. In section 3, the algorithms used to simulate, ana-
lyze, and randomly generate systems of the required form
are described. Section 4 then presents results arising from
an implementation of those algorithms, on a sample of sys-
tems with 4 variables. A discussion on the results obtained
is provided in a concluding section.

2. MATHEMATICAL BACKGROUND

2.1 The flow
In this section, we recall the main definitions and prop-

erties that will be used afterwards. They are stated without

proof, the latter having been established in a previous pa-
per [6].
A system of form (1) induces a flow that can be formally
written. In a given box Ba, Γ is a constant vector, and we
can easily compute the flow inside this box :

ϕ
a(t, x)

.
= x(t) = f(a) + e

−λ(t−t0)(x− f(a)). (3)

Where f(a) = 1
λ
Γ(a) is called focal point, because it is ob-

viously attracting in the above equation. Hence, depending
on its position with respect to Ba, it will be an asymptoti-
cally stable steady state, or the trajectory will encounter the
boundary of the box. In the latter case, one assigns a new
value to Γ according to certain rules to be precised, and con-
structs a new leg of the trajectory by continuity. Observe
that when x is fixed and t increases, the flow (3) defines
a straight line. This is due to the uniformity of the decay
rates: in a more general context, where different variables
have distinct decay rates, trajectories are not straight line
in boxes, complicating the whole analysis.
As mentioned in the previous section, Γ is not defined on
the boundaries of box. As n-rectangles, those boxes are
polytopes, and thus we use the standard terminology about
such objects. The uninformed reader is refered to [24]. The
k-faces – i.e. faces of dimension k – for k ∈ {0 · · ·n − 1}
are in fact k-rectangles, which belong in general (i.e. except
on the boundary of the whole domain) to 2n−k adjacent n-
dimensional boxes. Inside each of these boxes, the vector
field is fixed. It follows that on all faces of codimension 2 or
more, the flow is not well defined. On codimension 1 faces,
on the other hand, some simple assumptions suffice to get a
well defined continuous flow.

Assumption 1. ∀ a ∈ A, f(a) ∈
⋃

a∈A int(Ba).

Assumption 2. ∀i ∈ Nn, ∀ a, a′ ∈ A, a− a′ = ±ei,

(
di(f(a))− ai

)(
di(f(a′))− a

′
i

)
> 0,

or

di(f(a)) = ai and
(
di(f(a′))− a

′
i

)
(ai − a

′
i) > 0,

or the same with a and a′ exchanged.

Assumption 1 means that the focal points all lie inside the
domain U , and moreover, that none of them is on the bound-
ary of a box. The first aspect implies that U =

⋃
a Ba is

positively invariant, and thus can be considered as the only
region where relevant dynamics take place. The second one
excludes a (rare) case which would otherwise cause technical
complications without improving the model.
The second hypothesis concerns the case of autoregulation.
For biological plausibility it should not be ignored, but it
may lead to the use of generalized solutions in the sense of
Filippov, i.e. differential inclusion, to have a mathemati-
cally rigorous definition of the flow [1, 14]. Assumption 2
precludes this kind of difficulties, by restricting the allowed
dispositions of boxes and their focal points. Observe that
two boxes Ba and Ba′ are adjacent in a single direction (i.e.
through a facet) if and only if ‖a− a′‖1 = 1, or equivalently
if and only if there is some i ∈ Nn such that a − a′ = ±ei

(where ei is the ith vector of the canonical basis). In words,
the hypothesis means that the ith component of the vec-
tor field does not change in sign when crossing a facet in



direction i. Autoregulation (i.e. γi(x) depends on xi) is a
necessary, but not sufficient condition for this configuration
to happen. We thus do not reject all forms of autoregulation
here. The situations avoided are schematically depicted in
figure 1.

Figure 1: The two possible ambiguities due to au-
toregulation, often called black wall (on the left) and
white wall (on the right).

2.2 The transition map and its iterates
Once the flow (3) is given in a box Ba, it is easy to com-

pute the time and position at which it intersects the bound-
ary of Ba, if ever. The possibility for each facet to be en-
countered by the flow uniquely depends on the position of
the focal point : {x |xi = θi,ai

} (resp. {x |xi = θi,ai+1})
can be crossed if and only if fi < θi,ai

(resp. fi > θi,ai+1).
According to this observation, we denote I+

out(a) = {i ∈
Nn|fi > θi,ai+1}, and I−out(a) = {i ∈ Nn|fi < θi,ai

}. Then,
Iout(a) = I+

out(a) ∪ I−out(a) is the set of escaping directions
of Ba.
When it is unambiguous, we will omit the dependence on a,
as we have already implicitely done with the focal point.
Now, in each direction i ∈ Iout the time at which ϕ(t, x) en-
counters the corresponding hyperplane, for x ∈ Ba, is given
by:

τi(x) =
−1

λ
ln

(
min

{
fi − θi,ai

fi − xi

,
fi − θi,ai+1

fi − xi

})
. (4)

Taking the minimum τ (x) = mini∈Iout τi(x), and reinject-
ing it in equation (3), we get the exiting point of Ba when
starting at x. Since this process is intended to be repeated
along trajectories, x will generally lie on the boundary of
the current box, except for the initial condition, which may
however be chosen on a facet without loss of generality. We
then get a transition map T a : ∂Ba → ∂Ba which can be
explicited, omitting a :

T x = ϕ (τ (x), x)
= f + α(x)(x− f).

(5)

where α(x) = exp(−λτ (x)).
Observe that T can be geometrically interpreted : it is a
central projection of center f , on a hyperplane supporting
an exit facet. Hence, the image of a full set of points S ⊂
∂Ba can be seen as the intersection of the polyhedral cone
f + R+S, with exiting facets of Ba.
Now, the initial system (1) has been reduced to a discrete
dynamical system, consisting in iterates of the above map
T on a domain, denoted D : it is the union of all n − 1
facets of boxes, taken without their boundary, nor these
latters’ finite-time preimages, as explained in section 2.1.
The superscript a will be systematically omitted afterwards,
and T considered as a global map on D . Actually, it can be
proven [6] that under assumptions 1 and 2 there is always
a single relevant a such that T x = T ax for all x ∈ D . Yet,

we only care here with forward trajectories, since T −1 is not
properly defined on the full domain D .
Now, let a = a0 . . . ak+1 a list of symbols in A, such that the
corresponding boxes are successively crossed by some flow
line. The walls that are successively crossed by the flow are
defined by: W

j = ∂Baj ∩ ∂Baj+1 , for all j ∈ Nk ∪ {0}.
Then, the following domain

Da

.
=

k⋂

j=0

T −j(W j), (6)

defines all the initial conditions in W 0 such that the k first
iterates of T belong to the above defined walls.
Let also f1 . . . fk be the focal points of the successive boxes,
i.e. f j = f(aj), and s1, . . . , sk the exit (or ’switching’) di-
rections in those boxes. Finally, let θj be the wall-defining
threshold values : θj ∈ {θ

sj ,a
j
sj

, θ
sj ,a

j
sj

+1
} is such that W j ⊂

{x |xsj
= θj}.

The kth iterate of T , for any k ∈ N, can be expressed in the
following form :

∀x ∈ Da, T k
x = f

k + ∆sk

F (k)(x− f1)

〈F (k)(x− f1), esk
〉
, (7)

where ∆sk
= θ

k − f
k
sk

, and F (k) ∈ R
n×n is a matrix defined

as the right to left product :

F (k) =

k−1
←−−∏

j=1

[
(f j − f

j+1)eT
sj

+ ∆sj
Id

]

=
[
(fk−1 − fk)eT

sk−1
+ ∆sk−1

Id
]
. . .

. . .
[
(f1 − f2)eT

s1
+ ∆s1

Id
]
,

(8)

for k > 2, and F (1) = Id.
From this expression, it is possible to deduce some precise
sufficient and necessary conditions for the existence of peri-
odic orbits. A number of articles have dealt with such kind
of conditions since early studies on Glass systems : chrono-
logically [11, 12, 18, 22, 3, 6]. We present here the main
results in the form of a summarizing proposition, which is
proven in [6]. First, it follows from (7) and (8) that the
ℓ-step map associated to a periodic sequence of walls, i.e.
such that aℓ = a0 may be written as :

Mℓ
x− f

1 =

[
(f0 − f1)eT

s0
+ ∆s0

Id
]
F (ℓ)(x− f1)

〈F (ℓ)(x− f1), es0
〉

=
F (ℓ+1)(x− f1)

〈F (ℓ)(x− f1), es0
〉
. (9)

Then we have the following two properties.

Proposition 1. Let a = a0 . . . aℓ−1a0 be the indices of
a cyclic sequence of boxes in phase space with nonempty re-
turning domain Da, and a return map written in the form (9).

Assume the matrix F (ℓ+1) has an eigenvector v with real
eigenvalue µ. Then, the point :

x
∗ = f

1 +
µ

〈F (ℓ)v, es0
〉
v

is a fixed point of the return map, provided

µ
∏ℓ

j=1 ∆sj
.

> 1, and x
∗ ∈ Da.



Morevoer, it is asymptotically stable if, for any other eigen-
value η of F (ℓ+1) the following holds :

|µ| > |η|.

If the inequality is weak, x∗ is stable, and it is unstable oth-
erwise.

Proposition 2. For a = a0 . . . aℓ, the set Da, as defined
in equation (6) is properly described by the following list of
inequalities, for each j ∈ Nℓ−1 :

∀i ∈ Iout(a
j) \ {sj},

e
T
i

∆i∆s1
...∆sj

[
∆sj

Id−∆ie
T
sj

]
F (j)(x− f1) > 0,

(10)
along with the 2(n− 1) inequalities defining W 0 ⊃ Da.
The value θi being the escaping threshold in direction i for
the box Baj , ∆i is similar to the already defined abbreviation,
and equals θi − f

j
i . Since for each i, x− f1 is multiplied on

the left by a 1 × n vector in inequality (10), the system of
inequalities associated to each j can be put in matrix form as
C(j)(x− f1) > 0, where the lines of C(j) are given by (10).

All these theoretical results are constructive, and may thus
provide effective algorithms, which is the theme of the next
section.

3. ALGORITHMS
First of all, the explicit expression of the return map and

its iterates naturally leads to an algorithm for simulation
of trajectories, given an initial condition. Then, asymptoti-
cally stable equilibria and limit cycles can be detected from
simulation data. These two points form the topics of the
first subsections, while a third one describes the algorithms
we used to generate samples of random systems.

3.1 Computation of trajectories
The reduction of systems like (1) to a discrete time dy-

namical system yields an explicit scheme for numerical in-
tegration, as was first pointed out in [12]. Since that time,
a number of papers have used this approach [2, 13, 15, 20].
We recall here the main steps of the algorithm.
The algorithm is defined for a fixed system of the form (1).
Given an initial point x0 and an integer nbiter, it computes
a discretized orbit consisting in nbiter points. All of these
lie on walls in phase space, excepted maybe x0. The com-
puted points are of course the nbiter first iterates of T on
x0. Due to the explicit form, eq. (3), of the flow in each
box, it is important to note that any point on the continu-
ous trajectory can be retrieved with arbitrary precision from
the output of the simulation algorithm. This requires the
knowledge of the sequence of boxes that are crossed by the
computed flow line, as well as the times at which thresholds
are met. We give a pseudo-code description in algorithm 1.
The symbol ±j used for box updating, in this algorithm, is
+ (resp. −) when the upper (resp. lower) threshold is met
in direction j. Remind that arg minξ F (ξ) is defined as the
set {ξ |F (ξ) is minimal }.

Several comments have to be made about this algorithm.
First, the last step, at which a point of the trajectory is ac-
tually computed, uses the focal point of the box indexed by

Algorithm 1 Trajectory Computation

Input : x ∈ R
n, nbiter ∈ N.

Output : X ∈ R
n×nbiter , a∈ Anbiter , T ∈ R

nbiter .

a[0]← d(x).
X[0]← x.
F ← Id (n× n).

for i = 1 · · · nbiter do
{ Potentially switching variables: }

S ←
{
j | fj

(
a[i-1]

)
6∈ ]θj,a[i-1] , θj,a[i-1]+1[

}

if S = ∅ then
Print ”Stable equilibrium point in the box indexed
by ” a[i-1]
Leave the for loop

end if

{ Switching time, exit direction:}

T [i]← mins∈S τs(Xs[i− 1])
S′ ← arg mins∈S τs(Xs[i− 1])
{ Next box :}

a[i]← a[i-1] +
∑

j∈S′ ±jej

{ Next point :}

Choose s in S′

F ← (f
(
a[i-1]

)
− f

(
a[i]

)
)eT

s F + ∆sF

X[i]← f
(
a[i-1]

)
+

∆sF
(
X[i− 1]− f(a[0])

)
〈
F

(
X[i− 1]− f(a[0])

)
, es

〉

end for

a0, while it is f1 = f(a1) that is used in formula (7). This is
due to the fact that the latter is valid for an initial condition
x ∈W 0 = Ba0 ∩Ba1 , which is considered as a point in Ba1

when applying T .
Another remark is the fact that trajectories intersecting
lower dimensional faces are considered as valid in the pro-
posed algorithm, in contradiction with the discussion of sec-
tion 2.2. This is due to the fact that while, in a theoretical
context, T and all its iterates are well-defined – and even
continuous – on (n − 1)-faces of boxes, simulated trajecto-
ries may encounter lower dimensional faces. This is partic-
ularly true for binary systems studied in previous papers,
for which thresholds are most often set to 0 and focal points
taken randomly in the finite set {±1}n. Such restrictions
introduce symmetry, which lead to trajectories that often
intersect low-dimensional faces. The most natural box up-
date in such case is given in algorithm 1 : all i such that
τi is minimal are taken into account when updating box in-
dices. Then, any s ∈ Iout will provide the same transition
map – up to the transition point – T x = ϕ(τ (x), x), since
τs(x) = τ (x) for all such s. The image of such points, or
equivalently the box to which they belong, is then ambigu-
ous. Such situations appear rarely, but if ever our imple-
mentation updates all box subscripts simultaneously. All
the trajectories presented in the rest of the paper are com-
puted using this algorithm, which has been implemented in
Matlab.

3.2 Attractor analysis
In algorithm 1, focal points lying in their correspond-

ing box are automatically detected as asymptotically stable
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Figure 2: The four basic types of orbits, here taken
from 4-dimensional examples. In each case, the first
coordinate is plotted vs time. Upper-left corner: a
node is detected and the algorithm stops. The actual
orbit ends with a piece of exponential converging to-
wards f1. Upper-right corner: a stable focus. Lower-
left: a stable limit cycle. Lower-right: no periodic
pattern is detected among 10000 steps of algorithm 1.

steady states. Such equilibria are usually called nodes. All
attractors occuring in systems of the form (1) may be basi-
cally classified into four types, represented in figure 2. The
automatic detection and classification of attractors does only
concern attractors of the last three types. It appears that the
characterization of cycles and foci, as well as their stability,
is just a direct application of propositions 1 and 2. Actually,
they both concern periodic sequence of walls. They further-
more require the knowledge of matrices of the form F (j), of
focal points f j and scaling coefficients ∆sj

, for intermedi-
ary j in Nℓ−1. These quantities are computed in the main
loop, and thus can easily be added to the outputs of the
algorithm 1.
Then, given a trajectory without node computed by this al-
gorithm, the procedure used to detect and classify attractors
consist in algorithm 2. The detection of stable foci is not
specified in this algorithm, but will be discussed in section 4.
We discuss the nature of attractors that are unidentified by
this procedure in section 4.

3.3 Generation of random networks
Since all previous studies have been carried out in the con-

text of binary systems, often with additional assumptions,
we have to adapt the algorithms presented in the literature
to generate random gene network models [13, 15, 20].
Similarly to those studies, we in fact generate systems with

a fixed connectivity, denoted K. The latter is defined as the
maximum number of variables that may influence a fixed
other variable. The value of K is often considered as being
at most 2 or 3 in biological systems. Moreover, it is the
main source of complexity when generating random discrete
functions. Hence, it is more than usual to consider only low
values of K. The decay rates is always fixed, and thus gen-
erating a random system amounts to generating a random

Algorithm 2 Cycle checking

Look for a periodic subsequence
if one is found then

Compute the return map for the detected periodic se-
quence, using equation (7) ;
According to proposition 1, look for a candidate fixed
point and its stability thanks to an eigenanalysis ;
According to proposition 2, check if this point is in the
domain of the return map ;

else
no cycle nor focus.

end if

function Γ. In all the rest of the section, randomly generated
quantities always follow a uniform repartition law. In con-
crete implementations, this is provided by pre-implemented
routines, e.g. the RAND function in Matlab.
The principle of the generating algorithm, which appears in
algorithm 3 is simple. For each i ∈ Nn, the two following
are randomly generated:

1) a subset I(i) ⊂ Nn of K entries for the function γi.

2) a discrete function γ̃i :
∏

j∈I(i) Nqj
→ Nqi

.

Then, to each value of γ̃, which belongs to A, a random
vector in Bγ̃ is associated. All this requires the generation
and storage of

N = nK +

n∑

i=1

∏

j∈I(i)

qj ,

floating numbers. Letting q = mini qi and Q = maxi qi

one gets N ∈
{
n(K + qK) . . . n(K + QK)

}
, and thus N is

exponential in K. However, when K ≪ n, it is linear in n.
Essentially, the function γ̃ is equivalent to a table with K

entries, each ranging in a finite domain. Such a structure
is K-dimensional, and very bad suited for implementation.
Thus we use a one-dimensional version of this map, i.e. a
list. This is done via explicit bijections:

Ψ(i) :
∏

j∈I(i)

Nqj
−→ Nqi1

...qiK

(ai1 . . . aiK
) 7−→ aiK

+
K−1∑

j=1

(aij
− 1)

∏

m>j

qim ,

(11)
where I(i) = {i1 . . . iK}.
Observe that in the binary case, where qi = 2 and thus
Nqi
≃ {0, 1}K , the above map is just the conversion from a

binary expansion to the integer it represents.

Finally, the map Γ is deduced from Γ̃ in the most natural
way: for each a = (a1 . . . an) ∈ A, a coordinate function γi

of Γ only depends on the aj with j ∈ I(i), and equals γ̃i at
those points.

Since Γ̃ is randomly generated, it may happen that it does
not depend effectively on all its input variables (for example,
it may be the constant map). Hence, it is important to note

that K is not the actual connectivity of Γ̃ (and thus Γ), but
an upper-bound.
Note also that some restrictions have to be imposed on the
values of the coordinate functions γ̄i, insofar as assumption 1
is required. Namely, they have to be outside the set λΘi,



Algorithm 3 Random generation of a discrete map with
prescribed connectivity

Input : K, n ∈ N, a ∈ A =
∏

i
Nqi

Output : I ∈ (Nn)K×n

Γ̃ :
∏

i∈Nn

∏
∈I(i) Nqj

→
⋃

a
Ba

for i = 1 · · · nbiter do
{K elements from Nn are generated.}
{PK denotes the set of subsets with cardinal K.}

I(i)← rand(PK(Nn)).

{A list of values is generated.}

for (aj)j ∈
∏

∈I(i) Nqj
do

bi ← rand(Nqi
).

tmp ← Ψ(i) ((aj)j).

Γ̃i [tmp]← rand ([θibi−1, θibi
]).

end for
end for

where Θi is the set of thresholds i direction i, equation (2).
This does not appear in algorithm 3, but has been taken
into account in the implementation.
Assumption 2, on the other hand, is easily satisfied, by re-
quiring that, for all i, the set I(i) does not contain i.

4. RESULTS
The algorithms presented in the previous section allow us

to generate random systems of the form (1), compute tra-
jectories of these systems, and then check the presence and
nature of attractors in those trajectories. This general ap-
proach is not new, and has been used in previous studies [2,
13, 15, 20], always for binary systems. The main goal of all
these studies is to obtain somme statistical insights in the
nature, and proportion of each of the four types of attrac-
tors depicted on figure 2. The two major parameters whose
influence on the latter are investigated are n and K, the di-
mension of the systems, and their (maximal) connectivity.
Here, we have chosen to consider a sample of non binary
systems in R

4, in order to gain some information on the in-
fluence of multiple thresholds in such systems. The main
comparison will be [15], which provides the most similar
study. We have generated systems with two intermediary
thresholds – i.e. besides those defining the boundary of the
whole domain – in each direction, and thus three discrete
states in each direction. Such systems may thus be called
ternary systems in R

4 without autoregulation.
Nodes are detected directly from the computation of trajec-
tories, algorithm 1. Cycles are analyzed from algorithm 2.
Focus points can be guessed from the same algorithm. Actu-
ally, they correspond to fixed points of the return map along
a cyclic sequence of walls, which belong to the boundary of
a wall. Hence, when checking inequalities of proposition 2,
they fail, but stand as limit cases, satisfying at least one
equality of the form xi = θi,j . A further verification in our
simulation was that the quantity T k+1x−T kx tends toward
0 when k increases, along an orbit

{
T kx

}
through a periodic

sequence of walls. Hence, only the fourth type of attractor
remains unchecked.
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Figure 3: A recurrent orbit from a simulated system
with four variables. No periodic sequence of walls
detected in this portion of orbit.

The exact nature of such attractors is far from clear. They
are often considered as chaotic orbits, but it is highly pos-
sible that they in fact are periodic orbits through very long
sequences of walls, or transients of orbits whose asymptotic
behaviour is simple. They may also be quasi-periodic 1,
which is hard to characterize numerically. However, chaos
is proven to appear in such systems [3, 4, 21], and thus
some unclassified attractors are certainly chaotic. A typical
unclassified trajectory is represented in figure 3. Somehow
abusively, we call chaotic the orbits that are of none of the
three first types, in the following of this section.
Table (12) summarizes the results of our study, classified in

terms of maximal connectivity. For each value of K, 10000
systems have been generated, using algorithm 3. For each
system, a random initial condition has been chosen, and al-
gorithm 1 has been applied for 1000 steps – or less if a node
was detected. In the absence of node, the output of algo-
rithm 1 was analyzed by algorithm 2. If no cycle nor focus
was detected, 4000 additional steps were computed in algo-
rithm 1, and sent again to algorithm 2 – still in the absence
of node. This provides :

K 1 2 3

nodes 8799 5728 4514

foci 949 2367 2336

cycles 873 2007 1996

other 100 253 260

(12)

This table should be compared with the following ;

K 1 2 3

nodes 1784 1455 1103

foci 171 518 876

cycles 43 27 19

other 2 0 2

(13)

1An orbit is called quasi-periodic if it is the sum of periodic
orbits, whose periods are non-commensurable.



taken from [15]. It corresponds to a sample of 2000 random
networks for each value of K, all of which belong to the class
of boolean systems 2 without autoregulation.
The rank of the different types of attractors, classified only
in terms of their number, is the same in both tables. The
main difference is in their relative proportion, which varies
for the last two types: our study provides a much higher
proportion of cycles and unclassified trajectories. This fact
can be attributed to several factors. Concerning unclassified
trajectories, a notable shortcoming of the present study is
the much lower number of iterations of algorithm 1. Actu-
ally, while we compute at most 5000 steps of this algorithm
for each initial condition, the results from table (13) rely on
as much as 30000 steps for the trajectories checked twice.
Moreover, their numerical accuracy is set to 10−30, while
we use the Matlab predefined precision 10−15. This sug-
gests that a non-neglictible proportion of our unclassified
trajectories correspond to transient behaviour, or worse, to
numerical imprecisions, while most of those of table (13)
actually represent chaotic-like orbits. However, figure 3 in-
dicates that at least some of the trajectories we put in the
fourth type are very likely, at least visually, to be chaotic.
Another factor is the fact that ternary systems are more
likely to present long transient behaviours, since they have
a higher number of boxes in phase space.
The higher number of thresholds is also our main argument
to explain the higher number of cycles in the present study,
as opposed to those dealing with binary systems. Arguably,
there are tow competing factors – besides the number of
thresholds – in the explanation of this higher proportion of
cycles. First, we only proceeded to relatively short integra-
tions, and thus possibly missed some equilibria occuring af-
ter long transients. Second, our choice of random positions
of focal points, differs from the choice of fixed symmetric
points as in studies of binary systems. However, there is a
geometric argument toward our claim. Actually, foci always
appear at the intersection of several walls forming a periodic
sequence under the action of T . In non-binary systems, pe-
riodic sequences of walls may occur in such a way that at
least two of these walls are disjoint. In such configurations,
foci are impossible, and the only invariant sets provide pe-
riodic (or maybe chaotic) attractors. This intuitive fact is
corroborated by examples like that of figure 4, which are
periodic cycles crossing a large number of boxes. Some of
these boxes are crossed several times by this cycle, indicat-
ing its complicated shape in phase space. More importantly,
this orbit crosses several thresholds in some directions, a fact
that is evidently impossible in binary systems.
The important length of this cycle is not a new fact, since
cycles crossing several hundreds of boxes have been detected
in the study [2], about boolean systems.
Concerning the influence of connectivity, on the one hand
it is qualitatively similar to the binary case in the sense
that the number of nodes decreases when K grows, while
the number of foci increases. Its effect on other types of
trajectories seems on the other hand opposite to the binary
case. In terms of magnitude however, K does not affect the
number of cycles or chaotic orbits.

2Boolean systems are particular binary systems, in which
the unique threshold is set to 0, the degradation rate λ = 1,
and the production term Γ – and thus the focal points –
have coordinates in {−1, +1}.
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Figure 4: A stable periodic orbit from a ternary
system in R

4, taken among simulations summarized
in table (12). Each coordinate is plotted vs time.
This cycle crosses 94 sucessive boxes. thresholds
are equal to 2 and 3 in each direction.

This leads to a final remark. As the reader may have ob-
served, the total number of attractors in each column of
table (12) differs from 10000. This is due to two reasons.
For K = 3, the total number of attractors is lower than
10000. The explanation comes from the numerical aspect of
our implementation of algorithm 2. Actually, some matrices
of the form F (ℓ+1), see equation (7), were nearly singular
in the generated data, leading to a trustless eigen-analysis.
The orbits leading to such numerical difficulties were auto-
matically rejected, explaining the small number of attractors
for systems with connectivity 3.
On the other hand, the number of attractors for systems
with connectivity 1 and 2 exceeds 10000. This comes also
from the actual implementation of algorithm 2, which com-
putes all the eigenvectors of the matrix F (ℓ+1), and then
checks whether they lie in the returning domain, and if their
eigenvalue satisfies the required inequality. It may happen
that several eigenvectors satisfy the two conditions, in which
case the return map admits several fixed points. One of
them yields the attractor of the computed trajectory, while
the others correspond to other orbits, and may in fact be
unstable. A typical example of such situations arises when
there is an unstable focus inside a stable limit cycle, a prop-
erty that is ubiquitous in planar systems.

5. CONCLUSION
The numerical investigations presented in this paper only

concern four-dimensional systems, and are thus merely a
first inspection of systems of the form (1) with multiple
thresholds. There are still a lot of open questions about
such systems and their computer aided analysis. In this
spirit a broader study, concerning more systems, with dif-



ferent dimensions and connectivities, is a much appealing
matter, and would have to be compared to previous studies
on boolean systems, mainly [15].
From the computational point of view, the algorithm 2 con-
sists in an eigenanalysis, matrix manipulations, and matrix
inequalities checking. The algorithm 1, though of numeric
nature, relies on an analytic formulation of the transition
map. Hence, both algorithms should naturally lead to im-
portant improvements, thanks to a more symbolic oriented
treatment. Notably, this would preclude the undesired re-
jection of trajectories discussed at the end of the last section.
This may also concern the combination of several cycles, and
some strange attractors, since such questions mostly involve
tools from linear algebra [5].
In a more general perspective, the main contribution of this
article is to show that the presence of multiple thresholds
in piecewise affine models of gene networks has apparently
the effect of increasing the number of periodic behaviours in
those systems. Since multiple thresholds are known to occur
in real-life systems, this indicates that biological networks
may exhibit more oscillatory phenomena than expected from
previous studies, which dealt with binary models. Also, it
has to be kept in mind, that even with multiple thresholds,
systems written as (1) are over-simplified models, and may
only provide a schematic view of real biological phenom-
ena. Mathematical analysis and computer experiments, are
anyway a promising tool of investigation of this kind of bi-
ological systems, for which real biological experiments are
still very difficult to set up today.
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