
HAL Id: hal-00831265
https://hal.inria.fr/hal-00831265

Submitted on 6 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Nonintrusive, Adaptable and User-Friendly In Situ
Visualization Framework

Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, Dave
Semeraro

To cite this version:
Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, Dave Semeraro. A Nonintrusive,
Adaptable and User-Friendly In Situ Visualization Framework. [Research Report] RR-8314, INRIA.
2013, pp.26. �hal-00831265�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49781733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00831265
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
83

14
--

FR
+E

N
G

RESEARCH
REPORT
N° 8314
May 2013

Project-Teams KerData
INRIA/UIUC/ANL Joint Lab for
Petascale Computing

A Nonintrusive,
Adaptable and
User-Friendly In Situ
Visualization Framework
Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu,
Dave Semeraro

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

A Nonintrusive, Adaptable and User-Friendly
In Situ Visualization Framework

Matthieu Dorier∗, Robert Sisneros†, Tom Peterka‡, Gabriel
Antoniu§, Dave Semeraro¶

Project-Teams KerData
INRIA/UIUC/ANL Joint Lab for Petascale Computing

Research Report n° 8314 — May 2013 — 23 pages

Abstract: Reducing the amount of data stored by simulations will be of utmost importance
for the next generation of large-scale computing. Accordingly, there is active research to shift
analysis and visualization tasks to run in situ, i.e. closer to the simulation via the sharing of some
resources. This is beneficial as it can avoid the necessity of storing large amounts of data for
post-processing. In this paper, we focus on the specific case of in situ visualization where analysis
codes are collocated with the simulation’s code and run on the same resources. It is important for
an in situ technique to require minimum modifications to existing codes, be adaptable and have a
low impact on both run times and resource usage. We accomplish this through the Damaris/Viz
framework, which provides in situ visualization support to the Damaris I/O middleware. The use
of Damaris as a bridge to existing visualization packages allows us to (1) reduce code moditications
to a minimum for existing simulations, (2) gather capabilities of several visualization tools to offer
a unified data management interface, (3) use dedicated cores to hide the run time impact of in
situ visualization and (4) efficiently use memory through a shared-memory-based communication
model. Experiments are conducted on Blue Waters and Grid5000 to visualize the CM1 atmospheric
simulation and the Nek5000 CFD solver.

Key-words: Exascale Computing, Multicore Architectures, I/O, In Situ Visualization, Dedicated
Cores

∗ ENS Cachan Brittany, IRISA - Rennes, France. matthieu.dorier@irisa.fr
† University of Illinois at Urbana-Champaign - IL, USA. sisneros@illinois.edu
‡ Argonne National Laboratory - IL, USA. tpeterka@mcs.anl.gov
§ INRIA Rennes Bretagne-Atlantique - France. gabriel.antoniu@inria.fr
¶ University of Illinois at Urbana-Champaign - IL, USA. semeraro@illinois.edu

Un Système de Visualisation In Situ Non-intrusif,
Adaptable et Simple d’Utilisation

Résumé : En vue de la prochaine génération de super-calculateurs, il de-
vient capital de réduire la quantité de données générées par les simulations à
large échelle. De fait, des recherches sont aujourd’hui menées pour transférer
les tâches d’analyse et de visualisation des données plus près des simulations, en
partageant les ressources de celles-ci. On parle alors de visualisation in situ. Ce
procédé a l’avantage de ne plus nécessiter le stockage de large quantités de don-
nées en vue d’un traitement ultérieur. Dans ce papier, nous nous concentrons
sur le cas spécifique de visualisation in situ pour laquelle les codes d’analyse sont
rattachés au code de la simulation afin d’occuper les mêmes resources. Il est
important pour une technique in situ de ne nécessiter qu’un minimum de mod-
ifications des codes existants, d’être adaptable et d’avoir un impact mineur à la
fois sur le temps de calcul et sur l’utilisation des ressources. Nous accomplissons
ceci grâce à Damaris/Viz, un système fournissant un support de visualisation
in situ au logiciel Damaris. L’utilisation de Damaris comme connexion entre
les simulations et les systèmes de visualisation existants permet (1) de réduire
les modifications de code à un minimum dans les simulations existantes, (2) de
réunir les aptitudes de plusieurs outils de visualisation sous l’égide d’une inter-
face unifiée pour la gestion de données, (3) d’utiliser des cœurs dédiés afin de
cacher l’impact de la visualisation in situ sur le temps de calcul et (4) d’utiliser
efficacement la mémoire à l’aide d’un modèle de communication basé sur la mé-
moire partagée. Les expériences de ce papier sont conduites sur Blue Waters
et Grid5000 et opèrent une visualisation in situ de la simulation atmosphérique
CM1 et du code de dynamique des fluides Nek5000.

Mots-clés : Exascale, Architectures Multi-cœurs, E/S, Visualisation In Situ,
Cœurs Dédiés

A Nonintrusive, Adaptable and User-Friendly ISV Framework 3

Contents
1 Introduction 4

2 Related work 5
2.1 Loosely-coupled visualization strategies 5
2.2 Tightly-coupled ISV: challenges and solutions 6

3 In Situ Visualization through Damaris 7
3.1 Towards a new in situ visualization framework 7
3.2 Review of the Damaris I/O middleware 8

3.2.1 Configuration file . 8
3.2.2 Plugins system . 8
3.2.3 Dedicated cores . 8
3.2.4 Shared memory based communication 8

3.3 Damaris/Viz: an in situ visualization framework on top of Damaris 8
3.4 Connecting to existing visualization packages 10

3.4.1 Python support . 10
3.4.2 Support for VisIt and ParaView 11

3.5 Automatic output frequency adaptation 12

4 Impact on code modification and adaptability 12
4.1 Data access for in situ visualization using VisIt 12
4.2 Data access for co-processing using ParaView 13

5 Experimental performance evaluation 13
5.1 The CM1 simulation . 14

5.1.1 Using VisIt for 2D and 3D rendering 14
5.1.2 Methodology . 14
5.1.3 Experiments . 15
5.1.4 Results . 15

5.2 The Nek5000 CFD simulation . 16
5.2.1 Configurations . 16
5.2.2 Experiments with the TurbChannel configuration 16
5.2.3 Results with the TurbChannel configuration 16
5.2.4 Experiments with the MATiS configuration 17
5.2.5 Results with the MATiS configuration 17

6 Conclusion and future work 18

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 4

1 Introduction
As we approach exascale the limits of offline analysis [11] will be magnified.
Simulations already endure scalability issues arising from unmatched compu-
tation and I/O performance as well as higher I/O variability [28, 18, 4]. Also,
with an increase in problem size it becomes increasingly difficult to transfer data
from one supercomputer to another, and data-parallel visualization tasks start
to suffer from the same I/O bottleneck [2, 33].

Therefore, HPC scientists predict fundamental changes in the way we will
deal with I/O and data management in the near future [10]. In particular, the
heterogeneous processor environment and memory hierarchy of new platforms,
together with the increasing use of GPU and accelerators, offer new alternatives
for data analysis.

In situ visualization (ISV) has been proposed to run analysis and visualiza-
tion tasks closer to the simulation, bypassing the storage system and producing
results as the simulation runs. ISV strategies include:

• Tightly-coupled: Analysis code runs on the same resources as the simulation
(in a time-partitioning manner by stopping the simulation periodically, or in a
space-partitioning manner using dedicated cores).

• Loosely-coupled: Separate set of resources are used (e.g. on the same machine
but on different nodes, or on a remote visualization cluster) connected through
a network.

We postulate that four main requirements drive the adoption of an in situ
visualization framework.

• Low impact on the code: Users are less likely to adopt an ISV approach if
it requires many code changes in their simulation and the understanding of new
tools [29], or if a visualization specialist should be consulted.

• High adaptability: The adaptability of a system is its capability to offer a wide
range of features without the need for a user to make changes in the connection
between a (potentially running) simulation and a visualization backend.

• Low impact on run time: Using computational resources collocated with
the simulation affects the performance of the underlying application. This is
especially true when interactive visualization systems directly connect users to
their running simulation.

• Optimized resource utilization: Collocated simulation and visualization
codes share resources such as local memory and network bandwidth. Efficiently
using these resources is critical for an approach to be suitable at a very large
scale.

In this paper, we present Damaris/Viz: an in situ visualization framework
driven by the above considerations. This framework is based on Damaris [14],
an I/O middleware developed to reduce I/O jitter using dedicated I/O cores [5].
Damaris/Viz provides the following contributions to the field of in-situ visual-
ization: (1) it reduces code modifications for in situ visualization in existing
simulations to a minimum, (2) it adapts to the specific needs of simulations by
gathering the capabilities of existing visualization packages through a unified

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 5

data management interface, (3) it hides the performance impact of a collocated
visualization code by using dedicated cores to execute it in parallel with the sim-
ulation, and (4) it efficiently leverages double-buffering techniques along with
shared-memory to optimize the memory usage.

We compare the instrumentation and usability of our framework to four
representative packages: VisIt [17], ParaView [15], VTK [27] and custom anal-
ysis modules written using the C/Python interface. VisIt and ParaView are
general-purpose parallel visualization software based on VTK. VisIt provides
interactive ISV capabilities through the libsim library. ParaView embeds an
analysis pipeline inside of a simulation that operates on VTK structures. Fi-
nally the C/Python interface has been used in some simulations to run small
analysis tasks at run time.

We evaluate our framework through experimental results obtained with two
simulations: the CM1 atmospheric model [1] and the Nek5000 [24] CFD solver.
These experiments are carried out on the Blue Waters [23] machine at NCSA and
on the French Grid’5000 [12] testbed, with representative visualization scenarios.

2 Related work
In this section, we present the relevant works in the field of simulation-visualization
coupling. We separate loosely-coupled from tightly-coupled ISV. Our discussion
of each approach is centered around how well it meets the requirements intro-
duced in Section 1.

2.1 Loosely-coupled visualization strategies
Ellsworth et al. [6] propose the use of distributed shared memory (DSM) to
avoid writing files when performing concurrent visualization. Such an approach
has the advantage of decoupling the simulation and visualization processes, but
reading data from the memory of the simulation’s processors can increase run
time variability. The scalability of a distributed shared memory design is also
a limiting factor.

The ICARUS plugin for ParaView is presented in [26] together with a de-
scription of VisIt and ParaView’s ISV interfaces. ICARUS employs an HDF5
DSM file driver to ship data to a distributed shared memory buffer that is used
as input to a ParaView pipeline. This DSM stores a view of the HDF5 files that
can be concurrently accessed by the simulation and visualization tools, but pro-
duces multiple copies of the data. Also, the visualization library on the remote
resource requires the original data to conform to this HDF5 representation.

An adaptive framework for loosely-coupled visualization is presented in [21].
Data is sent over a network to a remote visualization cluster at a frequency
that is dynamically adapted depending on resource availability. Our approach
also adapts output frequency to resource usage. The PreDatA [37] middleware
proposes to dedicate a set of nodes as a staging area to perform a first step
of data processing prior to I/O for the purpose of subsequent visualization.
The coupling between the simulation and the staging area is done through the
ADIOS [19] I/O layer.

GLEAN [25] is used to provide in situ visualization capabilities with dedi-
cated nodes. The authors use the PHASTA simulation on the Intrepid super-

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 6

computer and ParaView for analysis and visualization on Eureka. Part of the
analysis in GLEAN is done in a time-partitioning manner at the simulation
side, which makes it a “hybrid” approach involving tightly- and loosely-coupled
in situ analyses. Our approach shares some of the same goals, namely to couple
a simulation with run time visualization, but we run the visualization tool on
one core of the same node instead of on dedicated nodes. GLEAN is also used
in conjunction with ADIOS [22].

EPSN [7] is an environment providing steering and visualization capabilities
to existing parallel simulations. Simulations instrumented with EPSN ship their
data to a visualization pipeline running on a remote cluster, thus EPSN falls in a
hybrid approach including both code changes and the use of additional, remote
resources. In contrast to EPSN, all visualization tasks using Damaris can be
performed on dedicated cores, closer to the simulation, reducing the network
overhead.

A model to evaluate the tradeoff between in situ synchronous visualization
and loosely-coupled visualization through staging areas is provided in [36]. This
model can be applied to compare in situ space-partitioning using dedicated cores
instead of remote resources, with the difference being that approaches utilizing
dedicated cores do not have network communication overhead.

2.2 Tightly-coupled ISV: challenges and solutions
SciRun [13] is a complete computational-steering environment that includes vi-
sualization. Its in situ capabilities can be used with any simulation implemented
with SciRun solvers and structures. SciRun is an example of the trend towards
integrating visualization, data analysis and computational-steering in the simu-
lation process. Simulations are written specifically for use in SciRun in order to
exchange data with zero data copies. Adapting an existing application to this
framework is therefore a daunting task.

In [30] the authors propose an end-to-end approach for an earthquake sim-
ulation using the Hercule framework. All the components of the simulation,
including visualization, run in parallel on the same machine, and the only out-
put consists of a set of JPEG files. The data processing tasks in Hercule are still
performed in a synchronous manner, and any operation initiated by a process
to perform these tasks impacts the performance of the simulation.

Space-partitioning using dedicated cores to handle I/O or visualization tasks
has been proposed using a FUSE interface [16] or an active buffering scheme
for collective I/O [20]. The use of a FUSE interface produces multiple copies
of data passing through the kernel space, increasing memory usage. Our design
presents a more efficient use of resources through shared memory and techniques
that attempt to minimize the memory usage.

In the context of ADIOS, CoDS (Co-located DataSpaces) [35] builds a dis-
tributed object-based data space abstraction and can use dedicated nodes (and
recently dedicated cores with shared memory) with PreDatA, DataStager and
DataSpace. Our approach is similar in that we also use a dedicated core with
Damaris, but in this work we assess the run time and performance variability
impact of using dedicated cores for in situ visualization.

In [34] the authors present code coupling through ADIOS+CoDS. Code
coupling is demonstrated with different simulation models. While the use of
dedicated cores to accomplish two different tasks is a common theme in our

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 7

approach, our objective is to compare the performance impact on the simula-
tion of a collocated visualization task with a directly embedded visualization.
In [34], placement of data in shared memory is done through the ADIOS inter-
face, which creates a copy of data from the simulation to the shared memory
using a file-writing interface. We leverage the double-buffering technique usually
implemented in simulations as an efficient alternative for sharing data.

The YT package [31] is used to visualize outputs from the Enzo, Orion,
FLASH and RAMSES simulations using Python. YT may currently be used for
in situ visualization in Enzo through a C/Python wrapper, but comes at a cost
of code instrumentation and performance. According to the developers, future
developments of YT should lead to a loosely-coupled version, in which YT runs
asynchronously on different nodes. Our framework makes use of Python wrap-
pers in a transparent manner, eliminating the need for simulation developers to
provide them, thus increasing adaptability.

3 In Situ Visualization through Damaris
In this section, we present our proposed framework for nonintrusive, adaptable
and user-friendly tightly-coupled ISV.

3.1 Towards a new in situ visualization framework
Coupling simulations with visualizations requires understanding the interfaces
of both pieces of software. These interfaces can be difficult to master and
the coupling may necessitate significant changes to the code of the simulation.
Additionally, changing from one visualization software to another requires deep
modifications in the code that are conceptually unnecessary, as the nature of
the information as well as analyses do not change.

A useful feature for ISV is the ability to work on raw in-memory data with-
out performing any copy, thus reducing the memory consumption of in situ
analysis tasks. As we tend to reduce local memory per core on next-generation
supercomputers, this “zero-copy” property is invaluable.In addition, the abil-
ity to overlap simulation with visualization has obvious benefits. Periodically
stopping the simulation to perform visualization tasks increases the overall run
time of a simulation as well as the run time variability. Interactivity with an
end-user is enabled at the price of an additional variability, and users take the
risk of slowing down their computation with every connection to the running
simulation.

These considerations motivated our choice to build our framework using the
Damaris [5, 14] dedicated-core-based approach. Damaris was initially proposed
to dedicate a subset of cores in multicore SMP nodes to asynchronous tasks,
leveraging shared memory for communication. This approach is sometimes
termed as “space-partitioning” as opposed to “time-partitioning” approaches in
which a simulation stops to perform extra tasks. In our previous work [5, 3],
we have successfully demonstrated that by overlapping I/O with computation,
Damaris can fully hide I/O costs. Damaris can also serve as a bridge between
a simulation and any visualization software through a unified interface.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 8

3.2 Review of the Damaris I/O middleware
There are four main characteristics of Damaris that make it an ideal environment
for the implementation of a tightly-coupled ISV. Damaris uses configuration
files, has a plugin system, utilizes dedicated cores and leverages shared memory
for communications.

3.2.1 Configuration file

Damaris uses an XML configuration in a way similar to ADIOS [19] and EPSN [7].
The use of such a configuration file alleviates code modification by externally
providing the information required by visualization tools. We detail in Sec-
tion 3.4.2 how this description can be enhanced to describe visualization sce-
narios.

3.2.2 Plugins system

Damaris can be extended using a plugin system that loads new functionalities
from dynamic libraries. This plugin system has already been leveraged to de-
sign a custom HDF5 persistency layer and backup all of a simulation’s data
asynchronously. With some improvements and with some modifications in the
core of Damaris, this system serves as a basis to bridge Damaris to existing
visualization software.

3.2.3 Dedicated cores

Space-partitioning within SMP nodes can limit the impact of in situ data anal-
ysis tasks on running simulations. Analysis codes run asynchronously on dedi-
cated cores and overlap computation. Any interaction with a user, as in VisIt,
will only impact these dedicated cores without stopping the simulation.

3.2.4 Shared memory based communication

Damaris uses shared memory to handle the communications from processes
running the simulation to those running the visualization tasks. This offers
an opportunity for “zero-copy” of data. This however, was only possible after
improvements to the API of Damaris made during our framework development.

3.3 Damaris/Viz: an in situ visualization framework on
top of Damaris

The initial implementation of Damaris provides a write function, with the idea
of imitating classical file-based I/O layers (HDF5, NetCDF, ADIOS...). When
entering an I/O phase, the simulation calls this function to copy its local data
into a shared memory segment, then notifies the dedicated cores that data has
been written. This way of coupling simulations with visualization is not appro-
priate in that copies of potentially large volumes of data are created, increasing
memory usage in a context where local memory per core is limited.

The use of space-partitioning in Damaris presents two problems: the first
is how to expose the data to visualization components, the second is how to
ensure the consistency of simultaneous accesses from different components to

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 9

(a) After dc_alloc (b) After dc_commit

(c) After dc_end_iteration

Figure 1: Semantics of the three functions: (a) at iteration 1, an array is
allocated through dc_alloc, the simulation holds it, (b) eventually, a call to
dc_commit notifies the dedicated core of the location of the data. The buffer
can be read by both processes, they agree not to write in it. Finally (c) a call
to dc_clear at (e.g. iteration 3) indicates that the simulation does not need
the old buffer anymore, dedicated cores can modify it or move it to a persistent
storage.

the same data. Studying several simulations using time-varying data, we noticed
a frequent use of double-buffering techniques, where two versions of the same
data co-exist: one to hold data as input for the solver and one to be used for
storing the results. The two buffers are then swapped before entering the next
iteration. We can thus decompose the life of a dataset in three phases: (1)
equations are solved and the data is written, (2) the data serves as a basis for
the next iteration and is not written over, (3) the data is no longer needed by
the simulation. According to these observations, we provided new functions to
the Damaris API:

• dc_alloc("variable") is similar to malloc (or allocate in Fortran, new
in C++). It allocates a portion of shared memory to hold the variable for
a given iteration and returns a pointer. Only the simulation is aware of
this allocation, dedicated cores cannot access the data.

• dc_commit("variable") is called when the simulation has finished writ-
ing to the current buffer associated with the variable. It sends the location
of the data to the dedicated cores. Both the simulation and dedicated cores
can read the data.

• dc_end_iteration() notifies the dedicated cores that the current itera-
tion has completed and all committed variables can safely be processed,
stored or removed from shared memory.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 10

The only simulation code modification needed involves changing the alloca-
tion methods of visualizable variables, in order to allocate them in a place from
which the dedicated cores can immediately access them. The dc_end_iteration
function does not free memory; simulation processes expect the dedicated cores
to maintain enough free space in shared memory by removing old data. Dedi-
cated cores must free memory quickly enough to avoid consuming shared mem-
ory. In the event that shared memory is full, rather than blocking the simula-
tion dc_alloc uses the process’s local memory instead of the shared memory,
dc_commit has no effect, dc_end_iteration simply frees the data, and the ded-
icated cores will skip an iteration of data. A blocking version of this API, in
which dc_alloc waits for enough memory to be available, is also provided but
is not studied in this paper. Figure 1 summarizes the semantics of the three
functions.

The only parameter for most Damaris functions is the name of a variable.
Other required information such as the size of the data and number of domains
are supplied by the configuration file.

3.4 Connecting to existing visualization packages
Now that Damaris provides an API to enable efficient communication through
shared memory, we can connect it to existing visualization and analysis packages
in order to build a full ISV framework.

3.4.1 Python support

We enhanced the plugin system of Damaris to load Python scripts. From these
scripts, all variables are wrapped into NumPy arrays. Related metadata infor-
mation (current iteration number, boundaries of a data chunk, process IDs for
writers, etc.) are also accessible to Python. Wrapping C arrays into NumPy ar-
rays does not produce a copy of data, thus Python plugins work on the original
data supplied by the simulation and provide an easy way to write analysis tasks
without any modification to simulation code. Listing 1 provides an example of a
statistical computation performed on all chunks of iteration 1 of the data. The
SciPy and Matplotlib Python libraries offer a wide range of functionalities to
write diagnostic tasks or generate images from simulation data. However, upon
initial testing, we noticed that performance degrades when loading Python mod-
ules simultaneously from many processes; we thus recommend using Python for
small analyses, and we decided to make comparisons among only those packages
appropriate for large scales.

var = damaris . open (" temperature ")
f o r chunks in var . s e l e c t (i t e r a t i o n = 1)

p r i n t numpy . average (chunks . data)

Listing 1: Accessing simulation’s data through the Damaris Python interface:
computing the average of a value.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 11

mesh_x =
{0.0,1.0,2.0,3.0}

mesh_y =
{0.0,1.0,2.0,3.0}

mesh_z =
{0.0,1.2,1.8,3.0}

Figure 2: Example of a 4x4x4 rectilinear mesh. In this example there is one
value (such as temperature or wind velocity) at each node.

3.4.2 Support for VisIt and ParaView

Both VisIt and ParaView perform in situ visualization from in-memory data.
Given that each has strengths, a major advantage of our approach is the abil-
ity to switch between visualization tools with minimal code modification. An
example instrumentations are presented in detail in Section 4 and compared to
our approach.

We leverage the configuration file in Damaris to provide the necessary in-
formation to bridge the simulation to existing visualization software. By in-
vestigating the in situ interfaces of different visualization packages including
ParaView, VisIt, ezViz and VTK, we came up with a generic description of
visualizable structures such as meshes, points or curves. Listing 2 presents how
a mesh drawn in Figure 2 is described using an XML configuration file. This file
provides the necessary information for Damaris to execute VisIt or ParaView
codes, but hides from the user the details of those interfaces. Therefore both
VisIt and ParaView (or other visualization software) can be used without code
modification in the simulation. Listing 3 shows the six lines of code changed in
the simulation itself.

<va r i ab l e name="mesh_x" . . . />
<va r i ab l e name="mesh_y" . . . />
<va r i ab l e name="mesh_z" . . . />

<mesh type=" r e c t i l i n e a r " name="my_mesh">
<coord name="mesh_x" uni t="cm" l a b e l="width" />
<coord name="mesh_y" uni t="cm" l a b e l=" he ight "/>
<coord name="mesh_z" un i t="cm" l a b e l="depth" />
</mesh>

<va r i ab l e name=" temperature " mesh="my_mesh" . . />

Listing 2: Description of a mesh in the Damaris/Viz configuration.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 12

f l o a t ∗ mesh_x = dc_al loc ("mesh_x") ;
f l o a t ∗ mesh_y = dc_al loc ("mesh_y") ;
f l o a t ∗ mesh_z = dc_al loc ("mesh_z") ;
double ∗ temp = dc_al loc (" temperature ") ;
. . .
dc_commit (" temperature ") ;
. . .
dc_end_iteration () ;

Listing 3: Allocation for data accessed by Damaris. The size is given in the
Damaris configuration file.

3.5 Automatic output frequency adaptation
The choice of non-blocking allocation functions, described in Section 3.3 have
an immediate impact on the behavior of Damaris with respect to visualization.
Rather than stalling the simulation, a shortage of memory causes the Damaris
cores to skip rendering frames and free memory. Thus, Damaris self-adapts
to the complexity of the visualization task and outputs the maximum number
of frames that the dedicated cores are able to render without impacting the
simulation.

4 Impact on code modification and adaptability
We compare our framework to three representative software packages used for
tightly-coupled ISV, in terms of code modification and adaptability. For the
former, we conduct this study around a particular scenario of a rectilinear mesh
with temperature values. This scenario, already used in Section 3, will have
an immediate application in Section 5 with the CM1 atmospheric simulation,
and is characteristic of a climate simulation handling a 3D temperature array of
double precision values. This array represents the temperature at the vertices
of a rectilinear mesh. The coordinates of the vertices are given by three arrays
mesh_x, mesh_y and mesh_z of respective extents NX , NY and NZ .

4.1 Data access for in situ visualization using VisIt
VisIt [17] offers in situ visualization capabilities through the libsim [32] library.
This library allows the simulation to act as a parallel rendering engine when
receiving commands from a VisIt client. Visualization tasks can also be scripted
to run without the intervention of a user. VisIt works directly on the data
provided by the simulation without making a copy. In our example, two callback
functions will be provided in addition to the callback functions required for
metadata access and response to commands. Listing 4 presents an overview of
these data access functions.

In addition to our previous example, we rewrote examples provided in VisIt’s
source to work with Damaris. Table 1 summarizes the number of lines of code
required to instrument these examples with VisIt and with Damaris. We re-
moved all comments and blank lines in order to count only the relevant lines of
code. Note that all of these examples except the last are serial. The last one,

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 13

VisIt Damaris
Simulation C C XML
curve.c 144 lines 6 lines 31 lines
mesh.c 167 lines 10 lines 39 lines
var.c 271 lines 12 lines 53 lines
life.c 305 lines 8 lines 39 lines

Table 1: Code modifications of different VisIt examples. Damaris requires code
modifications and an external XML file.

life.c, requires further modifications with VisIt to provide callback functions for
collective communications.

4.2 Data access for co-processing using ParaView
Like VisIt, ParaView is based on VTK. The ParaView in situ interface, termed
as a “co-processing library” [9] integrates a visualization pipeline (written in
C++ or in Python) into the simulation. The simulation periodically feeds this
predefined pipeline with data in order to produce visualization outputs, e.g.
images.

While VisIt’s libsim is based on callback functions and works in C, C++
and Fortran, ParaView’s co-processing library requires the simulation to wrap
its data into VTK C++ objects.

The advantage of an a priori definition of the visualization pipeline in Par-
aView is the possibility to start a simulation and be able to periodically check
the generated images. The downside is the lack of interactivity and flexibility
at run time of the visualization tasks. Note also that part of the ParaView
pipeline can be relocated to another supercomputer (typically dedicated to vi-
sualization), in which case the output of the in situ pipeline is redirected to
the visualization cluster. Here, we study only in situ visualization tasks, i.e.
performed on the same nodes and tightly coupled with the simulation.

Other visualization software such as ezViz [8] have a C or C++ API that
can be used to perform in situ visualization in a way similar to ParaView and
VisIt.

5 Experimental performance evaluation
In this section, we evaluate our Damaris/Viz framework with respect to perfor-
mance impact and scalability. We use two simulations: the CM1 atmospheric
simulation [1], and the Nek5000 [24] computational fluid dynamic (CFD) solver.

For performance comparisons, we implemented a “time-partitioning mode”
in Damaris. This mode is enabled in the configuration file, without any change
in the simulation. Using this mode, visualization tasks are performed syn-
chronously, similarly to other visualization backends.Adding this mode into the
implementation of Damaris also contributes to its adaptability, as the user can
now utilize both approaches from the same interface.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 14

(a) CM1 ray casting (b) Nek5000 iso-surface

Figure 3: Example results obtained in situ with Damaris: (a) Ray-casting of
the DBZ variable on 6400 cores (Blue Waters). (b) Ten-level iso-surface of the
y velocity field in the TurbChannel configuration of Nek5000.

5.1 The CM1 simulation
CM1 is one of the original targeted applications of Blue Waters. It is used
for modeling small-scale atmospheric phenomena such as thunderstorms and
tornadoes. A 3D rectilinear grid is partitioned along a 2D grid and each process
handles a subdomain, thus its data layout corresponds to the sample code we
have considered in previous sections.

5.1.1 Using VisIt for 2D and 3D rendering

Two-dimensional visualization in CM1 consists in slicing 3D fields horizontally,
and converting real values into pixels using colormaps, iso-contours or quiver
maps. Some examples of such fields to be visualized include potential tempera-
ture (th) on the ground (z = 0), horizontal wind velocity (u and v) and vertical
wind velocity (w) at different altitudes. Examples of 3D rendering in CM1 in-
clude volume rendering of the reflectivity dbz (as exemplified in Figure 3 (a)) or
wind velocity (u, v and w). These tasks are available in VisIt and can be made
interactive with our modification of CM1 with Damaris/Viz.

5.1.2 Methodology

CM1 requires a long run time before an interesting atmospheric phenomena
appears, and such a phenomenon may not appear at small scale. We first ran
CM1 with the help of atmospheric scientists to produce interesting data. We
then extracted the I/O kernel from the CM1 code and built a program that
replays its behavior at a given scale and with a given resolution by reloading,
redistributing and interpolating the precomputed data.

The I/O kernel, identical to the I/O part of the simulation, calls Damaris/Viz
functions to pass the data. Damaris/Viz then performs in situ visualization,
either in a time-partitioning or a space-partitioning manner. We consider two

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 15

100 1000

Number of cores

0

10

20

30

40

50

R
e
n
d
e
ri

n
g
 t

im
e
 (

s
e
c
)

Time-Partitioning

Space-Partitioning

(a) In situ ray casting

100 1000

Number of cores

0

50

100

150

200

R
e
n
d
e
ri

n
g
 t

im
e
 (

s
e
c
)

Time-Partitioning

Space-Partitioning

(b) In situ iso-surface

Figure 4: Rendering time using ray-casting and iso-surfaces, with time-
partitioning and space-partitioning with CM1. Note that the number of cores
represents the total number; using a space-partitioning approach, 1/16 of this
total number is effectively used for in situ visualization.

scenarios of 3D rendering: the first one performs a ray casting1 on the dbz
field (image shown in Figure 3 (a)). The second scenario performs a 10-level
iso-surface rendering of this same field.

5.1.3 Experiments

The experiments are done on the BlueWaters supercomputer. Our goal is to
show that ISV approaches depend on the scalability of the rendering algorithm
being used. We complete a strong-scaling evaluation of the two aforementioned
rendering methods using a representative dataset of 3840×3840×400 points. We
measure the time to complete a rendering (average of 15 iterations) using time-
partitioning and space-partitioning for each scenario. The results are reported
in Figure 4.

5.1.4 Results

The iso-surface algorithm scales well with the number of cores using both in situ
approaches. A time-partitioning approach would thus be appropriate if the user
does not need to hide the run time impact of in situ visualization. However, on
6400 cores, it takes as much time to complete the rendering as on 400 dedicated
cores. In terms of pure computational power, a space-partitioning approach is
16 times more efficient.

The ray-casting algorithm on the other hand has a poorer scalability. After
decreasing, the rendering time goes up again at a 6400 cores scale, and it be-
comes about twice more efficient to use a reduced number of dedicated cores to
complete this rendering.

The choice of using a space-partitioning versus a time-partitioning ISV ap-
proach depends on (1) the intended visualization scenario, (2) the scale and (3)
the intended frequency of visual output.

1Ray casting compositing (sobel gradients, rasterization sampling, 2500 samples per ray).

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 16

5.2 The Nek5000 CFD simulation
Nek5000 is a computational fluid dynamics solver based on the spectral element
method.It is written in Fortran 77 and solves its governing equations on an
unstructured mesh. This mesh is comprised of multiple elements distributed
across processes; each element is a small curvilinear mesh. Each point of the
mesh carries the three components of the fluid’s local velocity. We modified
Nek5000 in order to pass the mesh elements and velocity data to Damaris/Viz
and we used VisIt for visualization.

5.2.1 Configurations

We used two configurations: the TurbChannel experiment (configuration 1),
which runs well on 32 to 64 cores, and the MATiS experiment (configuration
2), which has been designed to evaluate Nek5000 on 512 to 2048 cores. We used
the first to assess the impact of interactivity on run-time with a time-partitioning
and a space-partitioning approach. Figure 3 (b) shows the result of a 10-level iso-
surface rendering of the fluid velocity along the y axis, with the TurbChannel
case. We then used the second configuration to prove the scalability of our
approach based on Damaris against a standard time-partitioning approach.

5.2.2 Experiments with the TurbChannel configuration

Experiments were carried out on the Reims stremi cluster of the French Grid’5000
testbed, which features 40 nodes (HP ProLiant DL165 G7) with 24 cores per
node, connected through a 1GB Ethernet network.

To assess the impact of in situ visualization on the run time, we ran Tur-
bChannel on 48 cores using the two approaches: first we use a time-partitioning
mode where all 48 cores are used by the simulation and synchronously perform
ISV. Then we use a space-partitioning mode with Damaris/Viz where 46 cores
are used by the simulation and 2 cores asynchronously run the ISV tasks.

In each case, we consider four scenarios: (A) the simulation runs without
visualization, (B) a user connects VisIt to the simulation but does not ask for
any output,(C) the user asks for iso-surfaces of the velocity fields but does
not interact with VisIt any further (letting the simulation update the output
after each iteration) and finally (D) the user has heavy interactions with the
simulations (rendering different variables, using different algorithms, zooming
on particular domains, changing the resolution, etc).

5.2.3 Results with the TurbChannel configuration

Figure 5 presents a trace of the duration of each iteration during the four afore-
mentioned scenarios using the two approaches. The top graph in Figure 5 shows
that ISV using a time-partitioning approach has a negative impact on the sim-
ulation run time, even when no interaction is performed. Space-partitioning
ISV, on the other hand, is completely transparent from the point of view of the
simulation.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 17

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152

Iteration number

0

1

2

3

4

5

6

T
im

e
 (

s
e
c
)

No visualization VisIt connected Simple scenario Interactive scenario

(a) Time-Partitioning

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144

Iteration number

0

1

2

3

4

5

6

T
im

e
 (

s
e
c
)

No visualization VisIt connected Simple scenario Interactive scenario

(b) Space-Partitioning

Figure 5: Variability in run-time induced by different scenarios of in situ inter-
active visualization.

Iteration time Average Std. dev.

Time-partitioning no vis. 75.07 sec 22,93
with vis. 205.21 sec 57.15

Space-partitioning no vis. 67.76 sec 20.09
with vis. 64.79 sec 20.44

Table 2: Average iteration time of the Nek5000 MATiS configuration with time-
partitioning and space-partitioning approaches, with and without visualization.

5.2.4 Experiments with the MATiS configuration

The MATiS configuration requires a larger scale; we ran it on 816 cores. Each
iteration taking approximately one minute and due to the huge number of points
that the mesh contains, it is difficult to perform interactive visualization. We
therefore connect VisIt and simply query for a 3D pseudo-color plot of the vx
variable.

5.2.5 Results with the MATiS configuration

Figure 6 reports the behavior of the application with and without visualization
performed, and with and without dedicated cores. Corresponding statistics are
presented in Table 2.

Time-partitioning visualization not only increases the average run time but
also increases the standard deviation, making run times unpredictable. On the
other hand, the space-partitioning yields excellent results. Intuitively, we expect

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 18

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

se
c)

Simulation

(a) Time-partitioning, no vis.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

se
c)

Visualization Simulation

(b) Time-partitioning with vis.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

se
c)

Simulation

(c) Space-partitioning, no vis.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

se
c)

Simulation+Visualization

(d) Space-partitioning with vis.

Figure 6: Iteration time of the MATiS configuration without visualization (left)
and with visualization enabled (right). Top: With time-partitioning, visualiza-
tion time adds to simulation time. Bottom: With space-partitioning, visualiza-
tion time is entirely overlapped with simulation time.

a space-partitioning approach to interfere with the simulation, as it performs
intensive communications while the simulation runs. However, in practice we
observe very little run time variation.

While the time-partitioning approach performs visualization at every time
step, the space-partitioning approach has adapted the frequency of its output
to 1 frame every 25 time steps (an acceptable number for Nek5000 users). If
a time-partitioning approach were to only output 1 frame every 25 time steps,
the completion time for 25 time steps would be 2007 seconds on average. With
space-partitioning in Damaris/Viz this takes 1620 seconds, a 20% speedup. Fur-
thermore, since space-partitioning in Damaris overlaps the visualization and
simulation, the total run time is unchanged with the addition of ISV.

6 Conclusion and future work
The slower rate at which I/O performance is increasing compared to that of
computational capabilities necessitates new approaches for gaining insights from
running simulations. Tightly-coupled in situ visualization appears to be a viable
approach to reduce the pressure on file systems. Yet the synchronous aspect of
existing solutions and the impact on the simulation’s performance has limited
its adoption in the HPC community.

We proposed Damaris/Viz, an in situ visualization framework based on the
Damaris I/O middleware. By leveraging dedicated cores, external high-level
structure description and a simple API, our framework provides adaptable in

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 19

situ visualization to existing simulations at a low instrumentation cost. Results
obtained with the Nek5000 CFD and CM1 atmospheric simulations show that
our framework can completely hide the performance impact of visualization
tasks. In addition, the proposed API allows efficient memory usage through a
shared memory, zero-copy communication model.

As future works, we plan to evaluate our framework more extensively on
heterogeneous architectures. Additionally, we plan to improve our framework
to be able to utilize a set of dedicated nodes (in a loosely-coupled model),
and to choose the level of coupling at run time depending on resource usage
in the simulation, I/O bandwidth availability, the presence of accelerators and
temporary storage devices.

Acknowledgments
This work was a collaboration between the KerData INRIA - ENS Cachan/Brittany
team (Rennes, France), the NCSA (Urbana-Champaign, USA) and ANL within the
Joint INRIA-UIUC-ANL Laboratory for Petascale Computing. The experiments were
carried out using the Grid’5000/ ALADDIN-G5K experimental testbed (see http:
//www.grid5000.fr/) and Blue Waters at NCSA (see http://www.ncsa.illinois.
edu/BlueWaters/). We thank Leigh Orf for his insights on the CM1 application and
the datasets he provided for our experiments, Paul Fischer and Aleksandr Obabko for
providing insights and datasets for Nek5000, and Shadi Ibrahim for his feedbacks on
this paper. We also acknowledge the VisIt developers, in particular Hank Childs, Brad
Whitlock and Jean Favre for their help with using VisIt’s in situ interface.

References
[1] G. H. Bryan and J. M. Fritsch. A Benchmark Simulation for Moist Nonhydrostatic

Numerical Models. Monthly Weather Review, 130(12):2917–2928, 2002.

[2] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. Weber,
and E. Bethel. Extreme Scaling of Production Visualization Software on Diverse
Architectures. Computer Graphics and Applications, IEEE, 30(3):22–31, may-
june 2010.

[3] M. Dorier. Src: Damaris - using dedicated i/o cores for scalable post-petascale hpc
simulations. In Proceedings of the international conference on Supercomputing,
ICS ’11, pages 370–370, New York, NY, USA, 2011. ACM.

[4] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris: Leveraging
Multicore Parallelism to Mask I/O Jitter. Research report RR-7706, INRIA, Dec.
2011.

[5] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris: How to
efficiently leverage multicore parallelism to achieve scalable, jitter-free i/o. In
Cluster Computing (CLUSTER), 2012 IEEE International Conference on, pages
155 –163, sept. 2012.

[6] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom. Concurrent
Visualization in a Production Supercomputing Environment. Visualization and
Computer Graphics, IEEE Transactions on, 12(5):997 –1004, sept.-oct. 2006.

[7] A. Esnard, N. Richart, and O. Coulaud. A steering environment for online parallel
visualization of legacy parallel simulations. In Distributed Simulation and Real-
Time Applications, 2006. DS-RT’06. Tenth IEEE International Symposium on,
pages 7–14. IEEE, 2006.

RR n° 8314

http://www.grid5000.fr/
http://www.grid5000.fr/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/

A Nonintrusive, Adaptable and User-Friendly ISV Framework 20

[8] EzViz. http://www.ezviz.biz/.

[9] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci,
M. Rasquin, and K. Jansen. The ParaView Coprocessing Library: A Scalable,
General Purpose In Situ Visualization Library. In LDAV, IEEE Symposium on
Large-Scale Data Analysis and Visualization, 2011.

[10] A. Geist and R. Lucas. Major Computer Science Challenges At Exascale. Inter-
national Journal of High Performance Computing Applications, 23(4):427–436,
2009.

[11] A. Hoisie and V. Getov. Extreme-Scale Computing - Where ’Just More of the
Same’ Does Not Work. Computer, 42(11):24–26, nov. 2009.

[12] INRIA. Aladdin grid’5000: http://www.grid5000.fr.

[13] C. Johnson, S. Parker, C. Hansen, G. Kindlmann, and Y. Livnat. Interactive
simulation and visualization. Computer, 32(12):59–65, 1999.

[14] KerData, IRISA, INRIA Rennes. Damaris, http://damaris.gforge.inria.fr/.

[15] KitWare. ParaView, http://www.paraview.org/.

[16] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. Engelmann, and
G. Shipman. Functional Partitioning to Optimize End-to-End Performance on
Many-core Architectures. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’10, pages 1–12, Washington, DC, USA, 2010. IEEE Computer Society.

[17] LLNL. VisIt, https://wci.llnl.gov/codes/visit/.

[18] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan,
and M. Wolf. Managing Variability in the IO Performance of Petascale Storage
Systems. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’10, pages
1–12, Washington, DC, USA, 2010. IEEE Computer Society.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In
Proceedings of the 6th international workshop on Challenges of large applications
in distributed environments, CLADE ’08, pages 15–24, New York, NY, USA, 2008.
ACM.

[20] X. Ma, J. Lee, and M. Winslett. High-level buffering for hiding periodic output
cost in scientific simulations. Parallel and Distributed Systems, IEEE Transac-
tions on, 17(3):193–204, 2006.

[21] P. Malakar, V. Natarajan, and S. S. Vadhiyar. An Adaptive Framework for
Simulation and Online Remote Visualization of Critical Climate Applications
in Resource-constrained Environments. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer
Society.

[22] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki, V. Vishwanath,
N. Fabian, C. Docan, M. Parashar, M. Hereld, et al. Examples of in transit
visualization. In Proceedings of the 2nd international workshop on Petascal data
analytics: challenges and opportunities, pages 1–6. ACM, 2011.

[23] NCSA. BlueWaters project, http://www.ncsa.illinois.edu/BlueWaters/.

[24] J. W. L. Paul F. Fischer and S. G. Kerkemeier. nek5000 Web page, 2008.
http://nek5000.mcs.anl.gov.

RR n° 8314

http://www.ezviz.biz/
http://www.grid5000.fr
http://damaris.gforge.inria.fr/
http://www.paraview.org/
https://wci.llnl.gov/codes/visit/
http://www.ncsa.illinois.edu/BlueWaters/

A Nonintrusive, Adaptable and User-Friendly ISV Framework 21

[25] M. Rasquin, P. Marion, V. Vishwanath, B. Matthews, M. Hereld, K. Jansen,
R. Loy, A. Bauer, M. Zhou, O. Sahni, et al. Electronic poster: co-visualization of
full data and in situ data extracts from unstructured grid cfd at 160k cores. In
Proceedings of the 2011 companion on High Performance Computing Networking,
Storage and Analysis Companion, pages 103–104. ACM, 2011.

[26] M. Rivi, L. Calori, G. Muscianisi, and V. Slavnic. In-Situ Visualization: State-
of-the-art and Some Use Cases.

[27] W. Schroeder, L. Avila, and W. Hoffman. Visualizing with VTK: a tutorial.
Computer Graphics and Applications, IEEE, 20(5):20 –27, sep/oct 2000.

[28] D. Skinner and W. Kramer. Understanding the causes of performance variability
in HPC workloads. In Workload Characterization Symposium, 2005. Proceedings
of the IEEE International, pages 137 – 149, oct. 2005.

[29] D. Thompson, N. Fabian, K. Moreland, and L. Ice. Design issues for performing in
situ analysis of simulation data. Technical report, Technical Report SAND2009-
2014, Sandia National Laboratories, 2009.

[30] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and D. R.
O’Hallaron. From mesh generation to scientific visualization: an end-to-end ap-
proach to parallel supercomputing. In Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[31] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L.
Norman. yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data.
The Astrophysical Journal Supplement Series, 192(1):9, 2011.

[32] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel In Situ Coupling of Simula-
tion with a Fully Featured Visualization System. In Eurographics Symposium on
Parallel Graphics and Visualization (EGPGV). Eurographics Association, 2011.

[33] H. Yu and K.-L. Ma. A study of I/O methods for parallel visualization of large-
scale data. Parallel Computing, 31(2):167 – 183, 2005. Parallel Graphics and
Visualization.

[34] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi.
Enabling in-situ execution of coupled scientific workflow on multi-core platform.
Parallel and Distributed Processing Symposium, International, 0:1352–1363, 2012.

[35] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar. In-situ feature-
based objects tracking for large-scale scientific simulations. In DISCS, 2012.

[36] F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S. Klasky, and
N. Podhorszki. In-situ i/o processing: A case for location flexibility. simulation,
25:28, 2011.

[37] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar,
N. Podhorszki, K. Schwan, and M. Wolf. PreDatA - preparatory data analytics
on peta-scale machines. In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1 –12, april 2010.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 22

// This func t i on i s c a l l e d to r e t r i e v e the mesh
v i s i t_hand le get_mesh_data (i n t domain ,

const char ∗name , void ∗ cbdata) {
v i s i t_hand le h = VISIT_INVALID_HANDLE;
i f (strcmp (name , "my_mesh") == 0) {

i f (Vi s I t_Rect i l inearMesh_al loc (&h)
== VISIT_OKAY) {

v i s i t_hand le hxc , hyc , hzc ;
VisIt_VariableData_al loc(&hxc) ;
// . . . idem f o r hyc and hzc
VisIt_VariableData_setDataF (hxc ,

VISIT_OWNER_SIM, 1 , NX, mesh_x) ;
// . . . idem f o r hyc and hzc
VisIt_Rectil inearMesh_setCoordsXYZ (h ,

hxc , hyc , hzc) ;
}

}
re turn h ;

}
}

// This func t i on i s c a l l e d to r e t r i e v e the data
v i s i t_hand le get_variable_data (i n t domain ,

const char ∗name , void ∗ cbdata) {
v i s i t_hand le h = VISIT_INVALID_HANDLE;
i f (strcmp (name , " temperature ") == 0) {

i f (VisIt_VariableData_al loc (&h)
== VISIT_OKAY) {

in t s i z e = NX∗NY∗NZ;
VisIt_VariableData_setDataD (h ,

VISIT_OWNER_SIM, 1 , s i z e , temp) ;
}

}
re turn h ;

}

// When a V i s I t c l i e n t connects , the ca l l b a ck
// func t i on s has to be provided us ing
VisItSetGetMesh (get_mesh_data ,NULL) ;
Vi s I tSetGetVar iab l e (get_variable_data ,NULL) ;

Listing 4: Data access functions for our sample application using VisIt. The
first function retrieves the mesh coordinates, while the second retrieves the
temperature field. The two last lines register the two functions as callbacks
handling data accesses. This sample code does not show the modifications to
perform in the simulation’s main loop.

RR n° 8314

A Nonintrusive, Adaptable and User-Friendly ISV Framework 23

// Create the va r i ab l e data
vtkDataArray∗ wrapMyData (. . .)
{

vtkDoubleArray∗ myArray
= vtkDoubleArray : : New () ;

myArray−>SetName(" temperature ") ;
vtkIdType s i z e = NX∗NY∗NZ;
myArray−>SetArray (temp , s i z e , 1) ;
r e turn myArray ;

}

// This func t i on i s c a l l e d to r e t r i e v e the mesh
vtkObject ∗ wrapMeshData (. . .)
{

// c r e a t e s the nece s sa ry coord ina te ar rays
vtkFloatArray ∗ xCoords , yCoords , zCoords ;
xCoords = vtkFloatArray : : New () ;
xCoords−>setArray (mesh_x ,PTX, 1) ;
// . . . idem f o r yCoords and zCoords
v tkRec t i l i n ea rGr id ∗ g r id

= vtkRec t i l i n ea rGr id : : New () ;
gr id−>setDimens ions (NX,NY,NZ) ;
gr id−>setXCoordinates (xCoords) ;
// . . . idem f o r Y and Z coo rd ina t e s
vtkDataArray∗ array

= wrapMyData () ; // see above
gr id−>GetPointData()−>AddArray (array) ;
array−>Delete () ;
r e turn (vtkObject ∗) g r id ;

}

Listing 5: Data access functions for our sample application using ParaView. The
first function wraps the temperature field into the VTK object which is used by
the second function that adds information related to the mesh coordinates.

RR n° 8314

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related work
	Loosely-coupled visualization strategies
	Tightly-coupled ISV: challenges and solutions

	In Situ Visualization through Damaris
	Towards a new in situ visualization framework
	Review of the Damaris I/O middleware
	Configuration file
	Plugins system
	Dedicated cores
	Shared memory based communication

	Damaris/Viz: an in situ visualization framework on top of Damaris
	Connecting to existing visualization packages
	Python support
	Support for VisIt and ParaView

	Automatic output frequency adaptation

	Impact on code modification and adaptability
	Data access for in situ visualization using VisIt
	Data access for co-processing using ParaView

	Experimental performance evaluation
	The CM1 simulation
	Using VisIt for 2D and 3D rendering
	Methodology
	Experiments
	Results

	The Nek5000 CFD simulation
	Configurations
	Experiments with the TurbChannel configuration
	Results with the TurbChannel configuration
	Experiments with the MATiS configuration
	Results with the MATiS configuration

	Conclusion and future work

