
HAL Id: hal-00831455
https://hal.archives-ouvertes.fr/hal-00831455

Submitted on 7 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Provisioning in the Cloud. Technical report of
the Aeolus project

Roberto Di Cosmo, Michaël Lienhardt, Ralf Treinen, Stefano Zacchiroli,
Jakub Zwolakowski

To cite this version:
Roberto Di Cosmo, Michaël Lienhardt, Ralf Treinen, Stefano Zacchiroli, Jakub Zwolakowski. Optimal
Provisioning in the Cloud. Technical report of the Aeolus project. 2013. �hal-00831455�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49781554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00831455
https://hal.archives-ouvertes.fr

Optimal Provisioning in the Cloud∗

Technical Report and Proofs

Roberto Di Cosmo
roberto@dicosmo.org

Michael Lienhardt
michael.lienhardt@inria.fr

Ralf Treinen
treinen@pps.univ-paris-diderot.fr

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Jakub Zwolakowski
zwolakowski@pps.univ-paris-diderot.fr

01/03/2013

Abstract

Complex distributed systems are classically assembled by deploying
several existing software components to multiple servers. Building such
systems is a challenging problem that requires a significant amount of
problem solving as one must i) ensure that all inter-component dependen-
cies are satisfied; ii) ensure that no conflicting components are deployed on
the same machine; and iii) take into account replication and distribution
to account for quality of service, or possible failure of some services.

We propose a tool, Zephyrus, that automates to a great extent assem-
bling complex distributed systems. Given i) a high level specification of
the desired system architecture, ii) the set of available components and
their requirements) and iii) the current state of the system, Zephyrus is
able to generate a formal representation of the desired system, to place
the components in an optimal manner on the available machines, and to
interconnect them as needed.

1 Introduction

In contrast to classic, monolithic software that runs locally on one machine,
large distributed systems are built from many running services executing on
(possibly heterogeneous) virtual machines (or locations) and collaborating to
provide the expected functionality to final users. Designing and running such
systems is a complex task, far different from classic software management: it
is like building a puzzle (each running service being a piece) where you only

∗This work was supported by the French ANR project ANR-2010-SEGI-013-01 Aeolus
and partially performed at IRILL, center for Free Software Research and Innovation in Paris,
France, http://www.irill.org

1

know one part of the picture (the expected functionality). More precisely, the
system designer must solve the following problems: i) choose which services to
use and how to configure them, knowing that services may depend on (and/or
be in conflict with) each other; ii) consider fault tolerance and quality of service
issues, and provide enough instances of each service to deal with that; iii) design
the physical architecture on which to run the system, trying to keep its cost
reasonable with nonetheless enough locations with enough resources (e.g. RAM,
disk space, bandwidth) to allow the installation and the good execution of the
services they host; iv) choose which implementation of each service to install on
which location, knowing that implementations (or packages), like services, have
dependencies and conflicts; and v) install each package and start each service
on the chosen architecture. Also, it is possible that the architecture on which
to install the system is not initially empty, maybe because the new system is an
upgrade of an existing one that will get replaced, or because the designer have
to co-host the new system with another one to decrease the cost. In that case,
one might want to design the system to reuse parts of the existing one, to get
a more efficient installation process. This adds yet another layer of complexity
to the design process.

To lower complexity, many industrial initiatives develop tools [VMW, Can]
that allow to select, configure, and push to a “cloud” some well defined services,
thus reducing application development cost. However, these tools are only useful
once the puzzle is finished, i.e. when the right services and packages have been
selected, the locations on which they must be deployed have been chosen, and
the way of configuring them in a manner that satisfies all the requirements has
been found. Solving the puzzle currently requires a significant amount of manual
intervention, so that in practice large software stacks are often managed using
custom scripts and manual techniques, which are error prone and fragile [ND11].

The goal of our work is to provide a generic, automatic and sound alterna-
tive to these scripts and techniques. In this paper we provide a first big step
towards that goal: a tool, called Zephyrus,1 that automatically generates an ab-
stract representation (or configuration) of the expected system. More precisely
Zephyrus takes as input: i) a specification of the system’s expected functional-
ities; ii) the set of available services, which can serve as building blocks, with
their requirements, replication policies and resource consumption; iii) informa-
tions concerning the implementation of the services (e.g. the apache service is
provided by the www-servers/apache package on Gentoo linux, by the apache2
package on Debian, etc); and iv) the (possibly non-empty) architecture (or ini-
tial configuration) on which the system will be installed. Moreover, the system
designer can choose one out of a set of optimization criteria that capture prefer-
ences like “use the smallest number of locations”, or “modify as little as possible
the pre-existing configuration”. From such an input, Zephyrus generates a pre-
cise description of which packages must be installed on which location, which
services must be started and how they must be linked together.

1Zephyrus is free software, implemented in OCaml, and available at
www.mancoosi.org/software/zephyrus/

2

The generation process works in three steps. First, all of Zephyrus inputs are
translated to constraints on positive integers whose goal is to represent packages,
services, and locations requirements. This ability to uniformly capture all of it
with integer constraints is the cornerstone of our approach: it allows to deal with
the many facets of a system design as a whole, and thus ensure the completeness
of our algorithm and the optimality of the generated configuration. Second, an
optimal solution is provided by an external constraint solver. This solution
specifies which packages must be installed where and how many instances of a
service must be started on each location. And third, from the given solution and
the initial configuration, we generate the final configuration, reusing as many
existing running services as possible.

The basic usage of Zephyrus is thus the generation of a configuration from an
input specification. Due to its expressiveness and its capacity to take as input
non-empty configurations, Zephyrus’s usage covers several very useful scenarios:
i) running Zephyrus on a broken system will generate a configuration that fixes
the problem; ii) similarily, Zephyrus can be used to update a system to use
new services or new replication policies; and iii) without an input configuration,
Zephyrus will generate a configuration using as many locations and resources
as necessary, thus giving an estimate of the architecture required to deploy the
expected system.

Finally, our goal is to provide a sound tool, and thus all of the elements
used in our approach are formalized. Our component model, inspired by Aeo-
lus [DCZZ12], encodes each service with its replication policy by a component
type using ports tagged with an arity to encode requirements, provides and con-
flicts. Packages and repositories are abstracted with a model close to [MBC+06].
Our model for configurations is based on Aeolus [DCZZ12], but extended to take
locations, repositories, packages and resources into account. Finally, our notion
of specifications is entirely new, and is presented with a formal syntax and se-
mantics which defines when a configuration satisfies a specification. Based on
this formalization, Zephyrus is proven complete and correct: it will always find
a configuration that is optimal w.r.t. the chosen criterion if one exists; the gener-
ated configuration does provide the expected functionalities, and abides by the
constraints defined by the replication policies, the dependencies and conflicts
between services, etc.

This paper is organized as follows. Section 2 shows Zephyrus at work on
a realistic use case; Section 3 introduces the formal definitions of components,
packages and repositories, configurations and specifications; Section 4 shows
how to encode a system design problem into numerical constraints; Section 5
presents the generation of a configuration from a solution of the constraints;
before concluding, Section 6 compares our contribution to related works.

2 Approach

In this Section, we present the different usages of Zephyrus.

3

2.1 Basic Usage: Configuration generation

Use case. Let consider we have to deploy the popular blog platform Word-
press on some public cloud setting (e.g. Amazon EC2, Windows Azure, . . .).
In addition to being a realistic use case, this is often used as a “benchmark”
to showcase the characteristics of cloud provisioning platforms. Wordpress is
written in PHP and as such is executed within Web server software like Apache
or nginx. Additionally, Wordpress needs a DBMS instance, more precisely an
instance of MySQL, in order to store user data. Simple Wordpress deploy-
ments can therefore be obtained on a single machine where both Wordpress and
MySQL get installed.

“Serious” Wordpress deployments, however — i.e. those meant to sustain
high visit loads and be resilient to machine failures — are usually more complex
than that and rely on some form of load balancing. One possibility is to balance
load at the DNS level using servers like Bind: multiple DNS requests to resolve
the website name will result in different IPs from a given pool of machines, on
each of which a separate Wordpress instance is running. Alternatively, one can
use as website entry point a HTTP reverse proxy capable of load balancing (and
caching, for added benefit) such as Varnish. Either way, Wordpress instances
will need to be configured to contact the same MySQL database, to avoid de-
livering inconsistent results to different users. Also, having redundancy and
balancing at the front-end level, one usually expects to have them also at the
DBMS level. One way to achieve that is to use a MySQL cluster, and configure
the Wordpress instances with multiple entry points to it.

Constraints. Various kinds of design constraints should be taken into account
when planning such a complex system. Some of these constraints come from
package providers and cannot be changed. For example, Wordpress, Varnish,
etc. usually come from distribution packages and have their own set of depen-
dencies and conflicts which must be respected when installing the software on
each machine.

On the other hand, “house” requirements are defined by the designers to
capture some ad-hoc policy. For example, designers might want:

• at least 3 replicas of Wordpress behind Varnish or, alternatively, at least 7
replicas with DNS-based load balancing (since DNS-based load balancing
is not capable of caching, the expected load on Wordpress instances is
higher);

• at least 2 different entry points to the MySQL cluster;

• each MySQL instance shouldn’t serve the needs of more than 2 Wordpress
instances;

• no more than 1 DNS server deployed in the administrative domain;

• or, again, that different Wordpress (and MySQL) instances are deployed
on different locations.2

2it is technically possible to co-locate multiple, say, MySQL instances on the same machine,

4

Similar constraints might exist on machine resources, e.g. we expect Varnish to
consume 2Gb of RAM and we don’t want to deploy it to a smaller machine,
especially if in combination with other RAM-consuming services. Note that
these constraints are not intrinsically related to the software components we are
using, but are rather an encoding of explicit architectural choices.

Architecture. Zephyrus consumes as input (1) a description of all the ex-
isting constraints, which come in various formats due to their different origins
(e.g. package database, designer choices, physical resources of machines, etc.);
this is called a universe. Additionally, it takes a (2) description of the current
system configuration (which machine exist, what is currently deployed where,
etc.) and a (3) specification characterizing the system that architects would like
to achieve. As part of the specification, the architects can also specify objective
functions that they would like to optimize for, such as the desire of minimizing
the number of virtual machines that will be used for the deployment (and hence
the system cost).

Internally, Zephyrus translates all the constraints into a coherent whole, as
described in Section 4. Once assembled, the constraints are passed to an external
constraint solver3 that computes the number of both service instances and their
interconnections (called bindings) that are needed to obtain the desired state,
while optimizing for the specified objective function. As the aggregate num-
ber of instances and bindings alone is not sufficient for deployment, Zephyrus
then produces an actual configuration by allocating services to machines and
by computing how they should be connected. This is done using the algorithms
described in Section 5.

Using Zephyrus. Figure 1 shows the application of our approach to the de-
sign of a complex Wordpress deployment like the one we have discussed. On
the left of the black arrow is a schematic representation of Zephyrus input, on
the right its output. Available services are depicted in the figure using a graph-
ical syntax inspired by Aeolus [DCZZ12], each one with its own requirements,
conflicts, and house policy. For instance, the HTTP load balancer requires 3
Wordpress replicas, whereas the DNS load balancer requires 7 and sports a con-
flict on other DNS services, as per house policy. Component requirements are
exposed as required ports that should be connected, via bindings, to matching
provided ports offered by other service instances, respecting port replication
constraints: an upper bound (or ∞) on the amount of incoming bindings for
provided ports; a lower bound on the amount of outgoing bindings to different
service instances for required ports. Additionally, Zephyrus takes in input the
implementation relation that maps each service to the set of packages that im-

but it would be pointless to do so when we are seeking fault tolerance and load balancing.
3currently, Zephyrus uses the FaCiLe constraint solver library for this step http://www.

recherche.enac.fr/log/facile/. However, given the solver is used as a black-box, it is
possible to use other solver components in its stead.

5

Figure 1: Zephyrus usage to design a scalable, fault-tolerant Wordpress deploy-
ment

plements it. These two parts of the universe is given in input to Zephyrus as
the following JSON file:

{ "component_types": [

{ "name" : "DNS-load-balancer",

"provide" : [["@wordpress-frontend"], ["@dns"]],

"require" : [["@wordpress-backend", 7]],

"conflict": ["@dns"],

"consume" : [["ram", 128]] },

{ "name" : "HTTP-load-balancer",

"provide" : [["@wordpress-frontend"]],

"require" : [["@wordpress-backend", 3]],

"consume" : [["ram", 2048]] },

{ "name" : "Wordpress",

"provide" : [["@wordpress-backend"]],

"require" : [["@mysql", 2]],

"consume" : [["ram", 512]] },

{ "name" : "MySQL",

"provide" : [["@mysql", 3]],

"consume" : [["ram", 512]] }],

"implementation": [

["DNS-load-balancer", ["bind9"]],

["HTTP-load-balancer", ["varnish"]],

["Wordpress", ["wordpress"]],

["MySQL", ["mysql-server"]]]

}

The former part of it describes component types and their requirements; the
latter the distribution packages that should be installed to realize the services
on actual machines. Because of its size, the rest of the universe (repositories and
packages) is not included in this file, but as an annex zip file. Moreover, this file

6

can first be processed by coinst [CV11] that abstracts packages into dependencies
equivalent classes, reducing largely the number of packages Zephyrus needs to
process (the Debian Squeeze repository contains ≈30’000 packages).

In our example, we start with an initial configuration consisting of 6 bare
locations with 2Go of RAM. Such configuration is given in input to Zephyrus
as the following JSON file (excerpt):

{ "locations" : [

{ "name" : "loc1", "repository" : "debian-squeeze",

"provide_resources" : [["ram", 2048]] },

{ "name" : "loc2", "repository" : "debian-squeeze",

"provide_resources" : [["ram", 2048]] },

[...]

}

Finally, Zephyrus needs as input a specification of the desired target state:

(#@wordpress-frontend = 1)

and #(_){_ : #MySQL > 1} = 0

and #(_){_ : #Wordpress > 1} = 0

This specification asks for exactly one Wordpress frontend (more precisely ex-
actly one service offering a wordpress-frontend port) and imposes that no
machine is deployed with more than one instance of either MySQL/Wordpress
services on it. Note that no constraint is imposed on the co-location of different
services on the same machine.

Equipped with all this, we are now ready to ask Zephyrus to compute the
final configuration:

$ zephyrus -repo debian-squeeze Packages.coinst \

-u univ-1.json -ic conf-1.json -spec spec-1.spec \

-opt compact

In addition to the obvious ones (universe, configuration, specification), we pass
two extra parameters to Zephyrus. -repo is the zip file containing the infor-
mations about repositories and packages. The other parameter, -opt, is used
to request the optimization w.r.t. a specific objective function. Currently, one
must choose among a limited set of objective functions. Here, compact is used
to request the minimization of the number of needed (i.e. non empty) machines
(see Section 4 for the formal definition).

The actual output of Zephyrus is too verbose to be listed here in full, so we
only provide some excerpt from it. The format is the same as for configurations,
and starts with location descriptions (excerpt):

{ "locations": [

{ "name": "loc1",

"provide_resources": [["ram", 2048]],

"repository": "debian-squeeze",

"packages_installed": ["wordpress (= 3.3.2-1)",

"libgd2-xpm (x 125)"] },

{ "name": "loc2",

7

"provide_resources": [["ram", 2048]],

"repository": "debian-squeeze",

"packages_installed": ["mysql-server (= 5.1.49-3)",

"2vcard (x 23886)", "wordpress (= 3.3.2-1)",

"libgd2-xpm (x 125)"] },

We can see that each location is associated with a list of packages installed there.
The second part of the configuration, not shown in the initial configuration
because it was empty, is the list of service instances mapped to their deployment
locations (excerpt):

"components": [

{ "name": "loc1-Wordpress-1", "type": "Wordpress",

"location": "loc1" },

{ "name": "loc2-Wordpress-1", "type": "Wordpress",

"location": "loc2" },

{ "name": "loc2-MySQL-1", "type": "MySQL",

"location": "loc2" },

Finally, the third part of the configurationn lists the bindings that connect
(ports of) service instances together (excerpt):

"bindings": [

{ "port": "@wordpress-backend",

"requirer": "loc4-HTTP-load-balancer-1",

"provider": "loc3-Wordpress-1" },

{ "port": "@wordpress-backend",

"requirer": "loc4-HTTP-load-balancer-1",

"provider": "loc2-Wordpress-1" },

{ "port": "@mysql",

"requirer": "loc1-Wordpress-1",

"provider": "loc2-MySQL-1" }

The complete result is shown on the right of Figure 1, where shaded boxes
denote locations. All choices there (load balancer solution, mapping of service
instances to machines, bindings, etc.) has been made by Zephyrus. Note how
services have been co-located, where possible, to minimize the number of used
machines (4 out of the 6 machines that were available). The obtained solution
is optimal w.r.t. the desired metric.

2.2 Fixing a Configuration

Let suppose given an existing installation of the Wordpress system like the one
computed in Section 2.1, except that the main Wordpress services wasn’t config-
ured to use the different backends. This installation typically cannot function
properly, as all attempts to access a page of the website will end up in an
error 404. Running Zephyruswith such configuration in input and with the
conservative optimization option (that will keep the installed services) will
see that Wordpress wasn’t properly configured, and create the bindings to end
up in a valid configuration, namely the one in Section 2.1.

8

Figure 2: The configuration, after updating the redundancy requirements and
applying Zephyrus

2.3 Updating Services and Replication Policies

Let consider given an existing installation of the Wordpress system as computed
in Section 2.1: one might want to increase the redundancy at the MySQL level,
by increasing the amount of minimum MySQL entry points for each Wordpress
instance from 2 to 3. By rerunning Zephyrus on the given system, after mod-
ifying the universe to reflect the extra redundancy, we have obtained a new
configuration, presented in Figure 2 where no extra machines are spawn, but a
new MySQL service instance is added on location loc1.

2.4 Configuration Estimation

Let suppose that in Section 2.1, we didn’t have an initial configuration, but
we wanted to know more or less how many locations were necessary to host the
application. Running Zephyrus without an initial configuration will generate the
result configuration in two steps. First, it computes how many services instances
are necessary to run the application by generating and solving the constraints
without the part about locations. This number gives us a first estimate of the
number of needed locations, as at most one location per service is needed. In our
case, Zephyrus finds that 6 services are needed to deploy Wordpress, and thus
generates a first estimate of 6 locations. Then, Zephyrus performs a second pass,
with these 6 locations as input. This second pass ends up with a configuration
similar to the one computed in Section 2.1, but because the generated locations
do not have any limit on the resources they provide, the load-balancer is put
together with a backend and a database: only 3 locations are used, with one
location requiring 3052Mo of RAM.

9

3 Formal Model

In this section, we formally define the different elements (services, configura-
tions, packages, etc) used in Zephyrus. As mentioned before, this formalization
abstracts services and replication policy by the notion of component types.
Moreover, to follow the vocabulary of [DCZZ12], a running instance of a service
is called a component. We structure our presentation into four parts: i) a Uni-
verse declares the different component types, repositories and packages that we
can use to build a configuration; ii) a Configuration models a system (i.e. a set
of components bound together) with its underlying architecture (i.e. a set of
locations hosting the components, with the packages that implement them); ii)
a Specification states the required features of the final configuration; and iv) an
Optimization Function allows to select out of a set of possible configurations,
the optimal one. Before giving a formal definition of these elements, we first
introduce several infinite and disjoint sets and the notion of mapping on which
we base our definitions. In the following, we suppose given a set of component
type names T , ranged over by t1, t2, etc; a set of port names P, ranged over
by p1, p2, etc; a set of component names C, ranged over by c1, c2, etc; a set
of package names K, ranged over by k1, k2, etc; a set of repository names D,
ranged over by r1, r2, etc; a set of location names L, ranged over by l1, l2, etc;
and a finite set of resource names O, ranged over by o1, o2, etc. Also, given two
sets E and F , a mapping f : E 7→ F is function f whose domain dom(f) is a
finite subset of E, and whose image is included in F .

3.1 Universe

A universe declares the different component types and repositories we can use
to build a configuration. Component types are services, with dependencies and
conflicts modeled by provided, required and conflicting ports, together with their
replication policy, modeled by a maximal output arity on provided ports, and
minimal input arity on required ports.

Definition 1 (Component Type). A component type J is a 4-ple 〈P,R,C, f〉
where:

• P : P 7→ N
+ ∪ {∞} is a mapping defining the provided ports of the com-

ponent type, with their arity;

• R : P 7→ N
+ is a mapping defining the required ports of the component

type, with their arity;

• C ⊂ P is the finite set of ports the resource type is in conflict with;

• f : O → N is a function stating how much of each resource this component
type consumes.

We note Γ the set of component types.

On the other hand Packages, provided by some repositories, implement the
component types. Unlike components who may provide, depend on, or conflict
with ports, packages depend on or conflict with other packages.

10

Definition 2 (Package and Repository). A package H is a triple 〈R,C, f〉 where

• R ⊂ P(K)4 is the set of dependencies of the package: for each set {ki} ∈ R

at least one ki must be installed for the current package to be installed as
well;

• C ⊂ K is the set of packages the current one is in conflict with;

• f : O → N is a function stating how much of each resource this package
consumes.

We note Π the set of all packages. A repository R is a mapping from package
names K to packages. We note Ω the set of all repositories.

Finally, we can formally define what an universe is.

Definition 3 (Universe). A universe U is a triple 〈N, I,Y〉 where

• N : T 7→ Γ is a finite mapping defining the set of component types with
their names;

• I ⊂ dom(N)×K is the implementation relation;

• Y : D 7→ Ω is a mapping defining the available repositories with their
names.

To simplify our presentation, we suppose that the repositories of a universe U
all have distinct domains.

Notation. Given a universe U = 〈N, I,Y〉, we note: Udt the set of component
type names of U ; Udp the set of ports used in U ; Udr the set of repository names
of U ; Udk the set of all pacakages names in U . Moreover, Ui : Udt 7→ P(Udk)
gives the set of packages implementing each component type in U ; Uw : Udk 7→ Π
gives the packages of all package names in U ; UR : P → P(Udt) gives the set of
component types that require the port in parameter; UP : P → P(Udt) gives the
set of types that provide the port in parameter; and UP : P → P(Udt) gives the
set of types that conflict with the port in parameter. Also, given a component
type name t, we note U(t) for N(t), given a repository name r, we note U(r) for
Y(r), and given a package name k, we note U(k) for Uw(k). Formally, we have

Udt , dom(N) Udr , dom(Y) Ui(t) , {k | (t, k) ∈ I} Uw ,
⋃

r∈Udr
U(r)

Udk ,
⋃

r∈Udk
dom(U(r)) Udp ,

⋃

t∈Udt
(U(t).C ∪ dom(U(t).R) ∪ dom(U(t).P))

UR(p) = {t | t ∈ Udt ∧ p ∈ dom(U(t).R)} UP(p) = {t | t ∈ Udt ∧ p ∈ dom(U(t).P)} UC(p) = {t | t ∈ Udt ∧ p ∈ U(t).C}

Given a tuple T = 〈ℓ1, . . . ℓi〉, we note T.ℓi the lookup operation that retrieves
the element ℓi from the tuple. For instance, U(t).R(p) stands for the minimum
arity required by the component type t for the port p.

4We write P(X) for the set of subsets of X

11

3.2 Configuration

A configuration C is given by a set of locations with their characteristics (how
many resources they provide, what repository and packages are installed), a set
of components and their bindings.

Definition 4 (Configuration). A configuration C is a triple 〈L,W,B〉 where

• L is a mapping from L to triples 〈φ, r,M〉 where φ : O → N is a function
stating how many resources this location provides; r ∈ D is the name of
the repository installed on that location; M ⊂ K is the set of packages
installed on that location;

• W is a mapping from C to pairs 〈l, t〉 where l ∈ dom(L) and t ∈ T , stating
for each component its location and its type;

• B ⊂ K×dom(W)×dom(W) is the set of bindings, namely 3-ple composed
by a port, the component that requires that port and the component that
provides it.

Notation. Given an configuration C = 〈L,W,B〉, we note Cl (resp. Cc, Ct,
Ck) the set of locations (resp. components, component types, package) in that
configuration. Moreover, given a location l, a component c, a component type
name t and a package name k, we note: C(l) for L(l); C(c) for W (c); C.type(c)
the type of c; C(l, t) the set of components that are placed on l and whose type
is t; and C(l, k) the boolean stating whether the package k is installed on l.
Formally, we have

Cl , dom(L) Cc , dom(W) Ct , {t | ∃c ∈ Cc, ∃l ∈ Cl, W (c) = (l, t)} Ck ,
⋃

l∈Cl
C(l).M

C(l, t) , {c | c ∈ dom(W) ∧ W (c) = (l, t)} C(l, k) , (k ∈ L(l).M)

An important notion on configuration is the correctness w.r.t. a universe.
Configurations have to respect the constraints given by the input universe: to
only use the elements (e.g. component types, packages) declared in the input
universe, and to use them right (e.g. all component must be implemented by a
package, all requirements must be fulfilled by the right number of connections).
We structure our definition of correctness in three parts: component types,
packages, and resources.

Definition 5. Suppose given a configuration C = 〈L,W,B〉 and a universe U =
〈N, I,Y〉. C is component-valid w.r.t. U if for all c ∈ Cc, the pair 〈l, t〉 = W (c)
is such that t ∈ Udt and:

{

∀p ∈ P \ dom(U(t).P), {c′ | (p, c′, c) ∈ B} = ∅
∀p ∈ dom(U(t).P), #{c′ | (p, c′, c) ∈ B} ≤ U(t).P(p)

(1)

∀p ∈ dom(U(t).R), #{c′ | (p, c, c′) ∈ B} ≥ U(t).R(p) (2)

∀p ∈ U(t).C, ∀c′ ∈ Cc \ {c}, C.type(c
′
) 6∈ UP(p) (3)

∃(t, k) ∈ I, k ∈ L(l).M (4)

12

Basically, these formula means that: the components are not bound to too
many clients (equation (1)); all the requirements of all components are satisfied
(equation (2)); there are no conflicts (equation (3)); and all components are
implemented by a package (equation (4)).

Definition 6. Suppose given a configuration C = 〈L,W,B〉 and a universe
U = 〈N, I,Y〉. C is package-valid w.r.t. U if for all l ∈ dom(L), the triple
〈φ, r,M〉 = L(l) is such that r ∈ Udr and:

M ⊂ U(r) (5)

∀k ∈ M, ∃m ∈ U(k).R, m ⊂ M (6)

∀k ∈ M, U(k).C ∩ M = ∅ (7)

Basically, these formula means that: all packages are declared in U , in the
right repository (equation (5)); all the dependencies of all packages are satisfied
(equation (6)); and there are no conflicts (equation (7)).

Definition 7. Suppose given a configuration C = 〈L,W,B〉 and a universe
U = 〈N, I,Y〉. C is resource-valid w.r.t. U if for all locations l ∈ dom(L) and
all resources o ∈ O, the following inequality holds:

∑

t∈Udt

#(C(l, t))× U(t).f(o) +
∑

p∈L(l).M∩Udk

U(p).f(p) ≤ L(l).φ(o)

Definition 8. A configuration C is valid w.r.t. a universe U (noted U ⊢ C) iff
it is component-, package- and resource-valid w.r.t. U .

3.3 Specifications

Specifications are defined according the abstract syntax presented in Table 1. A
specification S is a set of basic constraints e op e, combined using the usual log-
ical operations. Intuitively, these basic constraints specify how many elements
(packages, component types, etc) are in the generated configuration, using terms
of the form #ℓ that correspond to the number of instances of the element ℓ in
the system. For instance, it is possible to state that we want at least three
instances of the component type apache: “#apache ≥ 3” with #apache repre-
senting the number of instance of apache in the configuration. Moreover, it is
also possible to have constraints on locations. Locations can be specified in our
syntax with the term (Jφ){Jr : Sl} where Jφ is the constraint on the resource
available on that machine; Jr is the set of repositories that can be installed
on that machine; and Sl is a constraint specifying what is the contents of the
machine (basically, Sl is S without locations). For instance, we can specify
that we want exactly one location with redhat installed and apache running:
“#(_){redhat: apache ≥ 1} = 1”. Finally, for flexibility, it is possible to use
global variables (noted X) in specifications.

The following definition formally presents the semantics of a specification:

13

Table 1 Specification Syntax

S ::= true | e op e Specification
| S ∧ S | S ∨ S

| S ⇒ S | ¬S
e ::= X | n | #ℓ Expression

| e+ e | e− e | n× e

ℓ ::= k | t | p Elements
| (Jφ){Jr : Sl}

Sl ::= true | el op el Local Specification
| Sl ∧ Sl | Sl ∨ Sl

| Sl ⇒ Sl | ¬Sl

el ::= X | n | #ℓl Local Expression
| el + el | el − el | n× el

ℓl ::= k | t | p Local Elements
Jφ ::= | o op n; Jφ Resource Constraint
Jr ::= r | r ∨ Jr Repository Constraint
op ::= ≤ | = | ≥ Operators

Definition 9. Suppose given a specification S: fv(S) stands for the set of vari-
ables used in S. Given a universe U , a configuration C validates the specification
S (noted C ⊢ S) if there exists a function σ from fv(S) to integers such that
C, σ ⊢ S can be derived from the rules presented in Tables 2 and 3.

Basically, these tables maps the different elements of the configuration (lo-
cations, components, packages) to the different elements #ℓ in the specification,
and ensures that the function σ, extended with this mapping, is a solution for
S.

3.4 Optimization Function

The last piece of input for our tool is the optimization function F that allows
us to select the optimal configuration among all configurations validating the
specification. We consider here only three kind of optimizations, just to give an
idea of the expressiveness of our approach: compact selects the solution that uses
the least locations; spread selects the solution that uses the least components
and the most locations, to improve load distribution; conservative selects the
solution that is the closest to the initial state of the system.

4 Translation into Constraints

We now present the translation of the various inputs into numerical constraints
plus one function (for the optimization). Basically, we use numeric variables to
represent important informations about a configuration: for instance, we note
N(l, t) the variable corresponding to the number of instances of the component

14

Table 2 Specification Validation (1/2)

SV:True

C, σ ⊢ true

SV:Exp

C, σ ⊢ e⇒ n

C, σ ⊢ e
′ ⇒ n

′
n op n

′

C, σ ⊢ e op e
′

SV:And

C, σ ⊢ S1 C, σ ⊢ S2

C, σ ⊢ S1 ∧ S2

SV:Not

C, σ 0 S

C, σ ⊢ ¬S
SV:Or1

C, σ ⊢ S1

C, σ ⊢ S1 ∨ S2

SV:Or2

C, σ ⊢ S2

C, σ ⊢ S1 ∨ S2

SV:Imply1

C, σ ⊢ S1 C, σ ⊢ S2

C, σ ⊢ S1 ⇒ S2

SV:Imply2

C, σ 0 S1

C, σ ⊢ S1 ⇒ S2

SV:Var

C, σ ⊢ X ⇒ σ(X)
SV:Number

C, σ ⊢ n⇒ n

SV:Package

C, σ ⊢ k ⇒
∑

l∈Cl

#(C(l).M ∩ {k})

SV:Type

C, σ ⊢ t⇒
∑

l∈Cl

#(C(l, t))

SV:Port

C, σ ⊢ p⇒
∑

l∈Cl

∑

t∈UP(p)

#(C(l, t))× U(t).P(p)

SV:Plus

C, σ ⊢ e1 ⇒ n1 C, σ ⊢ e2 ⇒ n2

C, σ ⊢ e1 + e2 ⇒ n1 + n2

SV:Minus

C, σ ⊢ e1 ⇒ n1 C, σ ⊢ e2 ⇒ n2

C, σ ⊢ e1 − e2 ⇒ n1 − n2

SV:Times

C, σ ⊢ e⇒ n

C, σ ⊢ n
′ × e⇒ n

′ × n

SV:Loc

v = {l ∈ Cl |C, l � Jφ ∧ C, l � Jr ∧ C, σ, l � Sl}

C, σ ⊢ (Jφ){Jr : Sl} ⇒ #v

type t on the location l. The numerical constraints built on these variables
ensure that the design constraints from the input universe and the input spec-
ification are satisfied. For instance, we have constraints that ensure that all
requests are satisfied by some provides, or that all installed components are im-
plemented by an package installed on the same location. We then use an external
solver to solve the generated constraints. Using the optimization function, the
solver computes an optimal solution to the problem, computing the number of
instance of each component types, which repository, and which packages must
be installed on each location.

4.1 Numerical Constraints

Table 4 presents the syntax of constraints. Basically, a constraint A is a set
of comparisons between numerical expressions u op u, combined using the logic
operators ∧, ∨, ⇒ and ¬. Expressions u are numerical expressions, with positive
integers n, variables X, addition, substraction and multiplication with a integer,
extended with: i) a set of specific variables representing a configuration; and ii)
reified constraints ‖A‖, whose value is 1 if A is true, 0 otherwise. The semantics
of the extra variables is as follow:

• N(ℓl) is the number of instances of ℓl (component types, ports and pack-
ages) installed globally in the configuration;

• N(l, ℓl) is the number of instances of ℓl (component types, ports and

15

Table 3 Specification Validation (2/2)

SV:Res1

C, l �

SV:Res2

C, l � Jφ C(l).φ(o) op n

C, l � o op n; Jφ

SV:Rep1

C(l).r = r

C, l � r

SV:Rep2

C(l).r = r

C, l � r ∨ Jr

SV:Rep3

C, l � Jr

C, l � r ∨ Jr

SV:L:True

C, σ, l � true

SV:L:Exp

C, σ, l � el ⇒ n

C, σ, l � e
′

l ⇒ n
′

n op n
′

C, σ, l � el op e
′

l

SV:L:And

C, σ, l � Sl C, σ, l � S
′

l

C, σ, l � Sl ∧ S
′

l

SV:L:Not

C, σ, l 2 Sl

C, σ, l � ¬Sl

SV:L:Or1

C, σ, l � Sl

C, σ, l � Sl ∨ S
′

l

SV:L:Or2

C, σ, l � S
′

l

C, σ, l � S1 ∨ S
′

l

SV:L:Imply1

C, σ, l � Sl C, σ, l � S
′

l

C, σ, l � Sl ⇒ S
′

l

SV:L:Imply2

C, σ, l 2 Sl

C, σ, l � Sl ⇒ S
′

l

SV:L:Var

C, σ, l � X ⇒ σ(X)
SV:L:Number

C, σ, l � n⇒ n

SV:L:Package

C, σ, l � k ⇒ #(C(l).M ∩ {k})

SV:L:Type

C, σ, l � t⇒ #(C(l, t))

SV:L:Port

C, σ, l � p⇒
∑

t∈UP(p)

#(C(l, t))× U(t).P(p)

SV:L:Plus

C, σ, l � el ⇒ n1 C, σ, l � e
′

l ⇒ n2

C, σ, l � el + e
′

l ⇒ n1 + n2

SV:L:Minus

C, σ, l � el ⇒ n1 C, σ, l � e
′

l ⇒ n2

C, σ, l � el − e
′

l ⇒ n1 − n2

SV:L:Times

C, σ, l � el ⇒ n

C, σ, l � n
′ × el ⇒ n

′ × n

Table 4 Constraint Syntax

A ::= true | u op u Constraint
| A ∧ A | A ∨ A | A ⇒ A | ¬A

u ::= n | v | u+ u | u− u | n× u Expression
v ::= X | N(ℓl) | N(l, ℓl) | B(p, tr, tp) Variables

| R(l, r) | O(l, o) | ‖A‖

packages) installed on the location l (for a package, this number is either
0 or 1);

• B(p, tr, tp) is the number of bindings on the port p between the instances
of the requiring type tr and the providing type tp;

• R(l, r) is either 0 or 1, and expresses whether the repository r is installed
on the location l;

• O(l, o) tells how many of resource o the location l provides.

The semantics of our constraints is the same as usual: a solution σ for
a constraint A is a mapping from the variables in A to integers, such that
substituting the variables by their values in A will result in a tautology. For
completeness, we present in Table 5 the semantics of a constraint, noting σ A

16

Table 5 Constraint Validation

SV:True

σ true

CV:Exp

σ u⇒ n

σ u
′ ⇒ n

′
n op n

′

σ u op u
′

CV:And

σ A1 σ A2

σ A1 ∧ A2

CV:Not

σ 1 A

σ ¬A
CV:Or1

σ A1

C, σ A1 ∨ A2

CV:Or2

σ A2

σ A1 ∨ A2

CV:Imply1

σ A1 σ A2

σ A1 ⇒ A2

CV:Imply2

σ 1 A1

σ A1 ⇒ A2

CV:Plus

σ u1 ⇒ n1 σ u2 ⇒ n2

σ u1 + u2 ⇒ n1 + n2

CV:Minus

σ u1 ⇒ n1 σ u2 ⇒ n2

σ u1 − u2 ⇒ n1 − n2

CV:Times

σ u⇒ n

σ n
′ × u⇒ n

′ × n

CV:Number

σ n⇒ n

CV:Var

σ v ⇒ σ(v)

CV:Reify1

σ A

σ ‖A‖ ⇒ 1

CV:Reify2

σ 1 A

σ ‖A‖ ⇒ 0

when the mapping σ is a solution for A. The external solver that we use, like
FaCiLe [BB01] or Gecode [SLT] implement such semantics.

Another important semantics of these constraints in our case concerns con-
figurations. Indeed, as we use these constraints to encode universes and speci-
fications, we need to prove that our encoding is correct, i.e. the configurations
validating a universe (resp. a specification) are exactly the same as the one
validating their encoding. And so, we need the notion of a configuration val-
idating a constraint. This notion is quite intuitive: to every configuration C

corresponds a mapping σ from the special variables of our constraint syntax to
the number of such elements in C ((for instance mapping N(l, t) to #C(l, t)).
The configuration is a solution if its corresponding mapping is a solution. For-
mally, things are a littl bit more complicated, as a constraint can contain normal
variables also. Our notion of validation for configuration is thus formalized in
the following definition:

Definition 10. Suppose given a constraint A: we note Al the set of location
names used in A. A configuration C = 〈L,W,B〉 and a universe U validates A
(noted C,U ⊢ A) iff Cl = Al and there exists σ with σ A such that:

∀N(t) ∈ A, σ(N(t)) =
∑

l∈Cl
#(C(l, t)) ∀N(l, t) ∈ A, σ(N(l, t)) = #(C(l, t))

∀N(k) ∈ A, σ(N(k)) =
∑

l∈Cl
#(C(l, k)) ∀N(l, k) ∈ A, σ(N(l, k)) = #(C(l, k))

∀R(l, r) ∈ A, σ(R(l, r)) = 1 ⇔ C(l).r = r ∀O(l, o) ∈ A, σ(O(l, o)) = C(l).φ(o)

∀N(p) ∈ A, σ(N(p)) =
∑

l∈Cl,t∈UP(p) #(C(l, t)) × U(t).P(p)

∀N(l, p) ∈ A, σ(N(l, p)) =
∑

t∈UP(p) #(C(l, t)) × U(t).P(p)

∀B(p, tr, tp) ∈ A, σ(B(p, tr, tp)) = #({(p, cr, cp) ∈ B |C.type(cr) = tr ∧ C.type(cp) = tp})

In the rest of this section, we suppose fixed a universe U , a specification
S, an initial configuration C and an optimization function F : the rest of this

17

Table 6 Universe Translation

∧

p∈Udp

∧

tr∈UR(p)

U(tr).R(p) × N(tr) ≤
∑

tp∈UP(p)

B(p, tp, tr)

∧

tp∈UP(p)

U(tp).P(p) × N(tp) ≥
∑

tr∈UR(p)

B(p, tp, tr)

∧

tr∈UR(p)

∧

tp∈UP(p)

B(p, tp, tr) ≤ N(tr) × N(tp)

∧

t∈UC(p)

N(t) ≥ 1 ⇒ N(p) = U(t).P(p)

(8)

∧

t∈Udt

N(t) =
∑

l∈Cl

N(l, t) ∧
∧

k∈Udk

N(k) =
∑

l∈Cl

N(l, k)

∧

p∈Udp

N(p) =
∑

l∈Cl

N(l, p)
(9)

∧

l∈Cl

∧

p∈Udp

N(l, p) =
∑

tp∈UP(p)

U(tp).P(p) × N(l, tp) (10)

∧

l∈Cl

∑

r∈Udr

R(l, r) = 1

∧

r∈Udr

R(l, r) = 1 ⇒

∧

k∈U(r)

N(l, k) ≤ 1

∧

k∈Udk\U(r)

N(l, k) = 0

(11)

∧

l∈Cl

∧

t∈Udt

N(l, t) ≥ 1 ⇒
∑

k∈Ui(t)

N(l, k) ≥ 1

∧

k1∈Udk

∧

K∈U(k1).R

N(l, k1) ≤
∑

k2∈K

N(l, k2)

∧

k1∈Udk

∧

k2∈U(k1).C

N(l, k1) + N(l, k2) ≤ 1

(12)

∧

l∈Cl

∧

o∈O

∑

x∈Udt∪Udk

U(x).f(o) × N(x, l) ≤ O(l, o) (13)

∧

t∈Ct\Udt

N(t) = 0

∧

k∈Ck\Udk

N(k) = 0
(14)

section presents how we translate these data into a constraint. Note that the
set of locations Cl (coming from the input initial configuration C) is used in all
aspects of our translation, as it corresponds to the set of locations on which the
different elements of the configuration (components, packages) will be installed.

4.2 Universe Translation

We present in Table 6 our translation of the universe U into a constraint A.
Equation 8 encodes the dependencies between component types: the first line
states that all the requirements of a type must be satisfied by some bindings;
the second line states that providers cannot have more output bindings than

18

what they provide; the third line states that there shouldn’t be two bindings
on the same port between the same components;5 and the fourth line ensures
that when a type is in conflict with a port, there is no other component pro-
viding that port in the configuration. Equation 9 encodes the distribution of
components, ports and packages: for every element ℓl, the number of instances
of ℓl in the configuration is the sum of its instances on each location. Equa-
tion 10 states that the number of a ports in a location is equal to how many
times that port is provided. Equation 11 encodes repository installation: the
first line states that exactly one repository must be installed in a location; and
the second line states when the repository r is installed on a location l, only
the packages of that repository can be installed on l. Equation 12 encodes the
three relations involving packages: the first line encodes the implementation
relation between component types and packages; the second line encodes the
dependency relation between packages; and the third line encodes the conflicts
between packages. Equation 13 encodes resource usage in each location. Finally,
equation 14 ensures that all components and packages unvalid in the universe
are removed from the initial configuration. Our encoding enjoys the following
property:

Lemma 1. Given the constraint A generated from U and a configuration C ′,
then C ′,U validates A iff C ′ validates U .

Sketch. Let consider the three parts of the definition of U ⊢ C ′. We can quite
easily see that the equations 8, 9 — instantiated for component types —, 10, the
first line of 12 and the first line of 14 are equivalent to C ′ being component-valid
for U . We can quite easily see that the equations 11, the two last lines of 12 and
the second line of 14 are equivalent to C ′ being package-valid for U . We can
quite easily see that the equation 13 is equivalent to C ′ being resource-valid for
U .

Basically, this lemma states that any configuration that validates the gener-
ated constraint is correct w.r.t. the input universe.

4.3 Specification Translation

We present in Figure 7 our translation of a specification S into a constraint A.
Our translation is done by induction on the structure of S, and uses statements
of the forms ⊢ S : A for specifications, ⊢ e : u for expressions, l ⊢ Sl : A for
expressions local to the location l, and l ⊢ el : u, l ⊢ Jφ : A and l ⊢ Jr : A
for expressions, resource and repository constraints local to l. The resulting
constraint is almost identical to S: only the references to elements ℓ, resources
and repository constraints have been translated into their equivalent in the
constraint syntax. The most interesting rules in our translation are Instance,

5One can remark that this constraint is not linear, and non-linear constraints solving is
in general undecidable. Fortunately, this particular constraint can be translated into several
linear ones.

19

Table 7 Specification Translation

True

⊢ true : true

Op

⊢ e1 : u1 ⊢ e2 : u2

⊢ e1 op e2 : u1 op u2

Not

⊢ S : A

⊢ ¬S : ¬A

Compose
6

⊢ S1 : A1 ⊢ S2 : A2

⊢ S1 ⊙ S2 : A1 ⊙ A2

Value

⊢ n : n
Variable

⊢ X : X
Instance

⊢ #ℓl : N(ℓl)

Machine

l ⊢ Jφ : Al
1 l ⊢ Jr : Al

2 l ⊢ Sl : Al
3

⊢ #(Jφ){Jr : Sl} :
∑

l∈Cl

‖Al
1 ∧ Al

2 ∧ Al
3‖

Plus

⊢ e1 : u1 ⊢ e2 : u2

⊢ e1 + e2 : u1 + u2

Minus

⊢ e1 : u1 ⊢ e2 : u2

⊢ e1 − e2 : u1 − u2

Times

⊢ e : u

⊢ n × e : n × u

LTrue

l ⊢ true : true

LOp

l ⊢ e
1
l : u1 l ⊢ e

2
l : u2

⊢ e
1
l op e

2
l : u1 op u2

LNot

l ⊢ S : A

l ⊢ ¬S : ¬A

LCompose
6

l ⊢ S
1
l : A1 l ⊢ S

2
l : A2

l ⊢ S
1
l ⊙ S

2
l : A1 ⊙ A2

LPlus

l ⊢ e
1
l : u1 l ⊢ e

2
l : u2

l ⊢ e
1
l + e

2
l : u1 + u2

LValue

l ⊢ n : n
LVariable

l ⊢ X : X
LInstance

l ⊢ #ℓl : N(l, ℓl)

LMinus

l ⊢ e
1
l : u1 l ⊢ e

2
l : u2

l ⊢ e
1
l − e

2
l : u1 − u2

LTimes

l ⊢ el : u

l ⊢ n × el : n × u

LEmptyRes

l ⊢ : true

LRes

l ⊢ Jφ : A

l ⊢ o op n; Jφ : O(l, o) op n ∧ A

LRep

l ⊢
∨

i

ri :
∑

i

R(l, ri) = 1

Machine, LInstance, LRes and LRep. Rule Instance states that #ℓl which
corresponds to the number of instances of ℓl in the configuration, is the variables
N(ℓl). Rule Machine counts the number of locations validating the specifica-
tion in input: to do so, it takes all the locations l in the configuration, checks if
that location validates the specification, and if yes, adds one to the count, using
reified constraints. Rule LInstance applies when #ℓl is used inside the speci-
fication of a location: in that case, #ℓl corresponds to the number of instances
of ℓl in that location, and thus, is the variable N(l, ℓl). Rule LRes encodes con-
straints on resources available on a location using the variables O(l, o). Finally,
rule LRep encodes the fact that only the repositories ri can be installed on l

with a sum ensuring that one of the R(l, ri) is equal to one.
Our encoding enjoys the following property:

Lemma 2. Given the constraint A generated from S, a configuration C and a
universe U , then C,U validates A iff they validates S.

Sketch. As the translation process is almost a one to one correspondence, the
result is direct for most cases, except for the Machine rule. That rule encodes

20

the number of locations validating an inner constraint into a sum of numbers
being 0 if a location does not validate the constraint, and 1 otherwise. That
sum is thus eaxactly equals to the number of locations validating the inner
constraint, which gives us the result.

4.4 Initial Configuration Translation

From the initial configuration, we extract the informations concerning the avail-
able locations. This was already partially done in the previous constraints,
where we used variables of the form N(l, ℓl). It remains to encode as constraint
the resources that are available on these locations. This is done with the fol-
lowing constraint:

∧

l∈Cl

∧

o∈O

O(l, o) = C(l).φ(o) (15)

Here, we simply give the value of all the variables O(l, o).

4.5 Optimization Function

Currently we support 3 different optimization functions:

1. compact aims to use the least number of location possible. This corre-
sponds to the following formula:

min

(

∑

l∈Cl

‖
∑

k∈Udk

N(l, k) ≥ 1‖

)

The sum counts all the locations that are used (i.e. all the locations on
which a package is installed). The goal of the optimization is then to
minimize that number.

2. spread aims to use the least number of components and packages, and to
place them on a maximal number of locations, to fully use the available re-
sources of the configuration. We built a function with that semantics using
a lexicographic order, that first minimizes the number of components and
packages in the system, and then maximizes the number of used locations.
This results in the following formula:

lex

(

min(
∑

x∈Udt∪Udk

N(x)) ; max(
∑

l∈Cl

‖
∑

k∈Udk

N(l, k) ≥ 1‖)

)

3. conservative finally aims to get a configuration that is the closest to the
initial one. To do that, our optimization function minimizes the difference

6For concision, ⊙ stands for either ∧, ∨ or ⇒

21

between the two configurations. Namely, it minimizes the difference in
which packages and components are installed on each locations:

min

∑

l∈Cl

∑

t∈Udt

|N(l, t)−#C(l, t)|

∑

k∈Udk

|N(l, k)− ‖C(l, k)‖ |

5 Configuration Generation

We now suppose that an optimal solution for the constraints has been found
by the solver. In this section, we present how Zephyrus generates its output
configuration C ′ = 〈L′,W ′, B′〉 from that solution and the initial configuration
C = 〈L,W,B〉.

5.1 Location Generation

First, Zephyrus generates the set of locations L′. This is simply done by taking
the locations from the initial configuration, and configuring them as described
in the solution (i.e. installing the right repositories and packages). We choose
not to remove the unused locations from the configuration, to leave that choice
to the system designer. Formally, L′ is defined as follow:

• dom(L′) = dom(L): the set of locations is the same the initial configura-
tion;

• ∀l ∈ Cl, L
′(l) = 〈L(l).φ, r, {k |N(l, k) = 1}〉 where R(l, r) = 1: for each

location, the resource it provides is the same as before, while the repository
and the packages it hosts are defined by the solution of the constraint.

5.2 Component Generation

Second, Zephyrus generates the components running on the system. To make
the runtime redeployment of the system as efficient as possible (and to comply
with the conservative optimization function), we try to reuse as many existing
components as possible. To achieve this, we use the sets Jl,t and Il,t that
respectively correspond to the components on location l with type t that we
reuse from the initial configuration, and the ones that we generate to get the
resulting configuration. These sets are defined as follow:

• Jl,t is one of the biggest subset of C(l, t) whose cardinality is smaller than
N(l, t). This means that if there are too many components of type t on l in
the initial configuration then we remove some of them to get only N(l, t)
of them; and if there are less components than N(l, t) then we keep all
of them, and add new ones with the set Il,t. Formally, Jl,t is defined as
follows:

∀l ∈ Cl, t ∈ Udt

{

Jl,t ⊂ C(l, t)
#(Jl,t) = min(#(C(l, t), N(l, t))

22

• Il,t is the set of components of type t on location l that we add to the
initial configuration to fit the cardinality N(l, t) found by the constraint
solving:

∀l ∈ Cl, t ∈ Udt

{

Il,t fresh
#(Jl,t ∪ Il,t) = N(l, t)

Using these sets, the construction of W ′ is quite direct: the components in
C ′ are the Jl,t and Il,t, and as we described, all components in Jl,t or Il,t are in
location l, with the type t. Formally, we have

{

dom(W ′) =
⋃

l∈Cl

⋃

t∈Udt
(Jl,t ∪ Il,t)

∀l ∈ C ′
l , t ∈ Udt, c ∈ Jl,t ∪ Il,t,W

′(c) = 〈l, t〉

5.3 Binding Generation

This last step of the construction of the configuration is the most difficult one.
As presented in the last lines of Table 8, the principle is quite simple: for each
component, we look at its dependencies, find a set of providers to satisfy them,
and then construct the binding accordingly. The difficult part is the choice of
these providers, which must follow three constraints: i) we must respect the
number given by the solution of the generated constraint; ii) we cannot bind
a provider too many times; and iii) all the bindings must be unique. This
part is done in the select function which is based on two tables: Tp gives for
all ports p the set of components c providing p, together with how many client
that component can still be connected to; Tt gives the number of bindings still
to be created between the instances of each component type. Basically, Tp is
used to ensure that we respect the connection capacity of each provider, and
Tt is used to ensure that we follow the solution of the constraint. On the other
hand, the unicity of the bindings, as well as the completeness of the algorithm
is ensured by the for loop in the select function. This for loop has three main
features. First, it takes a pair (n, c) at most once from Tp, ensuring the unicity
of the generated bindings; Second, it takes that pair in decreasing order, i.e. it
first takes the providers with the highest capacity. The idea is to keep as many
available providers as possible (i.e. with n > 0) to ensure the completeness of
the algorithm. Finally, the loop is finished by an until statement that ensures
we pick the right number of providers.

Lemma 3. Given a solution σ to the constraint generated in Section 4, the
binding generation algorithm will create as many bindings as specified by the
different values σ(B(p, tr, tp)).

Sketch. In addition to the two tables Tt and Tp used in the algorithm, consider
the table Tr mapping all pairs (p, t) where p is a port and t ∈ UR(p) to the
number of component of type t for which the bindings on p aren’t defined yet.
We also note Tp+(p, t) the subset of Tp(p) where the components are of type t

7For convenience, we note c.Ct the type of the component c in the configuration C′.

23

Table 8 Binding Generation Algorithm7

// Selection algorithm
∀p ∈ Udp, Tp(p)← {(c, n) | c.Ct ∈ UP(p) ∧ n = U(c.Ct).P(p)}
∀p ∈ Udp, tr ∈ UR(p), tp ∈ UP(p), Tt(p, tr, tp)← B(p, tr, tp)

select(p, tr) {

res← ∅
for (c, n) ∈ Tp(p) in decreasing order {

if Tt(p, tr, c.Ct) 6= 0 {

res← res ∪ {c}
Tt(p, tr, c.Ct) --

}

} until (#(res) = U(tr).R(p))
for c ∈ res { replace (c, n) with (c, n− 1) in Tp(p) }

return res

}

// Main algorithm
B′ ← ∅
for c ∈W ′ {

for p ∈ dom(U(c.Ct).R) {

G← select(p, c.Ct)

B′ ← B′ ∪ {(p, c, c′) | c′ ∈ G}
}}

and are mapped to strictly positive integers. It is not difficult to see that the
inner loop of the main part of the algorithm enjoys the three following invariants
(derived from (8)):

∧

p∈Udp

∧

tr∈UR(p)

(U(tr).R(p) × Tr(p, tr) =
∑

tp∈UP(p)

Tt(p, tp, tr))

∑

tp ∈ UP(p)

(c, n) ∈ Tp+(p, tp)

n ≥
∑

tr∈UR(p)

Tt(p, tp, tr))

∧

tr∈UR(p)

∧

tp∈UP(p)

Tt(p, tp, tr) ≤ Tr(p, tr) × #Tp+(p, tp)

Now, consider a component c of type tr, and a port p such that p ∈ dom(U(tr).R):
we show that the select function will find enough providers to satisfy the re-
quirements of c, thus proving correctness and completeness of our algorithm.
First, as c must be bound, the first invariant tells us that

U(tr).R(p) ≤
∑

tp∈UP(p)

Tt(p, tp, tr)) which implies U(tr).R(p) ≤
∑

tp∈UP(p)

#Tp
+
(p, tp)

This means that we have enough available providers to satisfy c, and by con-
struction of its for loop which takes providers in decreasing order, the select

function will find them.

24

5.4 Properties

We finally generate all the elements L′, W ′ and B′ defining the output configu-
ration C ′ of Zephyrus. We can now state the main properties of C ′: soundness,
completeness and optimality.

Theorem 1 (Soundness). The computed configuration C ′ validates the input
universe U , specification S and uses the locations given in the input configuration
C.

Sketch. The fact that C ′ validates the generated constraint is direct from how
we constructed it, except for the bindings whose generation algorithm is proved
correct and complete in the appendix. This implies, by Lemma 1 and 2, that
C ′ indeed validates the input universe U and specification S. Finally, by con-
struction, C ′ uses the locations given in the input configuration C.

Theorem 2 (Completeness). If there exists a configuration C ′′ that validates
the input universe U , specification S and is deployed on the locations of C, then
Zephyrus will succesfully compute some solution C ′.

Sketch. By Lemma 1 and 2, we can see that C ′′ validates the constraint A
generated in Section 4. Hence, A has a solution, which means that the solver
succeeds to produce a solution. And finally, our configuration generation algo-
rithm, which never fails, will produce C ′.

Theorem 3 (Optimality). The generated configuration C ′ is optimal w.r.t the
chosen optimization function.

Sketch. By definition, the solution given by the solver is optimal w.r.t. the
optimization function. By construction, C ′ follows that solution in its design,
and thus, is optimal too.

6 Related and Future work

The problem of managing networks of interconnected machines has attracted
significant attention in the area of system administration. Many popular tools
to that end exist, e.g. CFEngine [Bur95], Puppet [Kan06], MCollective [Pup]
and Chef [Ops]. Despite their differences, they all allow to declare the compo-
nents to be installed on each machine, together with their configuration files,
and then employ various mechanisms to deploy components accordingly. The
burden of specifying which components to deploy where, and how to intercon-
nect them is left to the user, let alone the difficult problem of optimal resource
allocation. As an additional complication, these tools rely blindly on existing
package managers, and they have no way of knowing in advance whether package
installation will actually succeed: if the user requests to install two web servers
on the same machine, the incompatibility will only be discovered at deploy time,
when one of the services fails to get installed (or start). In our approach incom-
patibilities are known to Zephyrus that can then plan around them. System

25

management tools can however be used as convenient deployment backend for
Zephyrus: once optimal resource allocation is done, the actual deployment can
be delegated to them, with the guarantee that no deployment error will arise.
CloudFoundry [VMW], while specifically targeted at application deployment in
the cloud, has the same limitations described above.

ConfSolve [HAG12] improves on the tools described above, relying on a
constraint solver to propose an optimal allocation of virtual machines on servers
and applications on virtual machines, but it does not handle in any way neither
connections among services, nor capacity or replication constraints, and knows
nothing about package incompatibilities.

Two recent efforts, Juju [Can] and Engage [FME12], are more similar to our
approach: they both rely on a solver to perform their deployment work. But
there are several major differences with our work. First, both tools avoid the
problem of dealing with conflicts among components. In Juju, each service is
deployed on a single machine (or, more recently, in a virtual container inside
one). That avoids conflict issues, but at the price of wasting resources: in
the example of Section 2 Zephyrus proposes a solution that needs 4 machines,
whereas Juju would have required 6 (or 7, in the increased redundancy case).
In Engage, conflicts are not even available in the specification language, one
can only indicate that a service can be realised by exactly one out of a list of
components. Second, neither of these tools—or any other that we are aware
of—allows to declare capacity or replication constraints, which are essential in
any non-trivial, scalable application. Finally, none of the aforementioned tools
allows to find a deployment that uses resources in an optimal way, minimizing
the number of needed (virtual) machines.

Another approach to automating deployment is proposed in [ECBdP11]; it
uses an Architecture Description Language with information on the relationships
among software services, which needs to be explicitly provided by the user in
full detail, and uses a decentralized protocol to perform automatic configuration.
This work may also be used as a backend for Zephyrus.

In future work, we plan to study under which assumptions one can also pro-
duce a detailed reconfiguration plan for stopping and restarting the deployed
services in the right order to minimize downtime. We also plan to extend the
current model, which is “flat” in the sense of [DCZZ12], to support hierar-
chies of deployment locations to represent both administrative domains (such
as connected private networks) and nested virtualization containers. Something
similar has been done in Engage, but without any support for restricting the vis-
ibility of components according to placement in the hierarchy. We would like to
support that, considering visibility to be the most useful feature of hierarchies,
especially in the presence of conflicts.

7 Conclusion

We have described a concise and powerful, semi-automated approach to the
design and deployment of complex distributed applications composed of inter-

26

connected services, as they are typically found in modern cloud environments.
The system architect can specify the core components needed to obtain the re-
quired functionalities, add non functional constraints—like a maximum number
of clients connected to a given service, or a minimum number of replicas—as well
as constraints on physical resources—e.g. memory or bandwidth—and explicit
incompatibilities among components. The user can also choose among various
optimization functions, which allow to specify whether she prefers a conserva-
tive solution, changing the current configuration as little as possible, or a highly
economical solution, using only a minimum number of machines.

Equipped with all this, the prototype tool Zephyrus will find an optimal de-
ployment solution and output a complete system configuration, including precise
information about service interconnection. Such a description can then be used
as input for traditional low-level configuration management systems which are
popular in system administration circles. A major advantage of the proposed
approach w.r.t. the state of the art is that all existing constraints, including
software package-level incompatibilities, are taken into account shielding from
deploy-time errors. We have also formally proved that our encoding is correct
w.r.t the specification, and that finding the correct service interconnections will
always succeed when a solution is found.

To the best of our knowledge, this is the first tool that allows to handle
capacity and replication constraints, conflicts, and multiple services on a sin-
gle machine, thus finally providing an instrument able to handle the stringent
requirements of distributed applications in the real world.

27

References

[BB01] Pascal Brisset and Nicolas Barnier. Facile: a functional constraint
library, 2001.

[Bur95] Mark Burgess. A site configuration engine. Computing Systems,
8(2):309–337, 1995.

[Can] Canonical Ltd. Juju, devops distilled. https://juju.ubuntu.

com/. Retrieved February 2013.

[CV11] Roberto Di Cosmo and Jérôme Vouillon. On software component
co-installability. In Tibor Gyimóthy and Andreas Zeller, editors,
SIGSOFT FSE, pages 256–266. ACM, 2011.

[DCZZ12] Roberto Di Cosmo, Stefano Zacchiroli, and Gianluigi Zavattaro.
Towards a formal component model for the cloud. In SEFM 2012,
volume 7504 of LNCS, pages 156–171. Springer, 2012.

[ECBdP11] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma. Self-
configuration of distributed applications in the cloud. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on,
pages 668 –675, july 2011.

[FME12] Jeffrey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali.
Engage: a deployment management system. In PLDI’12: Program-
ming Language Design and Implementation, pages 263–274. ACM,
2012.

[HAG12] John A. Hewson, Paul Anderson, and Andrew D. Gordon. A declar-
ative approach to automated configuration. In LISA ’12: Large
Installation System Administration Conference, pages 51–66, 2012.

[Kan06] Luke Kanies. Puppet: Next-generation configuration management.
;login: the USENIX magazine, 31(1):19–25, 2006.

[MBC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouil-
lon, Berke Durak, Xavier Leroy, and Ralf Treinen. Managing the
complexity of large free and open source package-based software
distributions. In ASE, pages 199–208. IEEE Computer Society,
2006.

[ND11] I. Neamtiu and T. Dumitras. Cloud software upgrades: Chal-
lenges and opportunities. In Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (MESOCA), 2011 International
Workshop on the, pages 1 –10, sept. 2011.

[Ops] Opscode. Chef. http://www.opscode.com/chef/. Retrieved
February 2013.

28

[Pup] Puppet Labs. Marionette collective. http://docs.puppetlabs.

com/mcollective/. Retrieved February 2013.

[SLT] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode.
http://www.gecode.org/. Retrieved February 2013.

[VMW] VMWare. Cloud Foundry, deploy & scale your applications in sec-
onds. http://www.cloudfoundry.com/. Retrieved February 2013.

29

