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Abstract

The cardiac electrical activity follows a complex dynam-

ics whose accurate description is crucial to characterize

arrhythmias and classify their complexity. Rhythm reflects

the connection topology of pacemaker cells at their source.

Hence, characterizing the attractors as nonlinear, effective

dynamics can capture the key parameters without imposing

any particular model on the empirical signals. A dynamic

phase-space reconstruction from appropriate embedding

can be made robust and numerically stable with the pre-

sented method.

1. Introduction

The traditional approach to cardiodynamics consists of

qualitatively characterizing the peculiar shapes of poten-

tial signals. Some signatures of such shapes are specific

of arrhythmias and so mark the success of this approach,

particularly from electrocardiograms. Alternatively, but in

a quite similar way, the statistical approach tries to sig-

nal specificities that are not present in the electrical signals

themselves but in the distribution function of the signal

or of some measure derived from it. Statistical methods

for processing cardiac signals have had a notable success

in several areas, e.g., providing measures of complexity

of a certain arrhythmia. Additionally, they output quan-

titative measures, they provide confidence intervals, and

sometimes we know how to apply them robustly. Limita-

tions of this approach consist of restrictive hypotheses on

the processes behind the processed signals, or parameters

that do not have any direct physical interpretation, e.g., en-

tropy of a continuous variable diverges [1].

Statistical methods do not always respect the signal in-

variances. This fact motivates looking for fractal [2–4]

or multifractal [5–7] approaches to heart rate variabil-

ity, which capture the multiscale properties of the pro-

cess. More interestingly, multifractal analysis reconnects

the statistical features of the signal with a geometrical in-

terpretation linked to the effective macroscopic transfer of

information in the signal [8–13]. Taking a different path,

embedding methods can also reconstruct the effective at-

tractor of the system that produced the signal. This ef-

fect reinforces the possibilities for cross-validating the ob-

tained parameters as well as obtaining their physical inter-

pretation [14].

The paper has the following structure: section 2 intro-

duces the basic methods used for processing the cardiac

electrical signals; we show our results in the identification

of dynamical regimes. Finally, in section 3 we discuss the

results and present the conclusions of our study.

2. Statistical methods based on nonlinear

dynamics

The electrical activity of the heart is often described as

a complex system. Complexity can have multiple interpre-

tations varying in both nature and extent. Nevertheless, the

effect in all cases is that the behaviour of the system as a

whole is an emergent behaviour, which could not be de-

rived from separately considering the microscopic mech-

anisms (be them at cell level or even at molecular level).

This non-separability of the different scales involved is a

consequence of nonlinear interactions or, in other words,

expressing the effect at a given level requires more than

just the sum of effects at lower levels. This is what makes

global synchronization possible, also can amplify micro-

scopic fluctuations to perturb the whole regime [6, 7].

Emergence of chaos becomes even more important in

complex arrhythmic regimes, where linearized descrip-

tors fail to provide meaningful parameterizations except

only possibly for very short time windows, or microscopic

space or parametric scales. In this context, any appropriate

processing methodology must be nonlinear in nature. Sin-

gularity analysis provides a robust framework that iden-

tifies dynamical transition fronts and information content



[8,10,15] which is useful for cardiac electric potential sig-

nals [12, 13, 16].

2.1. Singularity analysis

The degree of singularity or regularity of a given point in

a signal tells how rare is the signal at this point and there-

fore how much information it contains. A local expansion

of the signal around this point has a leading order that dom-

inates at the local neighbourhood (short distances, or small

perturbations of the position). This leading order is the

scale parameter raised to an exponent, which is not neces-

sarily integer. A signal s(x) has a (fractional) singularity

exponent h(x) at point x if

TΨµ(x, r) = αΨ(x) r
h(x) + o

(

rh(x)
)

(r → 0).

(1)

with TΨµ(x, r) =
∫

R
dµ(x′)Ψ ((x− x

′)/r) as the

wavelet-projected measure µ at scale r and Ψ as a cer-

tain wavelet kernel. The measure is differentially defined:

dµ(x) = ‖∇s‖(x) dx.

Now, the sole requirements of being deterministic, lin-

ear, isotropic and translational invariant permit to de-

fine a local reconstruction kernel [11, 17]. Actually, this

minimal-assumption reconstruction identifies a reduced

signal which is reconstructed only from the orientation of

the signal on its most singular points [13]. The actual sig-

nal and its reduced counterpart are related through a com-

plex but slow-changing modulation called source field, SF:

SF (~x, t) =
dµs

dµr
(~x, t). (2)

2.2. Phase-space reconstruction

Time series evolution is mapped to an object embedded

in a phase space in abstract coordinates. m independent

observations construct an mD phase space, as per the em-

bedding theorem [18, 19]. The dimension m is the least

one that embeds the dynamics (which is twice plus one the

Minkowski dimension of its attractor set) and the time lag

τ is the shortest for which the m coordinates do not mutu-

ally interfere.

With appropriate filtering, the method is robust and

adapted to empirical signals. The result is a compact dy-

namical description that characterizes complexity degree

and information distribution [20–22].

Both singularity analysis and phase-space reconstruc-

tion give a geometric perspective to the dynamics of the

system, which is only partially observed as variables re-

sulting in the electrograms. In both cases, all the struc-

tural complexity of the system is abstractly represented as

means of effective dynamics. In practical terms, singular-

ity analysis follows an approach that is radically different
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Figure 1. Time lag τ (expressed in samples, at 360 Hz)

of local phase-space reconstruction for MIT-BIH Arrhyth-

mia Database [23, 24] case #217: a fragmented electro-

gram with many intermittent episodes of atrial flutter and

fibrillation, which appear well segmented by the lags.

from the one of a local phase-space reconstruction. Time

lag fluctuations of reconstruction correlate with atrial fib-

rillation episodes, as we can observe in Figure 1. Corre-

spondingly, the dynamical changes implied from singular-

ity analysis also highlight atrial fibrillation in a local way,

as described in [13] and presented as well in [12, 16].

3. Discussion and conclusions

Nonlinear analysis provides appropriate tools to charac-

terize cardiac dynamics. Singularity analysis and phase-

space reconstruction are physically meaningful complex-

ity measures with minimal assumptions on the underlying

models. These methods are based on effective descriptions

derived from first principles, and as a consequence, param-

eters are robustly estimated. We have validated this ap-

proach on ECG, endocavitary catheter measures and elec-

trocardiographic maps [16].

Key parameters vary infrequently and exhibit sharp tran-

sitions, which show where information concentrates and

correspond to actual dynamical regime changes. Singu-

larity exponents sift a simple fast dynamics from its slow

modulation [12, 13]. In space domain, extreme values

highlight arrhythmogenic areas. We observe a correspon-

dence of time lag fluctuations of phase-space reconstruc-

tions with atrial fibrillation episodes in the same way as

with the dynamical changes coming from singularity ex-

ponents. This characterization of information transitions

could be used in the regularization of inverse-problem

mapping of electrocardiographic epicardial maps. Further-

more, this opens the way for improved model-independent

complexity descriptors to be used in non-invasive, auto-

matic diagnosis support and ablation guide for electrical

insulation therapy, in cases of arrhythmias such as atrial

flutter and fibrillation [13, 14].
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