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Abstract

In this paper, we propose a new method
for semantic class induction. First, we in-
troduce a generative model of sentences,
based on dependency trees and which
takes into account homonymy. Our model
can thus be seen as a generalization of
Brown clustering. Second, we describe
an efficient algorithm to perform inference
and learning in this model. Third, we
apply our proposed method on two large
datasets (108 tokens, 105 words types),
and demonstrate that classes induced by
our algorithm improve performance over
Brown clustering on the task of semi-
supervised supersense tagging and named
entity recognition.

1 Introduction

Most competitive learning methods for compu-
tational linguistics are supervised, and thus re-
quire labeled examples, which are expensive to
obtain. Moreover, those techniques suffer from
data scarcity: many words only appear a small
number of time, or even not at all, in the training
data. It thus helps a lot to first learn word clus-
ters on a large amount of unlabeled data, which
are cheap to obtain, and then to use this clusters
as features for the supervised task. This scheme
has proven to be effective for various tasks such
as named entity recognition (Freitag, 2004; Miller
et al., 2004; Liang, 2005; Faruqui et al., 2010),
syntactic chunking (Turian et al., 2010) or syntac-
tic dependency parsing (Koo et al., 2008; Haffari
et al., 2011; Tratz and Hovy, 2011). It was also
successfully applied for transfer learning of multi-
lingual structure by Täckström et al. (2012).

The most commonly used clustering method for
semi-supervised learning is the one proposed by
Brown et al. (1992), and known as Brown clus-
tering. While still being one of the most efficient
word representation method (Turian et al., 2010),
Brown clustering has two limitations we want to
address in this work. First, since it is a hard clus-
tering method, homonymy is ignored. Second, it
does not take into account syntactic relations be-
tween words, which seems crucial to induce se-
mantic classes. Our goal is thus to propose a
method for semantic class induction which takes
into account both syntax and homonymy, and then
to study their effects on semantic class learning.

In this paper, we start by introducing a new un-
supervised method for semantic classes induction.
This is achieved by defining a generative model
of sentences with latent variables, which aims at
capturing semantic roles of words. We require our
method to be scalable, in order to learn models on
large datasets containing tens of millions of sen-
tences. More precisely, we make the following
contributions:

• We introduce a generative model of sen-
tences, based on dependency trees, which can
be seen as a generalization of Brown cluster-
ing,

• We describe a fast approximate inference al-
gorithm, based on message passing and on-
line EM for scaling to large datasets. It al-
lowed us to learn models with 512 latent
states on a dataset with hundreds of millions
of tokens in less than two days on a single
core,

• We learn models on two datasets, Wikipedia
articles about musicians and the NYT corpus,



and evaluate them on two semi-supervised
tasks, namely supersense tagging and named
entity recognition.

1.1 Related work
Brown clustering (Brown et al., 1992) is the most
commonly used method for word cluster induc-
tion for semi-supervised learning. The goal of this
algorithm is to discover a clustering function C
from words to clusters which maximizes the like-
lihood of the data, assuming the following sequen-
tial model of sentences:∏

k

p(wk | C(wk))p(C(wk) | C(wk−1)).

It can be shown that the best clustering is actually
maximizing the mutual information between adja-
cent clusters. A greedy agglomerative algorithm
was proposed by Brown et al. (1992) in order to
find the clustering C, while Clark (2003) proposed
to use the exchange clustering algorithm (Kneser
and Ney, 1993) to maximize the previous likeli-
hood. One of the limitations of this model is the
fact that it neither takes into account homonymy
or syntax.

Another limitation of this method is the com-
plexity of the algorithms proposed to find the best
clustering. This led Uszkoreit and Brants (2008)
to consider a slightly different model, where the
class-to-class transitions are replaced by word-to-
class transitions:∏

k

p(wk | C(wk))p(C(wk) | wk−1).

Thanks to that modification, Uszkoreit and Brants
(2008) designed an efficient variant of the ex-
change algorithm, allowing them to train models
on very large datasets. This model was then ex-
tended to the multilingual setting by Täckström et
al. (2012).

Semantic space models are another family of
methods, besides clustering, that can be used as
features for semi-supervised learning. In those
techniques, words are represented as vectors in
a high-dimensional space. These vectors are ob-
tained by representing the unlabeled corpus as a
word-document co-occurrence matrix in the case
of latent semantic analysis (LSA) (Deerwester et
al., 1990), or word-word co-occurrence matrix in
the case of the hyperspace analog to language
model (HAL) (Lund and Burgess, 1996). Dimen-
sion reduction is then performed, by taking the

singular value decomposition of the co-occurrence
matrix, in order to obtained the so-called seman-
tic space. Hofmann (1999) proposed a variant of
LSA, which corresponds to a generative model of
document. More recently, Dhillon et al. (2011)
proposed a method based on canonical correlation
analysis to obtained a such word embeddings.

A last approach to word representation is la-
tent Dirichlet allocation (LDA), proposed by Blei
et al. (2003). LDA is a generative model where
each document is viewed as a mixture of topics.
The major difference between LDA and our model
is the fact that LDA treats documents as bags of
words, while we introduce a model of sentences,
taking into account the syntax. Griffiths et al.
(2005) defined a composite model, using LDA for
topic modeling and an HMM for syntax model-
ing. This model, HMM-LDA, was used by Li
and McCallum (2005) for semi-supervised learn-
ing and applied to part-of-speech tagging and Chi-
nese word segmentation. Séaghdha (2010) pro-
posed to use topic models, such as LDA, to per-
form selectional preference induction.

Finally, Boyd-Graber and Blei (2009) proposed
a variant of LDA, using parse trees to include the
syntax. Given that we aim for our classes to cap-
ture as much of the word semantics reflected by
the syntax, such as the semantic roles of words,
we believe that it is not necessarily useful or even
desirable that the latent variables should be deter-
mined, even in part, by topic parameters that are
sharing information at the document level. More-
over, our model being significantly simpler, we
were able to design fast and efficient algorithms,
making it possible to use our model on much
larger datasets, and with many more latent classes.

2 Model

In this section, we introduce our probabilistic gen-
erative model of sentences. We start by setting
up some notations. A sentence is represented
by a K-tuple w = (w1, ..., wK) where each
wk ∈ {1, ..., V } is an integer representing a word
and V is the size of the vocabulary. Our goal will
be to infer a K-tuple c = (c1, ..., cK) of seman-
tic classes, where each ck ∈ {1, ..., C} is an in-
teger representing a semantic class, corresponding
to the word wk.

The generation of a sentence can be decom-
posed in two steps: first, we generate the seman-
tic classes according to a Markov process, and



Opposition political parties have harshly criticized the pact

c0 c1 c2 c3 c4 c5 c6 c7 c8

w1 w2 w3 w4 w5 w6 w7 w8

Figure 1: Example of a dependency tree and its corresponding graphical model.

then, given each class ck, we generate the corre-
sponding word wk independently of other words.
The Markov process used to generate the seman-
tic classes will take into account selectional pref-
erence. Since we want to model homonymy, each
word can be generated by multiple classes.

We now describe the Markov process we pro-
pose to generate the semantic classes. We assume
that we are given a directed tree defined by the
function π : {1, ...,K} 7→ {0, ...,K}, where π(k)
represents the unique parent of the node k and 0
is the root of the tree. Each node, except the root,
corresponds to a word of the sentence. First, we
generate the semantic class corresponding to the
root of the tree and then generate recursively the
class for the other nodes. The classes are condi-
tionally independent given the classes of their par-
ents. Using the language of probabilistic graphical
models, this means that the distribution of the se-
mantic classes factorizes in the tree defined by π
(See Fig. 1 for an example). We obtain the fol-
lowing distribution on pairs (w, c) of words and
semantic classes:

p(w, c) =
K∏
k=1

p(ck | cπ(k))p(wk | ck),

with c0 being equal to a special symbol denoting
the root of the tree.

In order to fully define our model, we now
need to specify the observation probability distri-
bution p(wk | ck) of a word given the correspond-
ing class and the transition probability distribution
p(ck | cπ(k)) of a class given the class of the par-
ent. Both these distributions will be categorical
(and thus multinomial with one trial). The cor-

responding parameters will be represented by the
stochastic matrices O and T (i.e. matrices with
non-negative elements and unit-sum columns):

p(wk = i | ck = j) = Oij ,

p(ck = i | cπ(k) = j) = Tij .

Finally, we introduce the trees that we consider to
define the distribution on semantic classes. (We
recall that the trees are assumed given, and not a
part of the model.)

2.1 Markov chain model
The simplest structure we consider on the seman-
tic classes is a Markov chain. In this special case,
our model reduces to a hidden Markov model.
Each semantic class only depends on the class of
the previous word in the sentence, thus failing to
capture selectional preference of semantic class.
But because of its simplicity, it may be more ro-
bust, and does not rely on external tools. It can be
seen as a generalization of the Brown clustering
algorithm (Brown et al., 1992) taking into account
homonymy.

2.2 Dependency tree model
The second kind of structure we consider to model
interactions between semantic classes is a syntac-
tic dependency tree corresponding to the sentence.
A dependency tree is a labeled tree in which nodes
correspond to the words of a sentence, and edges
represent the grammatical relations between those
words, such as nominal subject, direct object or
determiner. We use the Stanford typed dependen-
cies basic representations, which always form a
tree (De Marneffe and Manning, 2008).



We believe that a dependency tree is a better
structure than a Markov chain to learn semantic
classes, with no additional cost for inference and
learning compared to a chain. First, syntactic de-
pendencies can capture long distance interactions
between words. See Fig. 1 and the dependency
between parties and criticized for an ex-
ample. Second, the syntax is important to model
selectional preference. Third, we believe that syn-
tactic trees could help much for languages which
do not have a strict word order, such as Czech,
Finnish, or Russian. One drawback of this model
is that all the children of a particular node share
the same transition probability distribution. While
this is not a big issue for nouns, it is a bigger con-
cern for verbs: subject and object should not share
the same transition probability distribution.

A potential solution would be to introduce a dif-
ferent transition probability distribution for each
type of dependency. This possibility will be ex-
plored in future work.

2.3 Brown clustering on dependency trees

As for Brown clustering, we can assume that
words are generated by a single class. In that case,
our model reduces to finding a deterministic clus-
tering function C which maximizes the following
likelihood:∏

k

p(wk | C(wk))p(C(wk) | C(wπ(k))).

In that case, we can use the algorithm proposed
by Brown et al. (1992) to greedily maximize the
likelihood of the data. This model can be seen as
a generalization of Brown clustering taking into
account the syntactic relations between words.

3 Inference and learning

In this section, we present the approach used to
perform learning and inference in our model. Our
goal here is to have efficient algorithms, in order
to apply our model to large datasets (108 tokens,
105 words types). The parameters T and O of the
model will be estimated with the maximum likeli-
hood estimator:

T̂, Ô = argmax
T,O

N∏
n=1

p(w(n) | T,O),

where (w(n))n∈{1,...,N} represents our training set
of N sentences.

First, we present an online variant of the well-
known expectation-maximization (EM) algorithm,
proposed by Cappé and Moulines (2009), allowing
our method to be scalable in term of numbers of
examples. Then, we present an approximate mes-
sage passing algorithm which has a linear com-
plexity in the number of classes, instead of the
quadratic complexity of the exact inference algo-
rithm. Finally, we describe a state-splitting strat-
egy to speed up the learning.

3.1 Online EM
In the batch EM algorithm, the E-step consists in
computing the expected sufficient statistics τ and
ω of the model, sometimes referred as pseudo-
counts, corresponding respectively to T and O:

τij =
N∑
n=1

Kn∑
k=1

E
[
δ(c

(n)
k = i, c

(n)
π(k) = j)

]
,

ωij =
N∑
n=1

Kn∑
k=1

E
[
δ(w

(n)
k = i, c

(n)
k = j)

]
.

On large datasets, N which is the number of sen-
tences can be very large, and so, EM is inefficient
because it requires that inference is performed on
the entire dataset at each iteration. We therefore
consider the online variant proposed by Cappé
and Moulines (2009): instead of recomputing the
pseudocounts on the whole dataset at each itera-
tion t, those pseudocounts are updated using only
a small subset Bt of the data, to get

τ
(t)
ij = (1− αt)τ (t−1)ij +

αt
∑
n∈Bt

Kn∑
k=1

E
[
δ(c

(n)
k = i, c

(n)
π(k) = j)

]
,

and

ω
(t)
ij = (1− αt)ω(t−1)

ij +

αt
∑
n∈Bt

Kn∑
k=1

E
[
δ(w

(n)
k = i, c

(n)
k = j)

]
,

where the scalars αt are defined by αt = 1/(a +
t)γ with 0.5 < γ ≤ 1. In the experiments,
we used a = 4. We chose γ in the set
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

3.2 Approximate inference
Inference is performed on trees using the sum-
product message passing algorithm, a.k.a. belief
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Figure 2: Comparison of the two projection methods for approximating vectors, for a model with 128
latent classes. The first two plots are the log-likelihood on a held-out set as a function of the iterates of
online EM. Green curves (k = 128 and ε = 0) correspond to learning without approximation.

propagation, which extends the classical α−β re-
cursions used for chains, see e.g. Wainwright and
Jordan (2008). We denote by N (k) the set con-
taining the children and the father of node k. In
the exact message-passing algorithm, the message
µk→π(k) from node k to node π(k) takes the form:

µk→π(k) = T>u,

where u is the vector obtained by taking the ele-
mentwise product of all the messages received by
node k except the one from node π(k), i.e.,

ui =
∏

k′∈N (k)\{π(k)}

µk′→k(i).

Similarly, the pseudocounts can be written as

E
[
δ(c

(n)
k = i, c

(n)
π(k) = j)

]
∝ uiTijvj ,

where v is the vector obtained by taking the ele-
mentwise product of all the messages received by
node π(k), except the one from node k, i.e.,

vj =
∏

k′∈N (π(k))\{k}

µk′→π(k)(j).

Both these operations thus have quadratic com-
plexity in the number of semantic classes. In or-
der to reduce the complexity of those operations,
we propose to start by projecting the vectors u
and v on a set of sparse vectors, and then, per-
form the operations with the sparse approximate
vectors. We consider two kinds of projections:

• k-best projection, where the approximate
vector is obtained by keeping the k largest
coefficients,

• ε-best projection, where the approximate
vector is obtained by keeping the smallest set
of larger coefficients such that their sum is
greater than (1− ε) times the `1-norm of the
original vector.

This method is similar to the one proposed by Pal
et al. (2006). The advantage of the k-best projec-
tion is that we control the complexity of the op-
erations, but not the error, while the advantage of
the ε-best projection is that we control the error
but not the complexity. As shown in Fig. 2, good
choices for ε and k are respectively 0.01 and 16.
We use these values in the experiments. We also
note, on the right plot of Fig. 2, that during the
first iterations of EM, the sparse vectors obtained
with the ε-best projection have a large number of
non-zero elements. Thus, this projection is not
adequate to directly learn large latent class mod-
els. This issue is addressed in the next section,
where we present a state splitting strategy in or-
der to learn models with a large number of latent
classes.

3.3 State splitting

A common strategy to speed up the learning of
large latent state space models, such as ours, is
to start with a small number of latent states, and
split them during learning (Petrov, 2009). As far
as we know, there are still no good heuristics to
choose which states to split, or how to initialize the
parameters corresponding to the new states. We
thus apply the simple, yet effective method, con-
sisting in splitting all states into two and in break-
ing the symmetry by adding a bit of randomness
to the emission probabilities of the new states. As
noted by Petrov (2009), state splitting could also
improve the quality of learnt models.

3.4 Initialization

Because the negative log-likelihood function is not
convex, initialization can greatly change the qual-
ity of the final model. Initialization for online EM
is done by setting the initial pseudocounts, and
then performing an M-step. We have considered



the following strategies to initialize our model:

• random initialization: the initial pseudo-
counts τij and ωij are sampled from a uni-
form distribution on [0, 1],

• Brown initialization: the model is initial-
ized using the (normalized) pseudocounts ob-
tained by the Brown clustering algorithm.
Because a parameter equal to zero remains
equal to zero when using the EM algorithm,
we replace null pseudocounts by a small
smoothing value, e.g., for observation i, we
use 10−5 ×maxj ωij ,

4 Experiments

In this section, we present the datasets used for the
experiments, and the two semi-supervised tasks
on which we evaluate our models: named entity
recognition and supersense tagging.

4.1 Datasets
We considered two datasets: the first one, which
we refer to as the music dataset, corresponds to
all the Wikipedia articles refering to a musical
artist. They were extracted using the Freebase
database1. This dataset comprises 2.22 millions
sentences and 56 millions tokens. We choose this
dataset because it corresponds to a restricted do-
main.

The second dataset are the articles of the NYT
corpus (Sandhaus, 2008) corresponding to the pe-
riod 1987-1997 and labeled as news. This dataset
comprises 14.7 millions sentences and 310 mil-
lions tokens.

We parsed both datasets using the Stanford
parser, and converted parse trees to dependency
trees (De Marneffe et al., 2006). We decided to
discard sentences longer than 50 tokens, for pars-
ing time reasons, and then lemmatized tokens us-
ing Wordnet. Each word of our vocabulary is then
a pair of lemma and its associated part-of-speech.
This means that the noun attack and the verb at-
tack are two different words. Finally, we intro-
duced a special token, -*-, for infrequent (lemma,
part-of-speech) pairs, in order to perform smooth-
ing. For the music dataset, we kept the 25 000
most frequent words, while for the NYT corpus,
we kept the 100 000 most frequent words. For the
music dataset we set the number of latent states to
256, while we set it to 512 for the NYT corpus.

1www.freebase.com

4.2 Qualitative results
Before moving on to the quantitative evaluation of
our model, we discuss qualitatively the induced se-
mantic classes. Examples of semantic classes are
presented in Tables 1, 2 and 3. Tree models with
random initialization were used to obtain those se-
mantic classes. First we observe that most classes
can be easily given natural semantic interpretation.
For example class 196 of Table 1 contains musical
instruments, while class 116 contains musical gen-
res.

Table 2 presents groups of classes that contain a
given homonymous word; it seems that the differ-
ent classes capture rather well the different senses
of each word. For example, the word head belongs
to the class 116, which contains body parts and to
the class 127, which contains words referring to
leaders.

4.3 Semi-supervised learning
We propose to evaluate and compare the different
models in the following semi-supervised learning
setting: we start by learning a model on the NYT
corpus in an unsupervised way, and then use it to
define features for a supervised classifier. We now
introduce the tasks we considered.

4.3.1 Named entity recognition
The first supervised task on which we evaluate the
different models, is named entity recognition. We
cast it as a sequence tagging problem, and thus, we
use a linear conditional random field (CRF) (Laf-
ferty et al., 2001) as our supervised classifier. For
each sentence, we apply the Viterbi algorithm in
order to obtain the most probable sequence of se-
mantic classes, and use this as features for the
CRF. The only other feature we use is a binary
feature indicating if the word is capitalized or not.
Results of experiments performed on the MUC7
dataset are reported in table 4. The baseline for
this task is assigning named entity classes to word
sequences that occur in the training data.

4.3.2 Supersense tagging
Supersense tagging consists in identifying, for
each word of a sentence, its corresponding su-
persense, a.k.a. lexicographer class, as defined by
Wordnet (Ciaramita and Altun, 2006). Because
each Wordnet synset belongs to one lexicogra-
pher class, supersense tagging can be seen as a
coarse disambiguation task for nouns and verbs.
We decided to evaluate our models on this task to



# 54 radio BBC television station tv stations channel 1 MTV program network fm music
# 52 chart billboard uk top top singles 100 Hot album country 40 10 R&B 200 US song u.s.
# 78 bach mozart liszt beethoven wagner chopin brahms stravinsky haydn debussy tchaikovsky
# 69 sound style instrument elements influence genre theme form lyric audience direction
#215 tour show concert performance appearance gig date tours event debut session set night party
#116 rock pop jazz classical folk punk metal roll hip country traditional -*- blues dance
#123 win receive sell gain earn award achieve garner give enjoy have get attract bring include
#238 reach peak hit chart go debut make top platinum fail enter gold become with certify
#203 piano concerto -*- for violin symphony in works sonata string of quartet orchestra no.
#196 guitar bass vocal drum keyboard piano saxophone percussion violin player trumpet organ
#243 leave join go move form return sign tour begin decide continue start attend meet disband
#149 school university college hall conservatory academy center church institute cathedral

Table 1: Selected semantic classes corresponding to the music dataset. Like LDA, our model is a proba-
bilistic model which generates words from latent classes. Unlike LDA though, rather than treating words
as exchangeable, it accounts for syntax and semantic relations between words. As a consequence, instead
of grouping words with same topic but various semantic roles or grammatical functions, our model tends
to group words that tend to be syntactically and semantically equivalent.

#116 head hand hands foot face shoulder way knee eyes back body finger car arms arm
#127 president member director chairman executive head editor professor manager secretary
#360 company corporation group industry fund bank association institute trust system
#480 street avenue side bank square precinct coast broadway district strip bridge station
#87 pay base sell use available buy depend make provide receive get lose spend charge offer
#316 charge arrest convict speak tell found accuse release die indict ask responsible suspend
#263 system computer machine technology plant product program equipment line network
#387 plan agreement contract effort program proposal deal offer bill bid order campaign request
#91 have be win score play lead hit make run -*- lose finish pitch start miss come go shoot take
#198 kill shoot die wound injure found arrest fire report take dead attack beat leave strike carry

Table 2: Semantic classes containing homonymous words. Different classes capture different senses of
each word.

demonstrate the effect of homonymy. We cast su-
persense tagging as a classification problem and
use posterior distribution of semantic classes as
features for a support vector machine with the
Hellinger kernel, defined by

K(p,q) =

C∑
c=1

√
pcqc,

where p and q are posterior distributions. We train
and test the SVM classifier on the section A, B and
C of the Brown corpus, tagged with Wordnet su-
persenses (SemCor). All the considered methods
predict among the possible supersenses according
to Wordnet, or among all the supersenses if the
word does not appear in Wordnet. We report re-
sults in Table 5. The baseline predicts the most
common supersense of the training set.

4.4 Discussion of results

First, we observe that hidden Markov models im-
prove performances over Brown clustering, on
both chains and trees. This seems to indicate
that taking into account homonymy leads to richer
models which is beneficial for both tasks. We also
note that Brown clustering on dependency trees al-
ways outperforms Brown clustering on chains for
the two tasks we consider, confirming that syntac-
tic dependencies are a better structure to induce
semantic classes than a linear chain.

Hidden Markov tree models also outperform
hidden Markov chain models, except for super-
sense tagging on verbs. We believe that this drop
in performance on verbs can be explained because
in English the word order (Subject-Verb-Object)
is strict, and thus, the chain model is able to dif-



#484 rise fell be close offer drop gain trade price jump slip end decline unchanged sell total lose
#352 it have would But be not nt will get may too make So see might can always still probably
#115 coach manager bill Joe george don pat Jim bob Lou al general mike Dan tom owner ray
#131 San St. santa Notre s Francisco calif. green tampa Diego louis class AP bay &aaa Fla. Jose
#350 strong short score good better hit second leave fast close impressive easy high quick enough
#274 A Another an new second single free -*- special fair national strong long major political big
#47 gogh rushdie pan guardia vega freud Prensa miserable picasso jesus Armani Monde Niro
#489 health public medical right care human civil community private social research housing
#238 building house home store apartment area space restaurant site neighborhood town park
#38 more very too as so much less enough But seem even because if particularly relatively pretty

Table 3: Randomly selected semantic classes corresponding to the news dataset.

F1 score
Baseline 71.66
Brown clustering 82.57
tree Brown clustering 82.93
chain HMM, random init 84.66
chain HMM, Brown init 84.47
tree HMM, random init 84.07
tree HMM, Brown init 85.49

Table 4: Results of semi-supervised named entity
recognition.

ferentiate between subject and object, while the
tree model treats subject and object in the same
way (both are children of the verb). Moreover, in
the tree model, verbs have a lot of children, such
as adverbial clauses and auxiliary verbs, which
share their transition probability distribution with
the subject and the object. These two effects make
the disambiguation of verbs more noisy for trees
than for chains. Another possible explanation of
this drop of performance is that it is due to errors
made by the syntactic parser.

4.5 On optimization parameters

We briefly discuss the different choices that can
influence learning efficiency in the proposed mod-
els. In practice, we have not observed noticeable
differences between ε-best projection and k-best
projection for the approximate inference, and we
thus advise to use the latter as its complexity is
controled. By contrast, as illustrated by results in
tables 4 and 5, initialization can greatly change the
performance in semi-supervised learning, in par-
ticular for tree models. We thus advise to initialize
with Brown clusters. Finally, as noted by Liang
and Klein (2009), the step size of online EM also

nouns verbs
Baseline 61.9 (0.2) 43.1 (0.2)
Brown clustering 73.9 (0.1) 63.7 (0.2)
tree Brown clustering 75.0 (0.2) 65.2 (0.2)
HMM (random) 76.1 (0.1) 63.0 (0.2)
HMM (Brown) 76.8 (0.1) 66.6 (0.3)
tree HMM (random) 76.7 (0.1) 61.5 (0.2)
tree HMM (Brown) 77.9 (0.1) 66.0 (0.2)

Table 5: Results of semi-supervised supersense
tagging: prediction accuracies with confidence in-
tervals, obtained on 50 random splits of the data.

has a significant impact on performance.

5 Conclusion

In this paper, we considered an arguably natural
generative model of sentences for semantic class
induction. It can be seen as a generalization of
Brown clustering, taking into account homonymy
and syntax, and thus allowed us to study their im-
pact on semantic class induction. We developed an
efficient algorithm to perform inference and learn-
ing, which makes it possible to learn in this model
on large datasets, such as the New York Times
corpus. We showed that this model induces rel-
evant semantic classes and that it improves perfor-
mance over Brown clustering on semi-supervised
named entity recognition and supersense tagging.
We plan to explore in future work better ways to
model verbs, and in particular how to take into ac-
count the type of dependencies between words.
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