
HAL Id: hal-00833477
https://hal.archives-ouvertes.fr/hal-00833477

Submitted on 12 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Load Balancing Based on Applications Global
States Monitoring

Eryk Laskowski, Marek Tudruj, Richard Olejnik, Damian Kopanski

To cite this version:
Eryk Laskowski, Marek Tudruj, Richard Olejnik, Damian Kopanski. Dynamic Load Balancing Based
on Applications Global States Monitoring. The 12th International Symposium on Parallel and Dis-
tributed Computing, Jun 2013, Bucharest, Romania. pp.IEEE Proceedings. �hal-00833477�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49779737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00833477
https://hal.archives-ouvertes.fr

Dynamic Load Balancing Based on Applications

Global States Monitoring

Eryk Laskowski∗, Marek Tudruj∗†, Richard Olejnik‡ and Damian Kopański†

∗Institute of Computer Science PAS, 01-248 Warsaw, Jana Kazimierza 5, Poland

Email: {laskowsk,tudruj}@ipipan.waw.pl
†Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland

Email: {damian.kopanski,tudruj}@pjwstk.edu.pl
‡Computer Science Laboratory of Lille (UMR CNRS 8022), University of Sciences and Technologies of Lille, France

Email: Richard.Olejnik@lifl.fr

Abstract—The paper presents how to use a special novel
distributed program design framework with evolved global
control mechanisms to assure processor load balancing during
execution of application programs. The new framework sup-
ports a programmer with an API and GUI for automated
graphical design of program execution control based on global
application states monitoring. The framework provides high-
level distributed control primitives at process level and a special
control infrastructure for global asynchronous execution control
at thread level. Both kinds of control assume observations of
current multicore processor performance and communication

throughput enabled in the executive distributed system. Methods
for designing processor load balancing control based on a system
of program and system properties metrics and computational
data migration between application executive processes is pre-
sented and assessed by experiments with execution of graph
representations of distributed programs.

Keywords—distributed programming paradigms;global applica-
tion states monitoring;graphical program design tools.

I. INTRODUCTION

Load balancing is the fundamental approach used to opti-
mize execution time of distributed programs. In a multi-user
environment, the availability of computing resources can vary
notably over time. Thus, an optimization subsystem, embedded
in the run-time environment or in distributed applications is
essential. Since the problem of load balancing of computa-
tional tasks is NP–hard, heuristics from various fields have
been applied, ranging from prefix sum, recursive bisection,
space filling curves to work stealing and graph partitioning.
Good reviews of load balancing methods have been presented
in [15] — [17].

Static load balancing problems when the computational
tasks co-exist during the entire execution of parallel programs
can be modeled as graph partitioning problems. METIS [8] is
the most popular example of a graph partitioning framework,
which has been used for mapping and static load balancing of
parallel applications.

In the case of dynamic load balancing formulation with on–
line load balancing in the presence of variations of a workload
and the varying availability of resources, there exist several
load balancing strategies [9]. Dynamic load balancing can be
implemented by a migration of the application components
(processes and threads) or by a data redistribution among

computing nodes that guarantee a possibly high efficiency of
the overall application execution. The simplest dynamic load
balancing methods are based on the greedy heuristics, where
the largest workloads are moved to the least loaded processors
until the load of all processors is close to the average load.
More sophisticated algorithms use some refinement strategies,
where the number of migrated objects is reduced or the
communication between different objects is also considered.

Monitoring of global application states [1] creates an
efficient and flexible basis for distributed program execution
control. Unfortunately, no existing parallel run-time system
provides a built-in infrastructure for these purposes. This has
been the motivation for our research on a new distributed pro-
gram design framework called PEGASUS (from Program Exe-
cution Governed by Asynchronous SUpervision of States) [4]
which is assumed in this paper as a basic program control
infrastructure.

In the PEGASUS framework the semantics of program exe-
cution control constructs at process and thread levels takes into
account automatic monitoring of global application states. The
proposed methods include new program execution paradigms
and the corresponding software architectural solutions. The
global flow control constructs assume modular structures of
parallel programs based on the notions of processes and
threads. The global control constructs logically bind program
modules and define the involved control flow selectively de-
pendent on global application states. The internal behaviour
of processes and threads is also asynchronously controlled by
inspecting global application states. The PEGASUS control
infrastructure provides synchronizers which collect local state
information from processes and threads, automatically con-
struct global strongly consistent application states, evaluate
relevant control predicates on global states and provide a
distributed support for sending control Unix-type signals to
distributed processes and threads to stimulate the desired
control reactions. The repertoire of considered local and global
states, the control predicates and the reactions to them are user
programmed using a special API provided in the system.

The design of the program global execution control is
graphically supported and decoupled from data processing
control inside process and thread modules. The proposed
global control constructs enable better verification and are less
error prone.

The contribution of this paper is a general load balancing
method based on the special infrastructure for monitoring
of application program global states and runtime executive
system behavior observation. We are interested in dynamic
load balancing, where load distribution can be changed during
execution, following variations in system resources availability
and/or changes of their computational load. In the strategy
presented in the paper we focus at data migration as a basic
load balancing mechanism. The presented approach leverages
some earlier works, reported in [2], [4]. The use of load
balancing methods based on graph partitioning like in existing
load balancing libraries (METIS [8], Zoltan [5], etc.) is also
possible under PEGASUS. The complete graph partitioning
algorithms can be embedded in the PEGASUS control in-
frastructure which is fully programmable. However, it would
require an extensive load redistribution by numerous time-
consuming distant processor thread-to-thread load transfers, to
follow the global optimal work partition. In our strategy, we
propose to avoid such strategy and to replace it by workload
distribution control, however, allowing for real load migration
if unavoidable by other methods.

When we analyze features of current parallel computing
environments like CHARM++ [6] for C++ or ProActive [7]
for Java, we notice the absence of any automatic infrastruc-
ture offered to a programmer to support the monitoring and
using of global parallel application states in the design of
program execution control. Both CHARM++ and ProActive in-
troduce their own high-level parallel programming paradigms.
CHARM++ programs are composed of message-driven ob-
jects called chares, while ProActive is based on the active
object model. PEGASUS, at the parallel program implemen-
tation level, supports parallel programming modularity based
on processes and thread blocks. PEGASUS offers a unique
program execution control design infrastructure based on a
global application states monitoring. MPI is used for message
passing based global data communication at the thread and
process levels and the OpenMP/Pthreads are used for internal
process parallelism and data communication at the thread
level. The PEGASUS control infrastructure and underlying
system architectural concepts are used to organize dynamic
load balancing control in distributed applications.

The rest of the paper consists of three parts. In part II
the proposed program execution model is described. Part III
describes the proposed load balancing strategy, implemented
using global application states monitoring. Part IV describes
the experimental assessment of the presented algorithm.

II. APPLICATION EXECUTION MODEL

Distributed application programs based on the new control
approach are composed of processes and threads inside each
process. An executive system consists of multicore processor
nodes interconnected by a message passing network (e.g. a
cluster of workstations). The network is used for data commu-
nication at the process level. A programmer is able to control
assignments of processes to processor nodes. We assume that
processor nodes work under control of Linux operating system.

The PEGASUS runtime environment provides an appli-
cation program designer with a control infrastructure which
enables organizing program execution control based on the

Fig. 1. Processes (threads) co-operating with a synchronizer.

global application states. It uses a number of graphical and
communication library mechanisms provided as a parallel
program design infrastructure.

Application program execution control is organized at two
layers:
(1) a global control layer, responsible for monitoring global ex-
ecution states of processes or threads in application programs,
computing control predicates on global states and issuing
signals to application processes or threads, to stimulate desired
reactions,
(2) a local control layer, which is responsible for reporting by
processes and threads their local states to the global control
layer as well as for organizing reactions to control signals
coming from the global control layer.

Monitoring of application program global states will influ-
ence program execution by acting on control inside distributed
application processes or threads to asynchronously modify
their behavior in a manner similar to distributed interrupts
issued based on global application states monitoring, or on
application synchronous global control flow influenced by
monitoring of global application states.

A. Asynchronous program execution control

The general scheme of the proposed control mechanism
is shown in Fig. 1. Application program processes (threads)
send messages on their states to special globally accessi-
ble processes (threads) called synchronizers. A synchronizer
collects local state messages, determines if the application’s
strongly consistent global state has been reached, evaluates
control predicates and stimulates desired reactions to them in
application components.

A strongly consistent global state (SCGS) means a set
of fully concurrent local states detected unambiguously by
a synchronizer [1]. Processor node clocks are synchronized
with a known accuracy to enable the construction of strongly
consistent global states by projecting the local states of all
processes or threads on a common time axis and finding time
intervals which are covered by local states in all participating
processes or threads [3].

Fig. 2. PARALLEL DO-UNTIL construct with an Asynchronous Predicate
GP1 and a Control Flow predicate GP2.

On each global state reached, one or more control condi-
tions (control predicates) are computed. Predicates are spec-
ified as blocks of code in C. If a predicate value is true,
then a number of control signals are sent by the synchronizer
to selected application processes (threads). In the code of a
process (thread), regions sensitive to incoming control signals
can be marked by special delimiters. If the process (thread)
control is inside a region sensitive to a signal and the signal
arrives, then a reaction is triggered. Otherwise the reaction
is neglected. Two types of reaction to control signals are
provided:
— signal-driven activation (interrupt), which breaks current
computation and activates a reaction code associated with
the region. After completion of the reaction code the broken
computing resumes,
— signal-driven cancellation, which stops computation and
activates a cancellation handling procedure associated with the
region. Program execution resumes just after the abandoned
region.

B. Control flow governed by global states monitoring

The second control mechanism involving the global state
monitoring concerns defining the flow of control in distributed
programs based on the global application state monitoring.
The global parallel control structures provided in the system
are based on PARALLEL DO (PAR) and JOIN constructs,
embedded (if needed) into standard control statements of high
level languages (IF, WHILE...DO, DO...UNTIL, CASE) but
governed by predicates on application global states. Fig. 2
shows a global PARALLEL DO–UNTIL control construct. The
predicate GP1 asynchronously controls execution of program
blocks P1, ..., Pn. It receives local state messages from P1, ...,
Pn, evaluates a predicate condition and sends control signals
to P1, ..., Pn. The predicate GP2 receives local state messages
from program blocks P1, ..., Pn, B1, ..., Bp and sends a binary
control signal to switch SW, which governs the flow of control
in the PARALLEL DO–UNTIL construct.

The distributed Execution Control (EC) process in the sys-
tem coordinates program execution and manages code blocks
(process) creation and activation resulting from global parallel
control constructs. More details on the PEGASUS framework
can be found in [4].

III. LOAD BALANCING BASED ON GLOBAL STATES

A. Load balancing algorithm

The global state monitoring infrastructure of the PEGA-
SUS environment is used as a tool to implement dynamic
load balancing at the application level. The computing nodes
(workstations) can be heterogeneous, moreover they can have
different and variable computing capabilities over time. A load
imbalance occurs when the differences of workload between
the computing nodes become too big. We distinguish two
main steps in load balancing: detection of imbalance and its
correction. The first step uses measurement tools to detect the
functional state of the system. The second consists in migrating
some load from overloaded computing nodes to underloaded
computing nodes to balance the workloads.

An intrinsic element of load balancing is the application
observation mechanism. It provides knowledge of the applica-
tion behavior during its execution. This knowledge is necessary
to undertake adequate and optimal load balancing decisions.
There are two types of measurements in the proposed load
balancing method for PEGASUS environment:

– system level observations, which provide general functional
indicators, e.g. CPU load, that are universal for all kinds of
applications; the system measurements are implemented using
the software agent approach, i.e. the load balancing mechanism
being part of PEGASUS environments deploys observation
agents on computing nodes.

– application specific observations, which incorporate mea-
surements that have to be implemented in each application,
as they provide information about application–dependent be-
havior; an example of this kind of indicator is the workload
of a process (or thread) since it can depend on the volume
of data to be processed in the future which is known only to
application logic.

The aforementioned observation mechanisms are organized
using the PEGASUS global execution states monitoring in-
frastructure. Application program processes and system ob-
servation agents send messages on local state changes to
load balancing synchronizer, where they are processed and
appropriate reactions are computed using the method described
in next sections. Similarly, reactions are organized as asyn-
chronous program execution control. Load balancing logic is
implemented as control predicates inside a load balancing
synchronizer. Figure Alg. 1 presents a general scheme of the
proposed algorithm. The rest of this section describes functions
and symbols used in the pseudo-code in Algorithm 1.

B. Detection of load imbalance

To detect load imbalance, the knowledge on the functional
state of computing nodes composing the cluster is essential.
As the environment is heterogeneous, it is necessary to know
not only the load of computing nodes but also their computing
power capabilities. The heterogeneity disallows us to directly
compare measurements based on program execution time taken
on computing nodes whose computing powers are different.
After experiments to determine the computing node power,
we have found that the parameter, which allows us to compare
the computing nodes’ load is the availability index of a CPU

Algorithm 1 General scheme of load balancing algorithm

initialize load balancing synchronizer
loop
{Global part of the algorithm}
wait for state change
store values Indavail
LI ← maxn∈N (Indavail(n)) ≥ α ∗minn∈N(Indavail(n))
if LI then
{Step 1: Classification of the computing nodes’ load}
NU , NN , NO ← classify nodes load {K–Means al-
gorithm, K = 3: underloaded, normal, overloaded}
{Local part of the algorithm}
for all n ∈ NO do {in parallel}
{Step 2: Choice of candidates for migration}
rankmin ←∞
for j ∈ T (n) do

Rank(j)← β ∗ attr%(j) + (1− β) ∗ ldev%(j)
if Rank(j) < rankmin then
rankmin ← Rank(j)
jn ← j {candidate for migration}

end if
end for

end for
{Step 3: Selection of migration target}
for u ∈ NU do
qualmax ← 0
for n ∈ NO do
Quality(jn, u)← γ ∗ attrext%(jn, u)+ (1− γ) ∗
Ind%

avail(u)
if Quality(jn, u) > qualmax then
qualmax ← Quality(jn, u)
target(jn)← u {target of migration}

end if
end for
send signal migrate(jn ⇒ target(jn))
NO ← NO − {n}

end for
end if

end loop

computing power on the node n:

Indavail(n) = Indpower(n) ∗ Time%CPU(n)

where:
Indpower(n) — computing power of a node n, which is the
sum of computing powers of all cores on the node,

Time%CPU(n) — the percentage of the CPU power available
for programs under load balancing on the node n, periodically
estimated by observation agents on computing nodes.

Some explanation is needed to clarify the way the avail-
ability index of a CPU computing power is computed. The
computing power of the node is the outcome of the cali-
bration process [10]. For each node, the calibration should
be performed in a consistent way to enable comparisons of
calibration results (they can be expressed in MIPS, MFLOPS,
Dhrystones or similar). The calibration needs to be done only
once when the nodes join the system. The percentage of
the CPU power available for a single computing thread is
computed as a quotient of the time during which the CPU

was allocated to the probe thread against the time span of
the measurement (see [10] for details and the description of

the implementation technique). Time%CPU(n) value is the sum
of the percentage of CPU power available for the number of
probe threads equal to the number of CPU cores in the node.

A load imbalance LI is defined based on the difference
of the availability indices between the most heavily and the
weighted least heavily loaded computing nodes composing the
cluster, which can be determined as:

LI =

{

true if maxn∈N (Indavail(n))−
α ∗minn∈N (Indavail(n)) ≥ 0

false otherwise

where:
N — the set of all computing nodes,
α — a positive constant number.

Power indications Indpower and CPU time use rate
TimeCPU are collected and sent to load balance synchronizer
by local system agents as state messages.

The proper value of the α coefficient can be determined
using both statistical and experimental approaches. Following
our previous research [11] on load balancing algorithms for
Java-based distributed computing environment, we can restrict
the value to the interval [1.5 . . . 2.5]. It enables controlling the
sensitivity (and frequency) of detection of load imbalance for
small differences in computing power availability in homoge-
neous systems and for heterogeneous processor clusters in the
case of very fast and slow CPUs appearing in the system.

C. Correction of load imbalance

In this step we detect overloaded computing nodes and then
we transform them into the normally loaded (rebalance).

1) Classification of computing nodes: We use the K-Means
algorithm [12] to build categories of computing nodes based
on the computed availability indices. We classify n computing
nodes into the K = 3 categories: underloaded (NU), normally
loaded (NN) and overloaded (NO). The three centers of
these categories are values of availability indices close to the
minimum, average and maximum over the whole cluster of
computing nodes.

2) Choice of candidates for migration: The loads are rep-
resented by the data processing activities of the threads which
are running on computing nodes. To correct load imbalance,
we have to migrate the load from overloaded computing nodes
to underloaded ones. Two parameters are used to find the load
that we want to migrate:

a) the attraction of a load to a computing node,
b) the weight of the load.

The attraction of a load to a computing node is expressed in
terms of communication, i.e. it indicates how much a particular
thread communicates with others allocated to the same node.
A strong attraction means frequent communication, so, the less
the load is attracted by the current computing node, the more
interesting it is to be selected as a migration candidate. The
computational weight of the load gives the quantity of load
which could be removed from the current node and placed on
another.

Both the attraction and weight are application-specific
metrics, which should be provided by an application pro-
grammer in the form of state messages sent to load balance
synchronizer:

1) COM(ts, td) is the communication metrics between
threads ts and td,

2) WP(t) is the load weight metrics of a thread t.

WP(t) can be any measure of a thread work, for example the
number of instructions to be executed in a thread. Our strategy
for selecting threads for migration is to promote threads which
show loads with a small distance to the average thread load,
not to involve dramatic load changes after a single thread
migration.

The attraction of the load j to the actual computing node
is defined as:

attr(j) =
∑

o∈L∗(j)

(COM(j, o) + COM(o, j))

where:
L∗(j) — the set of threads, placed on the same node as a
thread j (excluding j).

The load deviation compared to the average quantity of
work of the node j is defined as:

ldev(j) = |WP(j)−mWP | (1)

where:

mWP =
∑

o∈L(j) WP(o)

|L(j)| ,

L(j) — the set of threads, placed on the same node as the
thread j (including j).

The element to migrate is the one for which a weighted
sum of the normalized attraction and load deviation has the
minimal value:

Rank(j) = β ∗ attr%(j) + (1− β) ∗ ldev%(j) (2)

where:

attr%(j) =
attr(j)

maxo∈L(j)(attr(o))

ldev%(j) =
ldev(j)

maxo∈L(j)(ldev(o))

β — a real between 0 and 1. Its choice remains experimental.
Let us notice however that the bigger β is, the bigger is the
weight of the object attraction.

3) Selection of the target computing node for migration:
The first criterion to qualify a computing node as a migration
target is the attraction of a selected load entity to this node.
The attraction of the load j to node n is defined as follows:

attrext(j, n) =
∑

e∈T (n)

(COM(e, j) + COM(j, e))

where:
T (n) — the set of threads, placed on a node n.

The second criterion is based on the computing node power
availability indices. We prefer the one whose availability index
is the highest, because it is actually the least loaded. We also
take into account the number of waiting threads in the potential

targets (Twait(n) – the set of waiting threads on a node n). We
consider them, however, as potential load, which must be taken
under consideration with the related load currently done on the
machine. The formula to select the target for migration is as
follows (we normalize all the values related in the interval
[0 . . . 1]):

Quality(j, n) =

γ ∗ attrext%(j, n) + (1− γ) ∗ Ind%
avail(n) (3)

with γ ∈ [0 . . . 1] and

attrext%(j, n) =
attrext(j, n)

maxe∈N (attrext(j, e))

Ind%avail(n) =
Ind∗

avail(n)

maxe∈N (Ind∗avail(e))

Ind∗avail(n) = Indavail(n)− Indavail(n) ∗
|Twait(n)|

|T (n)|
(4)

For a load which is a candidate for migration, we eval-
uate the above equations for all potential migration targets
(underloaded computing nodes). The computing node which
maximizes equation 3 will be chosen as the new location for
the migrated load. The value of the coefficient γ has to be
determined using experimental verification.

D. Implementation under PEGASUS

We will illustrate now implementation of the described
load balancing algorithm under PEGASUS framework, taking
as an example a simple iterative application, consisting of
processes P1...Pn, run in parallel inside a single DO-UNTIL
loop. The control flow graph of the application, including the
load balancing infrastructure, is shown in Fig. 3.

The execution of load balancing is globally controlled by
the synchronizer LB, assigned to a processor of the system.
Each application process Pi is composed of a number of
application threads T j and a thread synchronizer Th. The
thread synchronizer cooperates with the application threads
and the global synchronizer LB. Th evaluates control predicates
on local states transferred from application process threads.
Based on the evaluated predicates, some control signals can
be sent back to threads and/or some process states can be
sent from process synchronizers Th to the global synchronizer
LB. LB evaluates some global predicates related to the global
load balancing control. Based on these predicates, LB sends
control signals to synchronizers Th in application processes.
The synchronizers Th can process the received control signals
and send the respective signals down to the threads which they
supervise.

The progress of iterations in the application is controlled
by the MoreIteration predicate in the global synchronizer LB.
The MoreIteration predicate receives local states of threads
via local synchronizers Th. This global predicate controls the
switch SW, which directs the flow of control accordingly to
the evaluated MoreIteration predicate value.

We will now explain the way in which the load balancing
algorithm is implemented with the use of the infrastructure
of synchronizers and local state/signal communication. Each
thread synchronizer Th contains an Observation Agent, which

Fig. 3. Control graph of an application based on parallel DO-UNTIL construct
under PEGASUS.

periodically evaluates the availability of computing power in
processor nodes and sends to the global synchronizer LB the
local node state message which corresponds to the given node
CPU computing power availability index (see Indavail(n) in
section III B). LB periodically receives such state messages and
based on them evaluates the load imbalance predicate (LI) in
the system (following the LI formula shown in section III B). If
LI = true, the K-Means algorithm is activated which classifies
the nodes in the system as underloaded, normally loaded and
overloaded. The synchronizers Th in the overloaded nodes are
notified by control signals. As a reaction, the overloaded node
Th synchronizers activate computing the Rank Predicates to
evaluate ranks of all their threads in respect to their eligibility
for load migration (see formulas for Rank(j) in section II C
and the Algorithm 1). Next, each overloaded node Th select
the thread with the minimal rank and sends the identifier of
minimal rank thread to the global synchronizer LB as the best
candidate for load migration from the node.

Based on best candidate messages from the overloaded Ths,
the global synchronizer LB broadcasts the list of all migration
candidate threads as control signals to thread synchronizers
Th in all underloaded nodes. The migration candidate lists
activate the Quality Predicates in Th synchronizers which start
evaluating the quality of potentially migrated load placement
on underloaded target nodes. It is done based on the reply
messages to current load and communication states requests
sent by Ths to the threads they supervise. In response to the
state messages, the Quality Predicates are evaluated in Ths
(see formula (3) in section III C part 3) for all migration
candidates (threads from overloaded nodes). The node for
which a candidate thread maximizes the quality of target thread
placement is selected as the effective target for the thread
placement and its identifier is sent by the Th to the Global
Quality Predicate in LB synchronizer. This predicate selects
pairs of overloaded/underloaded nodes for wich the quality of
migration is the best. As a result LB sends control signals to the
Th synchronizers of the selected overloaded and underloaded
nodes to stimulate them to activate execution of the reduction
and increase of loads in processes they supervise.

The load changes are done by cancellation of some work-
load in the overloaded nodes and reception of this workload
for execution in the underloaded nodes. Such load balancing
in pairs of nodes is done until all underloaded nodes have
been used. Then, the load balancing algorithm returns to the

waiting for a new global load balance change which is checked
by the evaluation of the LoadImbalance predicate in the LB
synchronizer based on state messages sent by the Observation
Agents in application processes in executive system nodes.

IV. EXPERIMENTAL ASSESSMENT OF THE PRESENTED

LOAD BALANCING ALGORITHM

We will present now an experimental assessment of the
presented load balancing algorithm. The experimental results
were collected by simulated execution of application programs
in a distributed system. The simulated model of execution
corresponded to typical message-passing parallel applications
using the MPI library for communication. The simulator was
based on the DEVS discrete event system approach [13].

The application model used was similar to the model pre-
sented in [14] (Temporal Flow Graph, TFG). The application
consisted of indivisible tasks (these are threads or processes of
the operating system). Each task consisted of several compu-
tational blocks, separated by communication (messaging) with
other tasks.

Applications run in a cluster of computing nodes. The
system consisted of multi-core processors, each of which
had its own main memory and a data network interface.
Communication contention was modeled at the level of the
network interface of each computing node.

During simulation, in parallel with the execution of the ap-
plication, a dynamic load-balancing algorithm was performed.
The algorithm used was the same as presented in the paper,
see Algorithm 1. Computing nodes were periodically reporting
their loads to the global load balancing synchronizer and then,
depending on the states of the system and the application,
appropriate actions were undertaken.

During experiments we used a set of 10 exemplary ap-
plication programs, containing from 16 to 80 tasks. These
programs were randomly generated, but their general structure
corresponds to layered MPI-based parallel applications which
correspond to numerical analysis or physical phenomena sim-
ulation. Each application program consisted of a set of phases.
Each phase consisted of a fixed number of computational tasks

Fig. 4. The general structure of exemplary applications.

(a) (b)

Fig. 5. Speed-up for different number of nodes with or without load balancing (a) irregular applications. (b) regular applications.

Fig. 6. Speedup improvement for irregular and regular applications: the
average and for different number of nodes in the system (METIS-based initial
task placement).

(i.e. threads), Fig 4. Tasks communicated with other tasks of
the same phase. On the boundaries between phases, there was a
global exchange of data. Phases could be executed sequentially
or in parallel (depending on the particular exemplary applica-
tion). The difference between regular and irregular applications
is that the execution time of tasks in some (or all) phases of
irregular applications depends on the processed data. From the
outside, irregular applications exhibit the behavior in which the
execution time of tasks and the communication scheme seem
unpredictable. Thus, a load imbalance can occur in computing
nodes.

We simulated execution of applications in systems with
2, 3, 4 or 8 identical computing nodes, each containing the
same number of cores. Since the execution times of the same
application for different runs can vary, the results are the
averages of 5 runs of each application.

The summary of the average speed-up improvement result-
ing from load balancing performed by the algorithm presented
in the paper is shown in Fig. 6. The average speed-up improve-
ment over the execution without load balancing is big for both
irregular and regular applications. This could be considered
as an unexpected result, since the good initial placement
of tasks of regular applications usually could be statically
calculated before application execution. The reason for the
improvement is that the initial placement of tasks was far from

Fig. 7. Speedup improvement for irregular and regular applications for
unoptimized initial placement of application tasks.

optimal for both categories of applications, even when we used
the METIS graph partitioning algorithm for its calculation.
There are usually intense data dependencies between phases of
applications, so the program execution scenario was effectvely
much improved by dynamic load balancing.

On Fig. 5(a) and 5(b) the speed-up of irregular and regular
applications for different number of computing nodes is shown.
Our exemplary regular applications give smaller speed-up than
irregular ones (with or without load balancing).

In the case of the totally unoptimized initial placement of
applications tasks, the dynamic load balancing algorithm gives
the big speedup improvement, Fig. 7.

During experimests, we measured the cost of dynamic
load balancing as the number of tasks migrations during the
execution of applications, Fig. 8. The cost depends mainly
on the quality of the initial placement of tasks and the
category of an application. For poor (i.e. unoptimized) initial
placement of tasks, the cost of dynamic load balancing is
much higher. Moreover, the irregular applications require more
frequent load balancing at the run-time, resulting from the
unpredictable communication and computation scheme of their
execution. However, even for the optimized initial placement
of application tasks there is a need for dynamic load balancing
at run-time when external execution conditions are changing
(e.g. varying load of computing nodes dependent on other
applications or operating system activity).

Fig. 8. The cost of dynamic load balancing shown as the number of
migrations per single application execution.

The proposed load balancing algorithm is meant for the
PEGASUS environment based on global application states
monitoring. The algorithm was implemented in the frame of
the cooperation of application tasks with synchronizers. The
tasks send load reports to synchronizers and modify their
behavior in response to signals received asynchronously from
the synchronizers.

V. CONCLUSIONS

Dynamic load balancing in distributed systems based on
application global states monitoring has been discussed in this
paper. Global control constructs for the control flow design and
asynchronous state monitoring with control signal dispatching
provide flexible infrastructure for application implementation
and system-level optimizations. The infrastructure enables an
easy and convenient design of the load balancing logic in
applications. Our experimental results collected so far confirm
that the presented load balancing method performs well for
different run-time conditions.

The proposed PEGASUS framework is currently in the
final implementation stage for a multicore processors cluster
interconnected by dedicated separate networks for control and
computational data communication as well as for processor
clock synchronization for strongly consistent global states
discovery. Inter-process control communication including Unix
signal propagation between processors is organized by the use
of message passing over Infiniband network. Computational
data communication between processors is performed by an
Ethernet network. C/C++ language with the MPI2, OpenMP
and Pthreads libraries are used for writing application pro-
grams and the framework control code.

Important features of the load balancing implemented un-
der PEGASUS algorithm are the expected low overheads, the
ease in programming and tuning the load balancing algorithms
as well as the ability to organize load balancing in distributed
manner due to the ready-to-use infrastructure of asynchronous
control based on global application states monitoring. The
communication overhead of the load balancing algorithms can
be strongly reduced due to the use, in the system infrastructure,
of totally separate program layers and separate physical net-
works for control communication and data communication in
applications. Activities of load balancing actions can be almost

completely overlapped with application computations due to
the assumed asynchronous type of control and the possible use
of dedicated resources for load balancing control computations
(the use of separate synchronizer threads assigned to separate
processor cores).

An interesting topic of further research, which we were
unable so far to cover, is the periodic use of the METIS algo-
rithm to support load balancing by program graph partitioning,
which can be easily embedded inside synchronizers activities.

This research was partially supported by the national
MNiSW research grant No. NN 516 367 536.

REFERENCES

[1] O. Babaoglu, K. Marzullo, Consistent global states of distributed
systems: fundamental concepts and mechanisms, Distributed Systems,
Addison-Wesley, 1995.

[2] M. Tudruj, J. Borkowski, D. Kopański, Load balancing with migration
based on synchronizers in PS-GRADE graphical tool. Int. Symp. on
Parallel and Distributed Computing, ISPDC 2005, Lille, France, July
2005, IEEE CS, pp. 105–112

[3] S. D. Stoller, Detecting Global Predicates in Distributed Systems with
Clocks, Distributed Computing, Vol. 13, N. 2, 2000, pp. 85-98.

[4] M. Tudruj, J. Borkowski, Ł. Maśko, A. Smyk, D. Kopański, E.
Laskowski, Program Design Environment for Multicore Processor
Systems with Program Execution Controlled by Global States Moni-
toring. 10th Internat. Symposium on Parallel and Distributed Comput-
ing, Cluj-Napoca, July, 2011, ISPDC 2011, IEEE CS, pp. 102-109.

[5] K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, C. Cheva-
lier, Getting Started with Zoltan: A Short Tutorial, Sandia Nat. Labs
Tech Rep. SAND2009-0578C, 2009.

[6] L.V. Kalé, S. Krishnan, CHARM++: A Portable Concurrent Object
Oriented System Based on C++, Proc. of OOPSLA’93, ACM Press,
Sept. 1993, pp. 91–108.

[7] Baude et al., Programming, Composing, Deploying for the Grid,
GRID COMPUTING: Software Environments and Tools, J. C. Cunha,
O. F. Rana (Eds), Springer, Jan. 2006.

[8] G. Karypis, V. Kumar, Multilevel graph partitioning schemes, Proc.
24th Intern. Conf. Par. Proc., III. CRC Press, 1995, pp. 113–122.

[9] A. Bhatele, S. Fourestier, H. Menon, L. V. Kale, F. Pellegrini,
Applying graph partitioning methods in measurement-based dynamic
load balancing, PPL Technical Report 2012, University of Illinois,
Dept. of Computer Science.

[10] G. Paroux, B. Toursel, R. Olejnik, V. Felea, A Java CPU cal-
ibration tool for load balancing in distributed applications, IS-
PDC/HeteroPar’04, IEEE CS 2004, pp. 155–159.

[11] R. Olejnik, I. Alshabani, B. Toursel, E. Laskowski, M. Tudruj, Load
Balancing Metrics for the SOAJA Framework, Scalable Computing:
Practice and Experience, 2009, Vol. 10, No. 4.

[12] J.A. Hartigan, M.A. Wong, A K-Means clustering algorithm, Applied
statistics, Vol. 28, pp. 100-108, 1979.

[13] B. Zeigler, Hierarchical, modular discrete-event modelling in an
object-oriented environment, Simulation 49 (5), 1987, pp. 219-230.

[14] C. Roig, A. Ripoll, F. Guirado, A New Task Graph Model for Mapping
Message Passing Applications, IEEE Trans. on Parallel and Distrib.
Systems, Vol. 18 Issue 12, December 2007, pp. 1740–1753.

[15] K.J. Barker, N.P. Chrisochoides, An Evaluation of a Framework for
Dynamic Load Balancing of Highly Adaptive and Irregular Parallel
Applications, Supercomputing 2003, November 2003.

[16] G. Zheng, E. Meneses, A. Bhatele, L. V. Kale, Hierarchical Load
Balancing for Charm++ Applications on Large Supercomputers, 39-
th Int. Conf. on Parallel Processing Workshops, 2010, IEEE CS, pp.
436-444.

[17] M. Randles, D. Lamb, A. Taleb-Bendiab, A comparative study into
distributed load balancing algorithms for cloud computing, IEEE 24-
th Int. Conf. on Advanced Informatin Networking and Applications,
2010, pp. 551-556.

