
HAL Id: hal-00834018
https://hal.archives-ouvertes.fr/hal-00834018

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Utilization of Modified CoreGRID Ontology in an
Agent-based Grid Resource Management System

Michal Drozdowicz, Maria Ganzha, Ivan Lirkov, Richard Olejnik, Katarzyna
Wasielewska, Marcin Paprzycki, Naoual Attaoui

To cite this version:
Michal Drozdowicz, Maria Ganzha, Ivan Lirkov, Richard Olejnik, Katarzyna Wasielewska, et al..
Utilization of Modified CoreGRID Ontology in an Agent-based Grid Resource Management System.
Proceedings of the ISCA 25th International Conference on Computers and Their Applications, CATA
2010, Mar 2010, Honolulu, Hawaii, United States. pp 240-245. �hal-00834018�

https://hal.archives-ouvertes.fr/hal-00834018
https://hal.archives-ouvertes.fr


Utilization of Modified CoreGRID Ontology in an Agent-based Grid

Resource Management System

M. Drozdowicz(1), M. Ganzha(1,2), I. Lirkov(4), R.Olejnik(5),

K. Wasielewska(1), M. Paprzycki(1,3), N. Attaoui(6)

(1) SRI PAS, Warsaw, Poland, (4) IPP BAS, Sofia, Bulgaria
(2) University of Gdańsk, Poland (5) CNRS, Lille,France,

(3) Warsaw Management Academy, (6)Abdelmalek Essaadi University,

Poland, Tetouan, Morocco

Abstract

The Agents in Grid project is devoted to the de-
velopment of an agent-based intelligent high-level Grid
middleware. In the proposed system, all data process-
ing is ontology-driven, and initially was based on an
in-house developed mini-ontology of the Grid. Our re-
cent analysis has indicated that we should adapt and
utilize the Grid ontology developed within the frame-
work of the CoreGRID project. This note outlines how
we have modified and extended the CoreGRID ontol-
ogy to fulfill the needs of our approach.

1 Introduction

In our work we are following the main idea put
forward in [8], where it was suggested that software
agents can infuse computational Grids with the needed
intelligence. Furthermore, agreeing with J. Hendler,
who in [9] argued that software agents and ontologies
should work very well together, we are developing the
system based not only on software agents, but also
on utilization of ontologically demarcated data and se-
mantic reasoning. Finally, accepting arguments stated
in [12], we believe that the only way to effectively
address objections raised against projects involving
software agents is by implementing such systems and
studying their properties; such as usability / efficiency
/ robustness / flexibility, etc.

With these three fundamental assumptions guid-
ing our work, in this note, we focus our attention on
the ontology that is to be used in the Agents in Grid

(AiG) system. In our recent work ([7]), we have ana-
lyzed the existing Grid resource description languages,
ontologies developed for computational Grids, and on-
tologies that targeted systems involving agents and
Grids. Our analysis resulted in the decision to use,
as the basis for our system, ontology developed within
the framework of the CoreGRID project ([13]). Unfor-

tunately, we have found that even this ontology, while
the closest to fulfilling our needs, will have to be mod-
ified and extended first. The aim of this contribution
is to: (a) outline the way that ontologies are used in
our system, (b) summarize main issues that had to be
resolved when adapting the CoreGRID ontology, and
(c) sketch main facets of the proposed solution. This
is also how this note is structured.

2 Ontologies in the system

Due to the space limitations, readers interested
in the detailed description of our project are referred
to [6, 10, 11]. In the proposed system, software agents
work in teams managed by team leaders (the LMas-

ter agents). There are two main processes (scenar-
ios) taking place in the system. First, when the User,
represented by its agent (the LAgent), would like to
contract job execution. Here, after job execution con-

straints are specified (using a web-based interface), a
SPARQL query ([5]) describing needed resources is for-
mulated and answered by the Client Information Cen-

ter (CIC ; central repository of information about all
agent teams available in the system, their resources,
and sought team members). In the next step, the
FIPA Contract Net Protocol (CNP; [1]) is applied, ei-
ther to find a team to complete the task, or to report
to the User, that a team satisfying the User -defined
conditions cannot be found. Second, when the User

would like to have her computer(s) work within a team
(and earn money). In this case the scenario is “struc-
turally” almost the same. Specification of team-joining
constraints results in interactions between the LAgent

and the CIC, followed by the FIPA CNP-based negoti-
ations, resulting in team selection or in failure to find
one (reported to the User).

It should be stressed that all information stored
and processed in the system consists of ontologically



demarcated data. Specifically, in the context of the
above outlined scenarios, we can see: (1) team data
(available resources, and information about sought
members) is stored as a persistent model in the Jena
repository [3], using either the TDB subsystem with
custom storage and indexing, or the SDB subsystem
based on the SQL database1, (2) querying of the CIC -
held repository involves SPARQL queries, (3) results
of such SPARQL queries are: (i) lists of teams that
meet job execution constraints, or (ii) lists of teams
that can be joined, described as instances of the Tea-

mAd class (id of the team LMaster and resources of-
fered by the team), (4) all communication between
agents utilizes the FIPA ACL (Agent Communication
Language) messages with content interpreted accord-
ing to the system-defined ontologies, (5) FIPA Con-
tract Net Protocol calls for proposals that contain
User -specified constraints, and responses that involve
proposed job execution details, or team-work contract
specifications are instances of ontology classes.

Note that we omit various aspects of communi-
cation between the LAgent, or the LMaster, and the
CIC, as they do not address any additional facets of
ontology-based data processing. Instead they should
be approached from the perspective of design and
implementation of distributed agent-based systems.

3 Limitations of CoreGRID ontology

Let us now consider the question of ontology
to be used in the proposed system. While initially
([6, 10, 11]) we have used an in-house developed min-
imalistic ontology, we well were aware of the fact that
a feature-complete, robust ontology of the Grid will be
needed. Simply said, we wanted first to try some ideas,
before starting to utilize a large-scale ontology. There-
fore, only recently, we have performed a comprehensive
evaluation of existing (explicit and implicit) ontologies
appearing in context of the Grid, and ontologies de-
veloped for projects attempting at fusing agents and
Grids (see, [7] for a complete description of results of
our investigations). The main outcome of this work
was the decision to utilize the CoreGRID Ontology
(CGO, [13]). While this ontology was the closest to our
needs, nevertheless, (1) we found a number of places
where realizations of certain concepts did not fit what
we perceive as needed for a complete Grid resource de-
scription, and (2) the CGO did not cover requirements
related to contract negotiations and therefore had to
be extended.

To illustrate our concerns, let us look at sample
scenarios that need to be supported through ontolog-

1The TDB, and the SDB ; are Jena RDF storage components,
which support the SPARQL query engine.

ically demarcated data, but were not handled well by
the CoreGRID Ontology in its original form.

3.1 Memory requirements

Let us consider a case when the LAgent is look-
ing for a team to execute a job. This job is based
on an implemented algorithm, which has well-defined
memory-related constraints. For instance, it needs a
large amount of directly available fast-access RAM,
and extra virtual (or swap) memory for less frequently
used data. In the CGO the only property describing
the amount of available memory of the resource was
the mainMemory property, which is clearly insufficient
to support the aforementioned scenario.

Another aspect of memory-related properties that
was important to us was the specification of the do-
main and the range of properties. In our application
we aim at creating a web-based user interface (UI) that
lets the User (interactively) specify values of proper-
ties defined in the ontology. To build such UI we need
discoverability of properties that can be used to de-
scribe the instance of a class (using the domain of the
property) and a set of possible values that the User

can input (using the range of the property). Unfortu-
nately, definitions of properties describing the resource
memory in the CGO (RAMSize and mainMemory) did
not contain the specification of either the domain or
the range and therefore could not be used in this con-
text (as originally defined).

3.2 Storage requirements

The original CGO lacked properties that could be
used to describe the storage elements of the resource.
Specifically, while some classes representing these con-
cepts were available (StorageSpace, StorageInterface,
FileSystem), at the same time there were no proper-
ties that linked them to other classes. Due to the fact
that we need to describe the Grid resource using these
concepts and that our UI requirements necessitate
the existence of strongly typed properties linking the
classes together (see previous section for more details)
there was a clear need to introduce them.

3.3 Software requirements

The CoreGRID ontology contained classes and
properties to describe the software configuration of a
Grid resource, e.g. subclasses of the Software class
(ApplicationEnv, Exec, Lib and OperatingSystem),
and the installedSoftware property. These concepts
were sufficient for the utilization of the ontology in sci-
entific Grid scenarios, however, in our application we



need to support more involved scenarios. The hetero-
geneity and globality of the Grid, as we see it, means
that there might be cases of resources containing more
than a single operating system. These might be either
computers having multiple operating systems installed
as multiboot partitions or simply hosting different
virtual machines (so called, server virtualization).
In such case we should differentiate between having
an OS installed (and potentially available), and an
OS actually running at a given time. While the
importance of the information stating which OS is
currently running on a given node is rather obvious,
the LMaster might be also interested in knowing
what other OS’s the Worker is capable of running at
some other time (this information may be usable, for
instance, during evaluation of a team joining offer).

Another issue concerns the remaining software re-
sources, such as applications, libraries etc. In this
case the CGO, again, defined a rich set of classes,
but the defined properties were limited to installed-

Software (which notably lacks the definition of domain
and range) and needLib (which defines a relationship
between a GridApplication and a Library). In our
case we needed, on the one hand, a property like in-

stalledSoftware but with range and domain restricted
to the GridComponent, and the Software classes. On
the other hand, we also needed a way to specify the
software requirements of a job that could be used to
search for a node that the job could be run on.

3.4 CPU requirements

The last of the key issues discovered when ana-
lyzing the CoreGRID ontology concerned the way it
dealt with the CPU specification. Recent years are
characterized by an explosion of processor types. We
are dealing not only with vector processors, and multi-
core processors (which could be treated as extensions
of an earlier cache-oriented hardware), but also have
to consider potential utilization of hybrid architectures
like the Sony/Toshiba CBE (Cell Broadband Engine)
or the GPU (Graphical Processing Unit), as well as ex-
istence of performance accelerators produced, among
others, by the ClearSpeed company. In this context it
has been noted that in many cases (especially for more
specialized jobs), there may exist very detailed speci-
fication of the required CPU configuration. Some jobs
may, for example, be optimized for the CBE, while
others may be requested to not to be executed on vec-
tor processors (e.g. sparse linear algebraic algorithms
usually perform badly on such hardware). Similarly,
for some CPU and memory intensive applications (e.g.
codes for large dense matrices), the size of the L1, L2
or L3 cache (and their arrangement vis-a-vis multiple
cores within the processor) might be an important fac-

tor in evaluating a resource to execute the task. Apart
from that, the number of cores available for the job is
becoming an extremely important factor—parallelism
available within the application determines how many
cores it can take advantage of, and whether having
more is going to be beneficial.

Unfortunately, the only property related to the
CPU in the CGO was the clockSpeed, which notably
was defined as a string, which poses an issue in terms
of our UI and automated reasoning about preferences.
There were no properties related to the CPU architec-
ture, number of cores, or the cache sizes.

3.5 Classes and properties originating
from contract negotiations

The second group of issues that needed to be ad-
dressed originates from the fact that our ontology has
to include classes and properties for the description of
terms and parameters to be used in the Service Level
Agreement (SLA) negotiations. Obviously, while the
above mentioned issues required modifications to the
CGO, here we deal with classes and properties that, for
obvious reasons, were never considered to be included
in the CGO.

As described above, negotiations between agents
in the system materialize primarily in two main
scenarios: (1) contracting a job to be executed, and
(2) joining a team. For the time being we assume that
the implementation of these processes will continue to
be based on the FIPA Contract Net Protocol (single
round [1], or iterated [2]). Therefore, the ontology used
in the system needs to contain definitions of required
messages and their possible content. Messages that
are needed by both processes should include the initial
call for proposals, proposal, acceptance or refusal of a
proposal, and information about the final result; i.e.
the winner of the negotiation process. While assuming
utilization of the FIPA-CNP, the ontology should be
designed in such a way that it may be able to naturally
handle also other one-round and multi-round nego-
tiation scenarios (e.g. the Dutch auction, the sealed
first-price auction, etc.). In both SLA negotiation sce-
narios, negotiation will involve multiple parameters;
since in real-life situations there are multiple factors
influencing the final decision, e.g. while contracting
a job to be executed price is naturally important,
however, it may happen that the User is willing to
pay more money to have the task competed earlier.
Therefore, the proposal evaluation will be based on
multicriterial analysis. Hence, for each negotiation
criteria (parameter) there must exist a property de-
scribing it in the ontology. Parameters characteristic
for job execution negotiations include, among others,
cost, execution start time, penalty for not completing



the job on time, etc. Parameters concerning joining a
team include, for instance, revenue, length of contract,
possibility of contract extension, and time of avail-
ability. During the negotiation process messages with
content based on the ontology have to transfer not
only the exact parameter values but also constraints
to be imposed on specific parameters such as, for
instanxce, minimum and maximum length of contract
for agent joining a team. Therefore, the ontology
should be extended with means of defining constraints
such as minimum, maximum value for continuous
parameters (e.g. cost of job execution, revenue for a
team member), or a possible set of values for discrete
parameters (e.g. acceptable CPUs). Moreover, the
User may want to specify weight of a parameter i.e.
not to treat them all as equally important but to create
a hierarchy of importance. For instance, User looking
for a team that will execute her job may decide that
the time of execution is the key criterion, while LAgent

looking for a team to join may decide that guaranteed
revenue is more important than frequency of jobs.

4 Proposed solution

In order to overcome the aforementioned issues
concerning usability of the CGO in its current form, in
our project, we had to modify and extend it. Proceed-
ing in this direction, for better modularity, and thus
maintainability, we have split the constructed ontol-
ogy into three (sub)ontologies: (1) AiG Grid Ontology,
(2) AiG Conditions Ontology, and (3) AiG Messages
Ontology. In the remainder of this section we present
these modules in some detail.

4.1 AiG Grid Ontology

The AiG Grid Ontology is an extension of the
CGO that adds additional classes and properties that
make specifying the hardware and software configu-
ration of a Grid resource easier. Note that some of
these classes and properties have been already defined
in our original mini-ontology of the Grid. Classes
that it defines—CPUArchitecture (and its subclasses),
CPUVendor, and Memory subclasses (PhysicalMem-

ory, and VirtualMemory)—allow for a more detailed
description of hardware capabilities of the node, as
well as make it possible to identify compatibility issues
between jobs to be executed and resources that are to
be used. The proposed extension also specifies a num-
ber of properties that join concepts of the CoreGRID
ontology. In some cases there is an overlap between
the newly introduced properties and these already
existing in the CGO, but we provided ones that have

clearly specified domain and a strongly typed range,
which allows us to use them in Java code generation.

In addition to classes, we have introduced some
new properties related to them: hasArchitecture,
hasVendor, hasMemory. Furthermore, we have added
a hierarchy of properties allowing for software config-
uration specification, these included: hasInstalledSoft-

ware, hasOperatingSystem, isRunningOS ; and some
additional ones that link the original CGO classes but
were missing from the ontology: hasStorageInterface,
hasStorageSpace, hasFileSystem.

Finally, the extension includes a number of data
properties that can be used to describe classes defined
in the CGO. These properties include:

• CPU—hasClockSpeed(in MHz), hasCores (num-
ber of cores), hasL1CacheSize, hasL2CacheSize,
hasL3CacheSize

• Memory and StorageSpace—hasAvailableSize,
hasTotalSize

• Software—hasVersion

• WorkerNode—isVirtualized

4.2 AiG Conditions Ontology

The AiG Conditions Ontology contains concepts
necessary to describe the conditions of contracts be-
tween these entities in our system that are involved in
“business” relationships: (1) the LAgent representing
a User offering its resources and the LMaster looking
for workers, and (2) the LAgent looking for a team
to execute a job and the LMaster offering to run this
job. To deal with these two cases, the ontology intro-
duces two new classes: JobExecutionConditions and
WorkerContractConditions and properties describing
them. It uses the concepts from the above described
AiG Grid Ontology and the Time Ontology ([4]). Let
us now briefly describe classes comprising this ontol-
ogy and their properties.

4.2.1 JobExecutionConditions

The JobExecutionConditions class specifies conditions
of the contract between the LAgent and the LMaster

accepting the job to be executed by its team. It has
the following properties:

• jobExecutionTime – utilizes an instance of the
TemporalEntity class to describe the period of
time during which the job should be executed

• deadlinePenalty – the amount of monetary units
that the team will pay if it doesn’t meet the dead-
line specified by the jobExecutionTime property



• price – number of monetary units that the LAgent

will pay to the team upon completing the task

4.2.2 WorkerContractConditions

The WorkerContractConditions class defines the con-
ditions of the contract between the Worker and the
LMaster. It has the following properties:

• contractPeriod – the period of time during which
the contract holds

• contractedResource – the instance of the CGO
GridComponent class that represents the resource
offered by the LAgent

• workerAvailability – the time (or periods of time)
during which the resource will be available for the
team; property defined using the TemporalEntity

class; thus, it is possible to specify, for instance,
every Monday or every first week of the month

• guaranteedUtilization – the minimum percentage
of available time that the LMaster guarantees to
occupy the Worker with paid tasks (not used if
payment is based on availability)

• isContractExtensionPossible – determines if the
parties are willing to extend the contract after the
current period ends

• payment – the amount of monetary units the
LMaster agrees to pay the LAgent for each hour
of resource utilization (or for each hour of avail-
ability)

4.3 AiG Messages Ontology

The AiG Messages Ontology is utilized internally
by the proposed solution and contains definitions of
messages that can be exchanged between agents. Con-
tent of messages is based on terminology defined in the
aforementioned ontologies. At the moment we are in
the process of evaluating different approaches to on-
tological description of parameter constraints such as
these described in section 3.5. Therefore, in the follow-
ing list of classes from the AiG Messages Ontology we
will omit concepts related to the constraint definition.

The AiG Messages Ontology is split into two
major classes: 1) JobExecutionMessage, and 2)
TeamJoiningMessage.

4.3.1 JobExecutionMessage

Subclasses of the JobExecutionMessage describe the
structure of messages related to the process of nego-
tiations the terms of job execution, by the resources
of the team. Following is a brief description of these
concepts:

• JobExecutionEnquiry – a message sent from the
LAgent to the LMaster as a Call For Proposals;
it contains the requirements related to the hard-
ware and software configuration of a desired re-
source (constraints on properties from the AiG

Grid Ontology), as well as constraints on the con-
tract conditions (based on the JobExecutionCon-

ditions class)

• JobExecutionOffer – a message sent from the
LMaster to the LAgent containing the proposal
from the team; it is described by an instance
of the JobExecutionConditions class through the
proposedJobExecutionContract property

• JobExecutionRefusal – a message informing the
LAgent that the team will not accept the job

• JobExecutionOfferAccept – a message informing
the LMaster that its team has been selected to
execute the job

• JobExecutionOfferReject – a message informing
the LMaster that it’s offer has been rejected by
the LAgent

• JobExecutionCounterOffer - a message sent from
the LAgent containing modified details of the con-
tract that we received in JobExecutionOffer (used
in case of multi-round negotiations).

4.3.2 TeamJoiningMessage

The TeamJoiningMessage is a superclass of all mes-
sages related to the process of an LAgent applying for
a position in the LMaster ’s team. Its hierarchy con-
tains of the following classes:

• TeamEnquiry – a message sent from the LAgent

to the LMaster as a question about the terms
on which it might be accepted; it utilizes the of-

feredResource property and contains an instance
of the GridComponent class which describes the
configuration of the resource it is offering; it will
also contain a definition of constraints on prop-
erties from the WorkerContractConditions class
that specify what the LAgent would like to in-
clude in the contract

• TeamOffer – a message sent from the LMaster

containing details of the contract it can propose to
the LAgent ; it contains an instance of the Work-

erContractConditions with specific values of con-
tract parameters

• TeamRefusal – a message sent by the LMaster to
the LAgent in case the team does not want that
LAgent to join the team



• TeamOfferAccept – a message confirming that the
LAgent has accepted the contract and decided to
join the team

• TeamOfferReject – a message rejecting the offer
made by the LMaster

• TeamCounterOffer - a message sent from the LA-

gent containing modified details of the contract
that we received in TeamOffer (used in case of
multi-round negotiations)

5 Concluding remarks

The aim of this note was two-fold. First, we have
discussed the reasons why the CoreGRID ontology has
to be modified and extended to become the center-
piece of our project aiming at developing an agent-
based intelligent high-level Grid middleware. Second,
we have outlined the way that this goal has been
achieved. Specifically, we have presented in some de-
tail how the three resulting (sub)ontologies have been
created. The first of them, the AiG Grid Ontology,
is a direct modification and extension of the CGO,
while the remaining two (the AiG Conditions Ontol-

ogy and the AiG Messages Ontology) result from the
need to facilitate autonomous agent-based contract ne-
gotiations. Currently, we are in the final stages of
ontology design; considering technical details of deal-
ing with constraints. As soon as this process is com-
pleted the proposed ontology will be made available at
http://sourceforge.net/projects/gridagents/. At this
stage it will be placed within our system, replacing
our current mini-ontology.

Acknowledgments

Work of M. Ganzha and M. Drozdowicz was sup-
ported from the “Funds for Science” of the Polish Min-
istry for Science and Higher Education for years 2008-
2011, as a research project (contract number N516
382434). Collaboration of the Polish and Bulgarian
teams is partially supported by the Parallel and Dis-

tributed Computing Practices grant. Collaboration of
Polish and French teams is partially supported by the
PICS grant New Methods for Balancing Loads and

Scheduling Jobs in the Grid and Dedicated Systems.

References

[1] FIPA Contract Net Protocol Specification.
http://www.fipa.org/specs/fipa00029/

SC00029H.html.

[2] FIPA Iterated Contract Net Interaction Protocol
Specification. www.fipa.org/specs/fipa00030/
PC00030D.pdf.

[3] Jena—A Semantic Framework for Java. http:

//jena.sourceforge.net.

[4] OWL-ontology. http://www.w3.org/2006/time.

[5] SPARQL Query Language for RDF. http://

www.w3.org/TR/rdf-sparql-query.

[6] M. Dominiak, M. Ganzha, M. Gawinecki, W. Ku-
ranowski, M. Paprzycki, S. Margenov, and
I. Lirkov. Utilizing agent teams in grid resource
brokering. International Transactions on Systems

Science and Applications, 3(4):296–306, 2008.

[7] M. Drozdowicz, M. Ganzha, M. Paprzycki,
R. Olejnik, I. Lirkov, P. Telegin, and M. Senobari.
Ontologies, agents and the grid: An overview.
In B. Topping and P. Ivány, editors, Parallel,

Distributed and Grid Computing for Engineering,
pages 117–140. Saxe-Coburg Publications, Stir-
lingshire, UK, 2009.

[8] I. Foster, N. R. Jennings, and C. Kesselman.
Brain meets brawn: Why grid and agents need
each other. Autonomous Agents and Multiagent

Systems, International Joint Conference on, 1:8–
15, 2004.

[9] J. Hendler. Agents and the semantic web. IEEE

Intelligent Systems, 16(2):30–37.

[10] W. Kuranowski, M. Ganzha, M. Gawinecki,
M. Paprzycki, I. Lirkov, and S. Margenov. Form-
ing and managing agent teams acting as resource
brokers in the grid—preliminary considerations.
International Journal of Computational Intelli-

gence Research, 4(1):9–16, 2008.

[11] W. Kuranowski, M. Paprzycki, M. Ganzha,
M. Gawinecki, I. Lirkov, and S. Margenov.
Agents as resource brokers in grids—forming
agent teams. volume 4818 of LNCS, pages 472–
480, Berlin, 2007. Springer.

[12] H. Nwana and D. Ndumu. A perspective on soft-
ware agents research. The Knowledge Engineering

Review, 14(2):1–18, 1999.

[13] W. Xing, M. D. Dikaiakos, R. Sakellariou, S. Or-
lando, and D. Laforenza. Design and development
of a core grid ontology. In Proc. of the CoreGRID

Workshop Integrated research in Grid Comput-
ing, pages 21–31, November 2005.


