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Abstract: We consider the following Minimum Connectivity Inference problem (MCI),
which arises in structural biology: given vertex sets Vi ⊆ V, i ∈ I, �nd the graph G = (V,E)
minimizing the size of the edge set E, such that the sub-graph of G induced by each Vi is connected.
This problem arises in structural biology, when one aims at �nding the pairwise contacts between
the proteins of a protein assembly, given the lists of proteins involved in sub-complexes. We present
four contributions.
First, using a reduction of set cover, we establish that MCI is APX-hard. Second, we show
how to solve the problem to optimality using a mixed integer linear programming formulation
(MILP). Third, we develop a greedy algorithm based on union-�nd data structures (Greedy),
yielding a 2(log2 |V | + log2 κ)-approximation, with κ the maximum number of subsets Vi a vertex
belongs to. Fourth, application-wise, we use the MILP and the greedy heuristic to solve the
aforementioned connectivity inference problem in structural biology. We show that the solutions
of MILP and Greedy are more parsimonious than those reported by the algorithm initially developed
in biophysics, which are not quali�ed in terms of optimality. Since MILP outputs a set of optimal
solutions, we introduce the notion of consensus solution. Using assemblies whose pairwise contacts
are known exhaustively, we show an almost perfect agreement between the contacts predicted by
our algorithms and the experimentally determined ones, especially for consensus solutions.
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Inférence de la connectivité pour la détermination de

structure en spectrométrie de masse

Résumé : Nous considérons le problème d'Inférence de Connectivité Minimale (Minimum

Connectivity Inference ou MCI) qui se pose en biologie structurale: étant donnés des en-
sembles de sommets Vi ⊆ V, i ∈ I, trouver le graphe G = (V,E) minimisant la taille de l'ensemble
des arêtes E, de telle sorte que le sous-graphe de G induit par chaque ensemble Vi soit connexe.
Ce problème se pose en biologie structurale pour la determination des contacts plausibles entre
les protéines d'un assemblage à partir des listes de protéines présentes dans des sous-complexes.
Nous présentons quatre contributions.

Premièrement, nous montrons que le problème MCI est APX-hard en utilisant une réduction
de set cover. Deuxièmement, nous présentons une formulation en programme linéaire mixte
(MILP) permettant de résoudre MCI de façon optimale. Troisièmement, nous proposons un
algorithme glouton (Greedy) basé sur des structures de données Union-Find. Nous montrons
que cet algorithme est une 2(log2 |V | + log2 κ)-approximation de l'optimal, où κ est le nombre
maximum d'ensembles Vi contenant un sommet donné. Quatrièmement, d'un point de vue
appliqué, nous utilisons l'approche MILP et l'algorithme glouton pour résoudre le problème MCI
en biologie structurale. Nous montrons que les solutions calculées par MILP et Greedy sont plus
parcimonieuses que celles produites par l'algorithme utilisé à ce jour en bio-physique � lequel
n'est pas quali�é en terme d'optimalité. Les algorithmes MILP et Greedy générant des ensembles
de solutions, nous introduisons la notion de solution consensus. En utilisant le cas d'assemblages
dont les contacts sont connus de façon exhaustive, nous montrons un accord presque parfait entre
les contacts determinés par nos algorithmes et ceux determinés expérimentalement, en particulier
pour les solutions consensus.

Mots-clés : Inférence de la connectivité, Sous-graphe induit connexe, APX-hard, programme
linéaire mixte, algorithme glouton, spectrométrie de masse, assemblage protéique, biologie struc-
turale, biophysique, machine moléculaire
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4 Agarwal et al

1 Introduction

1.1 Connectivity Inference for Macro-molecular Assemblies

Macro-molecular assemblies. Building models of macro-molecular machines is a key en-
deavor of biophysics, as such models not only unravel fundamental mechanisms of life, but also
o�er the possibility to monitor and to �x defaulting systems. Example of such machines are the
eukaryotic initiation factors which initiate protein synthesis by the ribosome, the ribosome which
performs the synthesis of a polypeptide chain encoded in a messenger RNA derived from a gene,
chaperonins which help proteins to adopt their 3D structure, the proteasome which carries out
the elimination of damaged or misfolded proteins, etc. These macro-molecular assemblies involve
from tens to hundreds of molecules, and range in size from a few tens of Angstroms (the size of
one atom) up to 100 nanometers.

But if atomic resolution models of small assemblies are typically obtained with X-ray crys-
tallography and/or nuclear magnetic resonance, large assemblies are not, in general, amenable
to such studies. Instead, their reconstruction by data integration requires mixing a panel of
complementary experimental data [4]. In particular, information on the hierarchical structure
of an assembly, namely its decomposition into sub-complexes (complexes for short in the sequel)
which themselves decompose into isolated molecules (proteins or nucleic acids) can be obtained
from mass spectrometry.

Mass spectrometry. Mass spectrometry (MS) is an analytical technique allowing the mea-
surement of the mass-to-charge (m/z) ratio of molecules [22], based on three devices, namely
a source to produce ions from samples in solution, an analyzer separating them according to
their m/z ratio, and a detector to count them. The process results in a m/z spectrum, whose
deconvolution yields a mass spectrum, i.e. an histogram recording the abundance of the various
complexes as a function of their mass. Considering this spectrum as raw data, two mathematical
questions need to be solved. The �rst one, known as stoichiometry determination (SD), consists
of inferring how many copies of the individual molecules are needed to account for the mass of
a mode of the spectrum [6, 2]. The second one, known as connectivity inference, aims at �nding
the most plausible connectivity of the molecules involved in a solution of the SD problem.

Connectivity inference. Given a macro-molecular assembly whose individual molecules (pro-
teins or nucleic acids) are known, we aim at inferring the connectivity between these molecules.
In other words, we are given the vertices of a graph, and we wish to �gure out the edges it
should have. To constrain the problem, we assume that the composition, in terms of individual
molecules, of selected complexes of the assembly is known. Mathematically, this means that the
vertex sets of selected connected subgraphs of the graph sought are known. To see where this
information comes from, recall that a given assembly can be chemically denatured i.e. split into
complexes by manipulating the chemical conditions prior to ionization. In extreme conditions,
complete denaturation occurs, so that the individual molecules can be identi�ed using MS. In
milder conditions, multiple overlapping complexes are generated: once the masses of the proteins
are known, the list of proteins in each such complex is determined by solving the aforementioned
SD problem [20]. As a �nal comment, it should be noticed that in inferring the connectivity,
smallest-size networks (i.e. graphs with as few edges as possible) are sought [3, 25]. Indeed,
due to volume exclusion constraints, a given protein cannot contact all the remaining ones, so
that the minimal connectivity assumption avoids speculating on the exact (unknown) number of
contacts.

Inria
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Mathematical Model. Let G = (V,E) be a graph, where V is the set of vertices and E the
set of edges. We denote G[V ′], respectively G[E′], the subgraph of G induced by V ′ ⊆ V , resp.
by E′ ⊆ E.

Consider an assembly together with the list of constituting proteins, as well as a list of
associated complexes. Prosaically, we associate to each protein a vertex v ∈ V and to each
complex i ∈ I ⊆ N a subset Vi ⊆ V , such that if the protein v belongs to the complex i, then
v ∈ Vi. Our goal is to infer the connectivity inside each complex of proteins. Therefore, we
need to select a set of edges Ei between the vertices of Vi such that the graph Gi = (Vi, Ei) is
connected. The Minimum Connectivity Inference problem is to �nd a graph G = (V,E)
with minimum cardinality set of edges E such that the subgraph G[Vi] induced by each Vi, i ∈ I,
is connected. Formally, we state the problem as follows.

De�nition 1 (Minimum Connectivity Inference problem, MCI).

Inputs: A set V of n vertices (proteins) and a set of subsets (complexes) C = {Vi | Vi ⊆
V and i ∈ I}.

Constraint: A set E of edges is feasible if G[Vi] ⊆ G = (V,E) is connected, for every i ∈ I.

Output: A feasible set of edges E with minimum cardinality.

Related work. The connectivity inference problem was �rst addressed in [25] using a two-
stage algorithm, called network inference (NI in the sequel). First, random graphs meeting
the connectivity constraint are generated, by incrementally adding edges at random. Second,
a genetic algorithm is used to reduce the number of edges, and also boost the diversity of the
connectivity. Once the average size of the graphs stabilizes, the pool of graphs is analyzed to
spot highly conserved edges.

From the Computer Science point of view, MCI is a network design problem in which one
wants to choose a set of edges with minimum cost to connect entities (e.g., routers, antennas,
etc.) subject to particular connectivity constraints. Typical examples of such constraints are
that the subgraph must be k-connected, possibly with minimum degree or maximum diameter
requirements (see [19] for a survey). Such network design problems are generally hard to solve.
To the best of our knowledge, the problem of ensuring the connectivity for di�erent subsets of
nodes has not been addressed before.

2 Preliminaries and Hardness

2.1 Simplifying an Instance of MCI: Reduction Rules

Let (V,C) be an instance of MCI. We denote by (V,C)\u the instance (V ′, E′) of MCI obtained
from (V,C) by removing u from V and all the subsets of C it belongs to. So we have V ′ = V \{u}
and C ′ = {Vi \ {u} | Vi ∈ C and i ∈ I}. Moreover, we denote by OPT((V,C)) the cardinality of
an optimal solution of MCI for the instance (V,C). Let us now denote C(v) = {i | Vi ∋ v} ⊆ I,
the set of complexes of the protein v ∈ V . We observe that we can apply the following reduction
rules to any instance of MCI:

Lemma 1 (Reduction Rules). Let (V,C) be an instance of MCI.

1. If Vi ∈ C is such that |Vi| = 1, then any feasible solution for (V,C \ Vi) is also feasible for
(V,C), and we have OPT((V,C \ Vi)) = OPT((V,C));

RR n° 8320



6 Agarwal et al

2. If C(u) ⊆ C(v), for some u, v ∈ V , then a feasible solution for (V,C) is obtained from
a feasible solution for (V,C) \ u by adding the edge uv, and we have OPT((V,C)) =
OPT((V,C) \ u) + 1;

The proof is provided in the technical report [1].
By applying Lemma 1, we conclude that we can reduce the input instances of MCI to instances

where every subset Vi has at least two vertices, every vertex appears in at least two subsets Vi

and Vj with i 6= j, and the sets C(u) and C(v) are di�erent, for any two vertices u and v.

2.2 Hardness

We establish that MCI is APX-hard, by showing a reduction of the Set Cover problem. The
Set Cover problem is de�ned as follows:

De�nition 2 (Set Cover problem).

Inputs: a ground set X = {x1, . . . , xm}, a collection F = {Xi ⊆ X , i ∈ I} and a positive
integer k.

Question: does there exist J ⊆ I such that
⋃

i∈J Xi = X and |J | ≤ k?

It is well-known that the Set Cover problem is NP-complete [13] and that this problem
cannot be approximated in polynomial-time by a factor of lnn, unless P = NP [17, 5]. In order
to prove our NP-completeness result, let us formally de�ne the decision version of MCI as:

De�nition 3 (Decision version of the Connectivity Inference problem, CI).

Inputs: A set of vertices V , a set of subsets C = {Vi | Vi ⊂ V and i ∈ I} and a positive integer
k.

Constraint: A set E of edges is feasible if G[Vi] ⊆ G = (V,E) is connected, for every i ∈ I.

Question: Does there exists a feasible set E of edges such that |E| ≤ k?

Theorem 1. The decision version of the Connectivity Inference problem is NP-complete.

The proof is provided in the technical report [1].
From the reduction used in the proof of Theorem 1 and the previous results on Set Cover

problem [17, 5], we conclude that MCI is APX-hard:

Corollary 1. There exists a constant µ > 0 such that approximating MCI within 1 + µ is
NP-hard.

3 Solving the Problem to Optimality using Mixed Integer

Linear Programming

3.1 Flow Based Formulation

To solve an instance (V,C) of the MCI problem, we introduce one binary variable ye for each
edge e = uv of the undirected complete graph on |V | vertices K|V |, to determine whether edge e
is selected in the solution. Thus, the objective function consists of minimizing the sum of the y
variables, as speci�ed by Eq. (1). To solve this problem, we form the directed graph D = (V,A)

Inria
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in which each edge e = uv of the complete graph K|V | is replaced by two directed arcs (u, v) and
(v, u). The solution using MILP satis�es the following constraints:

⊲ Connectivity constraints. To enforce the connectivity of each complex, we select one vertex
si per subset Vi ∈ C as the source of a �ow that must reach all other vertices in Vi using
only arcs in D[Vi]. We introduce continuous variables f i

a ∈ R
+ to express the quantity of �ow

originating from si and circulating along the arc a = (u, v) (i.e. from node u to v), with u, v ∈ Vi.
Constraint (2), the �ow conservation constraint of Eq. (2), expresses that |Vi| − 1 units of �ow
are sent from si, and each vertex ui collects 1 unit of �ow from si and forwards the excess it has
received from si to its neighbors in D[Vi].

⊲ Capacity constraints. We also introduce a continuous variable xa ∈ [0, 1], with a = (u, v) ∈ A
and u, v ∈ V , that is strictly positive if arc a carries some �ow and 0 otherwise. In other words,
no �ow can use arc a when xa = 0 as ensured by Constraint (3).

⊲ Symmetry constraints. If there is some �ow on arc (u, v) or (v, u) in D, then variable x is
strictly positive and so the corresponding edge uv must be selected in the solution, meaning that
ye = 1, as ensured by Constraints (4) and (5).

Denoting E the edges of the complete graph K|V |, and A+
i (u) (resp. A−

i (u)) the subset of arcs
of D[Vi] entering (resp. leaving) node u, the formulation reads as:

min
∑

e∈E

ye (1)

s.t.
∑

a∈A
+

i
(u)

f i
a −

∑

a∈A
−

i
(u)

f i
a =

{

|Vi| − 1 if u = si

−1 if u 6= si
∀u ∈ Vi, Vi ∈ C (2)

f i
a ≤ |Vi| · xa, ∀ Vi ∈ C, a ∈ A (3)

x(u,v) ≤ yuv, ∀ uv ∈ E (4)

x(v,u) ≤ yuv, ∀ uv ∈ E (5)

Observe that this formulation can be turned into a decision formulation, by removing the ob-
jective and adding the constraint of Eq. (6). If the formulation becomes infeasible, the optimal
solution as more than k edges.

∑

e∈E

ye ≤ k (6)
∑

e∈Eℓ

ye < k ∀Eℓ ∈ S (7)

Moreover, we can use the decision formulation to enumerate all feasible solutions for an
instance (V,C, k). To do so, we use Constraints (7), where S is the set of feasible solutions that
have already been found. This constraint prevents �nding twice a solution. We �rst set S = ∅,
then we add it to all newly found solutions and repeat until the problem becomes infeasible for
a solution of size k.

3.2 Implementation

The formulation has been implemented using IBM CPLEX solver 12.1, the corresponding soft-
ware being named MILP in the sequel. Starting from the complete graph of size |V |, MILP
allows one to compute one optimal solution, or the set of all solutions involving at most OPT +k
edges. For k = 0, one gets the set of all optimal solutions, denoted SMILP in the sequel.

RR n° 8320



8 Agarwal et al

4 Approximate Solution based on a Greedy Algorithm

4.1 Design and Properties

We now propose a greedy algorithm for MCI. Starting from the empty graph G0 = (V,E0 = ∅),
Algorithm 1 iteratively builds a graph Gt = (V,Et), with Et = Et−1 ∪ {et}. The edge et = uv
chosen at step t aims at reducing the number of connected components in the induced subgraphs
Gt−1[Vi] of Gt−1, for i ∈ C(u)∩C(v). More formally, at step t, we choose an edge et maximizing
mt(e = uv) among all pairs u, v ∈ V , with mt(e = uv) the number of complexes containing u
and v, and such that u and v belong to two di�erent connected components of Gt−1[Vi]. The
quantity mt(e = uv) is called the priority of the edge e.

Algorithm 1 Greedy algorithm for MCI
Require: V = {v1, . . . , vn} and C = {Vi | Vi ⊆ V and i ∈ I}.
Ensure: A set E of edges such that G[Vi] ⊆ G = (V,E) is connected, for every i ∈ I.
1: t := 1, E0 := ∅
2: while there exists a disconnected graph Gt−1[Vi], for some i ∈ I do
3: Find edge et maximizing the priority mt(e)
4: Et := Et−1 ∪ {et} and t := t + 1
5: return Et−1

Proposition 1. Algorithm 1 is a 2(log2 |V | + log2 κ)-approximation algorithm for MCI, with κ
being the maximum number of subsets Vi a vertex belongs to.

The proof is provided in the technical report [1].

Proposition 2. When maxv∈V |C(v)| = 2, Algorithm 1 always returns an optimal solution.

The proof is provided in the technical report [1].

4.2 Implementation

In the following, we sketch an implementation of Algorithm 1, denoted Greedy in the sequel,
which does not scan every candidate edge in Et to �nd the (or a) best one, but instead maintains
the priorities of all candidate edges.

Consider the following data structures:

� a priority queue Q associating to each candidate edge e its priority de�ned by mt(e). Note
that the initial priority is given by m0(e = uv) = |C(u) ∩ C(v)|.

� a union-�nd data structure UFi used to maintain the connected components of the induced
graph Gt[Vi]. We assume in particular the existence of a function Find_vertices() such that
UFi.Find_vertices(u) returns the vertices of the connected component of the graph Gt[Vi]
containing the vertex u.

Upon popping the edge et = (u, v) from Q, the following updates take place:

Update of the priority queue Q. For each complex Vi such that et triggers a merge between
two connected components of Gt[Vi], consider the two sets of vertices associated to these com-
ponents, namely Ki,u = UFi.Find_vertices(u) and Ki,v = UFi.Find_vertices(v). The priority
of all edges in the set Ki,u × Ki,v \ {et} is decreased by one unit.

Inria



Minimum Connectivity Inference 9

Update of the union-�nd data structures. For each complex Vi such that et triggers a merge
between two connected components of Gt−1[Vi], the union operation UFi.Union(UFi.Find(u), UFi.Find(v),)
is performed.

It should be noticed that up to the logarithmic factor involved in the maintenance of Q,
and up to the factor involving the inverse of Ackermann's function to run the union and �nd
operations [24], the update complexity is output sensitive in the number of candidate edges
a�ected in Ki,u × Ki,v.

5 Experimental Results

5.1 Test Set: Assemblies of Interest

We selected three assemblies investigated by mass spectrometry, as explained in Section 1, for
which we also found reference contacts between pairs of constituting proteins, against which to
compare the output of our algorithms.

As explained in the supplemental section 8, we classi�ed all collected contacts into three sets,
namely crystal contacts (set CXtal) observed in high resolution crystal structures, cross-linking
contacts (set CXL), obtained by so-called cross-linking experiments, and miscellaneous dimers
(set CDim) obtained by various biophysical experiments. In case the crystal contacts are not
available, we de�ne the reference set of contacts as CExp = CDim ∪ CXL. The three systems we
selected are:

⊲Yeast Exosome. The exosome is a 3'- 5' exonuclease assembly involved in RNA processing
and degradation, composed of 10 di�erent protein types with unit stoichiometry [10]. A total of
21 complexes were determined by mass spectrometry. (See also the supplemental Table 2 for the
reference contacts.)

⊲Yeast 19S Proteasome lid. Proteasomes are assemblies involved in the elimination of dam-
aged or misfolded proteins, and the degradation of short-lived regulatory proteins. The most
common form of proteasome is the 26S, which involves two �ltering caps (the 19S), each cap
involving a peripheral lid, composed of 9 distinct protein types each with unit stoichiometry [21].
A total of 14 complexes were determined by mass spectrometry. (See also the supplemental
Table 3 for the reference contacts.)

⊲Eukaryotic Translation factor eIF3. Eukaryotic initiation factors (eIF) are proteins in-
volved in the initiation phase of the eukaryotic translation. They form a complex with the 40S
ribosomal subunit, initiating the ribosomal scanning of mRNA. Among them, eIF3 consists of 13
di�erent protein types each with unit stoichiometry [26]. A total of 27 complexes were determined
by mass spectrometry. (See also the supplemental Table 4 for the reference contacts.)

5.2 Assessment Method

Let SMILP be the set of optimal solutions returned by MILP, and let SNI and SG be the solutions
computed by the algorithms NI [25] and Greedy respectively.

Consider an ensemble of solutions S. The size of a solution S ∈ S, denoted | S |, is its
number of contacts. The precision of a solution S w.r.t. a reference set of contacts C is de�ned
as the size of the intersection, i.e. PMILP;C(S) =| S ∩ C |. The precision is maximum if S ⊂ C,
in which case no predicted contact is a false positive. The notion of precision makes sense if the
reference contacts are exhaustive, which is the case for the exosome (since a crystal structure is
known) and for the proteasome lid (exhaustive list of cross-links). We summarize the precision

RR n° 8320



10 Agarwal et al

Table 1 Size and precision of solutions. First section of the table: assembly, number of
protein types, and size of the reference set C; second and third sections: size and precision for
the solution returned by the algorithms NI [25] and Greedy; fourth and �fth sections: size and
precision of algorithm MILP, for the whole set of optimal solutions SMILP , and for consensus
solutions Scons.

MILP . NB: **The assignment of contacts was done manually [26]; NC
∗: assembly not

connected
Complex #types Ref. set C |C| | SNI | PMILP;C(SNI) | SG | PMILP;C(SG) | SMILP | | SMILP | PMILP;C(SMILP ) | Scons.

MILP | PMILP;C(Scons.
MILP )

Exosome 10 CXtal 26 12 12(100%) 10 10 (100%) 10 1644 (7, 9, 10) 12 (8, 9, 10)
19S Lid 9 CExp 16 9 (NC)∗ 7(77.8%) 10 8 (80%) 10 324 (6, 7, 10) 18 (8, 8, 10)
eIF3 13 CExp 19 17∗∗ 14 (82.3%) 14 9 (64.2%) 14 2160 (8, 9, 11) 432 (8, 9, 10)

of the ensemble of solutions S, denoted PMILP;C(S), by the triple (min, median, max) of the
precisions of the solutions S ∈ S.

The score of a contact appearing in a solution is the number of solutions from S containing
it, and its signed score is its score multiplied by ±1 depending on whether it is a true or false
positive w.r.t C. The score of a solution S ∈ S is the sum of the scores of its contacts. Finally, a
consensus solution is a solution achieving the maximum score over S, the set of all such solutions
being denoted Scons.. Note that the score of a solution is meant to single out the consensus
solutions from a solution set S, while the signed score is meant to assess the solutions in S w.r.t
a reference set.

5.3 Results

Except for the analysis of Table 1, due to the lack of space, we focus on the exosome (Fig. 1,
and supplemental Table 2 for the reference contacts.).

⊲Parsimony and precision. It is �rst observed that on the three systems, the algorithms MILP
and Greedy are more parsimonious than NI (Table 1). For example, on the exosome, 10 edges
are used instead of 12. The precision is excellent (≥ 80%) for the three algorithms on the two
systems where the reference set of contacts is exhaustive (exosome and lid).

⊲Contact scores for SMILP on the exosome. Two facts emerge (Fig. 2(A)). First, four
ubiquitous contacts are observed, while the remaining ones vary in the frequency. Second, there
are few false positive overall. An interesting case is (Rrp42, Rrp45), which has the 7th highest
count. The two polypeptide chains Rrp42 and Rrp45 are found in 16 out of 21 complexes used
as input, accompanied in all cases by Rrp41. Interestingly, the point of closest approach between
Rrp42 and Rrp45 in the crystal structure is circa 24Å, and this gap is precisely �lled by Rrp41.
That is, these three chains behave like a rigid body. Further inspection of the structure and of the
behavior of MILP on such patterns is needed to explain why the edge (Rrp42, Rrp45) is reported.

⊲Scores for consensus solutions on the exosome. It is �rst observed that 12 consensus
solutions amidst 1644 optimal ones are observed (Table 1 and Fig. 2(B)). In moving from
SMILP to Scons.

MILP , the precision increases from (7, 9, 10) to (8, 9, 10) � as also seen by a Pearson
correlation coe�cient of -0.51 between the mean false positive count per score, and the score (of
a solution).
⊲Overall assessment. The consensus solutions from MILP are more parsimonious than those
form NI, and compare favorably in terms of precision.
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Figure 2 Exosome (A) Signed scores for contacts in SMILP , w.r.t CXtal (B) Distribution of
scores for solutions in SMILP
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Figure. 1. Yeast
Exosome: contacts
computed by the
algorithms. (A) Top
and side view of the
crystal structure [18,
PDB 4IFD]. (B,C,D)
Structure decorated
with one edge per
contact. the dash style
reads as follows: bold:
contacts in S ∩ CXtal;
dotted: contacts in
S but not in CXtal;
dashed: contact in
CXtal but not in S

(Note that only most
prominent contacts
in CXtal are shown to
avoid cluttering). Note
that a long edge i.e.
an edge between two
subunits that appear
distant on the top view
of the assembly corre-
sponds to a contact of
these subunits located further down along the vertical direction. Also, note that part of the subunits
Dis3 and Rrp42 are visible in the middle of the assembly and are trapped in between Csl4, Rrp40,
Rrp41. The contact node therefore is placed there for convenience.

6 Conclusion and Outlook

A key endeavor of biophysics, for macro-molecular systems involving up to hundreds of molecules,
is the determination of the pairwise contacts between these constituting molecules. The corre-
sponding problem, known as connectivity inference, is central in mass-spectrometry based studies,
which over the past �ve years, has proved crucial to investigate large assemblies. In this context,
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this paper presents a thorough study of the problem, encompassing its hardness, a greedy strat-
egy, and a mixed integer programming algorithm. Application-wise, the key advantage of our
methods w.r.t. the algorithm network inference developed in biophysics, is that we fully master
all optimal solutions instead of a random collection of solutions which are not quali�ed w.r.t.
the optimum. As shown by careful experiments on three assemblies recently scrutinized by other
bio-physical experiments (exosome, proteasome lid, eIF3), our predictions are in excellent agree-
ment with the experimental contacts. We therefore believe that our algorithms should leverage
the interpretation of protein complexes obtained by mass spectrometry, a research vein currently
undergoing major developments.

From a theoretical standpoint, a number of challenging problems deserve further work. The
�rst one is to understand the solution space as a function of the number of input vertex sets
and the structure of the unknown underlying graph. This problem is also related to the (output-
sensitive) enumeration of connected subgraphs of a given graph. The second challenge is con-
cerned with the generalization where the stoichiometry (the number of instances) of the proteins
involved is more than one. In that case, complications arise since the connectivity information
associated to the vertex sets of the connected subgraphs is related to protein types, while the
connectivity sought is between protein instances. This extension would allow processing cases
such as the nuclear pore complex, the biggest assembly known to date in eukaryotic cells, as
it involves circa 450 protein instances of 30 di�erent protein types, some of them present in
16 copies. The third one is of geometric �avor, and is concerned with the 3D embedding of
the graph(s) generated. Since the nodes represent proteins and since two proteins must form a
bio-physically valid interface if they touch at all, information on the shape of the proteins could
be used to �nd plausible embeddings that would constrain the combinatorially valid solutions.
This would be especially helpful to recover the edges which are known from experiments, but
do not appear in exact or approximate solution to the minimal connectivity problem. Finally,
the Minimum Connectivity Inference problem also deserves investigation when the pool of
candidate edges is a subset of the complete graph, which is especially relevant since pre-de�ned
sets of edges may have been reported by a variety of experiments, some of them producing false
positives.
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7 Appendix: Theory

7.1 Proofs

Proof for lemma 1:

Proof. To prove Statement 1, observe that Vi will always induce a connected subgraph, since it
contains a single vertex. Consequently, it is trivially satis�ed without the inclusion of any edge.

To prove Statement 2, observe �rst that given a feasible solution for (V,C) \ u, we can
construct a feasible solution for (V,C) by adding the edge uv. Hence we have OPT((V,C)) ≤
OPT((V,C) \ u) + 1.

Let us now construct a feasible solution for (V,C) \ u from a feasible solution E for (V,C).
Let G = (V,E) be a graph and suppose �rst that uv /∈ E. Let P = uw1 . . . wpv be a uv-path
in G, p ≥ 1. Such a path exists since E is a feasible solution for (V,C) and C(u) ⊆ C(v). So
for every i ∈ C(u), G[Vi] is a connected subgraph containing both u and v. Observe that the
edge uw1 only appears in the subgraphs G[Vi], for i ∈ C(u) ∩ C(w1). Then we claim that the
set E′ obtained from E by removing edge uw1 and adding edge uv is also a feasible solution
for (V,C). In fact, the removal of uw1 can only disconnect the subgraphs G[Vi] for i ∈ C(u).
Moreover, the subgraphs G[Vi] that become disconnected after the removal of uw1 will have
exactly two connected components, one containing u and the other containing v. Then, the
addition of edge uv reconnects the disconnected subgraphs, and we have |E| = |E′|. Suppose
now that uv ∈ E and that there exists an edge uw ∈ E with w 6= v. By using the previous
argument, we construct the set E′′ of edges from E by removing the edge uw and adding the
edge vw. Obviously, E′′ is a feasible solution for (V,C) and |E| = |E′′|. Altogether, we can
construct a feasible solution E∗ for (V,C) such that |E| = |E∗| and the only edge incident to
u is uv. Furthermore, E∗ \ uv is a feasible solution for (V,C) \ u since C(u) ⊆ C(v), and so
OPT((V,C) \ u) ≤ OPT ((V,C)) − 1.

Proof for theorem 1:

Proof. Given a set E of edges, one can check in polynomial time whether |E| ≤ k and each
induced subgraph G[Vi] is connected, for every i ∈ I. Therefore the problem is in NP.

Let ISC = (X ,F , k) be an input for the Set Cover problem. We construct an instance
ICI = (V,C, k′) to the decision version of the Connectivity Inference problem in such a way
that ISC is true if, and only if, ICI is also true in the following way:

1. The vertex set V is partitioned into two sets A and B with |A| = |B|;

2. To each subset Xi ∈ F , we associate a vertex vi ∈ A and a vertex v′i ∈ B. So |V | = 2|F|;

3. To each pair vivj (resp. v′iv
′
j) we associate a subset Vij = {vi, vj} (resp. Vi′j′ = {v′i, v

′
j})

in C;

4. To each element xi ∈ X we associate a subset Vi ∈ C, i ∈ {1, . . . ,m};

5. We have xi ∈ Xj if and only if we have vj , v
′
j ∈ Vi, for every i ∈ {1, . . . ,m} and j ∈

{1, . . . , |I|};

6. We set k′ = k + 2
(

|F|
2

)

.

Observe that step 3 forces any feasible solution for CI to include all the edges vivj and v′iv
′
j , for

every i, j ∈ {1, . . . , |F|}. All the subsets Vij and Vi′j′ of C are connected in any feasible solution
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of ICI . Furthermore, each feasible solution has at least 2
(

|F|
2

)

edges. In the next arguments, we
refer to this set of edges as EC.

Let J ⊆ I, |J | ≤ k, be a true solution for the Set Cover problem. We claim that E =
{viv

′
i | i ∈ J} ∪ EC is a true solution for CI in the corresponding instance ICI . First, observe

that |E| ≤ k + 2
(

|F|
2

)

, and recall that all the subsets Vij and Vi′j′ of C are connected thanks to
the edges of EC. Now let us check that the remaining subsets Vi, 1 ≤ i ≤ m, are also connected.
By contradiction, suppose that it is not the case and let G = (V,E). Thus, there exists a subset
Vi ⊆ V such that G[Vi] is not connected. Recall that all the edges EC are forced to be in the
feasible solution E and thus the only possibility is that the vertices in A ∩ Vi are not connected
in the solution to the vertices of B ∩ Vi. However, xi must have been covered by a subset Xj ,
for some j ∈ J , in the true solution to the Set Cover problem. Consequently, by construction
of ICI , the subset Vi contains both vj and v′j , and so the subgraph G[Vi] should be connected
since edge vjv

′
j belongs to E, a contradiction.

On the other hand, let E∗ be a true solution for (V,C, k′), let EM = E∗ \ EC be the edges
of the solution E∗ that have one endpoint in A and the other in B. Since |EC| = 2

(

|F|
2

)

, we
know that k ≥ |EM |. We claim that with |EM | subsets of F we can satisfy ISC . Observe that,
if there is an edge viv

′
j ∈ EM with i 6= j, this edge can be replaced by the edge viv

′
i and the

solution is still feasible. In fact, all the complexes that were connected by viv
′
j belong to the

intersection of C(vi) ∩ C(v′j) and we have C(vi) = C(v′i). So we obtain a feasible solution with
k′ edges whose end-points are both included in either A or B, or one end-point is vi and the
other is vi′ for some i ∈ J with |J | = |EM | ≤ k. By construction of ICI , the set J is a feasible
solution to ISC .

Proof for proposition 1:

Proof. Let M =
∑

v∈V |C(v)| and remark that mt(e
t) ≥ mt+1(e

t+1). We divide the steps
of the algorithm into log2 M phases. During each phase x, the value of mt(e

t) remains in
the interval [ax, 2ax], where a0 = maxu,v∈V |C(u) ∩ C(v)| and ax = ax−1/2 = a0/2x. Since
alog2 M = a0/2log2 M = a0/M < 1 and that an edge is selected only if it connects at least two
components, we need only log2 M phases. Let Λx be the number of selected edges during phase
x. We observe that the output of Algorithm 1 is SOL =

∑log2 M

x=1 Λx. Let also δx be the number
of components of the graphs Gt[Vi] that have been connected during that phase. We have

axΛx ≤ δx ≤ 2axΛx (8a)

Since during phase x we have reduced the number of components by δx, we know that the
remaining number of components to connect at the beginning of the phase was at least δx.
Furthermore, the maximum value mt(e) of an edge during phase x was upper bounded by 2ax

and we have mt(e
t) ≥ mt+1(e

t+1). So to connect these remaining components, we need at least
δx/2ax edges. Hence we have

OPT ≥
δx

2ax

(8b)

Using Eq. 8a, we obtain that 2 · OPT ≥ Λx. Now, summing over all phases, we obtain

log2 M
∑

x=1

2 · OPT = 2 · OPT · log2 M ≥

log2 M
∑

x=1

Λx = SOL (8c)

Finally, since κ = maxv∈V |C(v)|, we have M ≤ |V | · κ and the result follows.

Proof for proposition 2:

Inria



Minimum Connectivity Inference 17

Proof. By Lemma 1, we may assume that mt(e) ≤ 1, for every e ∈ E and for every t. Con-
sequently, when an edge et is chosen, it will be useful to connect only one complex. Thus, all
the edges that are chosen by the algorithm are necessary (in the sense that one edge would be
necessary to connect such complex) and the solution is optimal.

8 Lists of Contacts for the Assemblies Studied

In section 8.1, we provide a classi�cation of various contacts reported in the literature, classi�ed
as a function of the experimental technique they were observed with. These contact categories are
used to de�ne reference edge sets used for the assessment of the edges reported by our algorithms.

We proceed in section 8.2 with the corresponding lists for the assemblies studied.

8.1 Pairwise Contacts within Macro-molecular Complexes

Crystal contacts: [CXtal] A high-resolution crystal structure of an assembly can be seen as
the gold standard providing all pairwise contacts between its constituting molecules. Given such
a crystal structure, all pairs of molecules are tested to check whether they de�ne a contact. A
pair de�nes a contact provided that in the solvent accessible (SAS) model of the assembly 1,
two atoms from these partners de�ne an edge in the α-complex of the assembly for α = 0, as
classically done to de�ne macro-molecular interfaces [8, 11, 16].)

This protocol actually calls for one comment. For protein interfaces, it is generally accepted
that any biologically speci�c contact has a surface area beyond 500Å2, or equivalently, involves
at least 50 atoms on each partners [11]. For assemblies, because of the promiscuity of molecules,
this threshold does not apply directly. As an example, consider the number of atoms observed
at interfaces for the yeast exosome complex (Fig. 1). While selected interfaces meet the usual
criterion, others involve a handful of atoms. For this reason, in addition to CXtal, we de�ned a
set C−

Xtal involving the most prominent contacts only (14 contacts out of 26). We note in passing
that the existence of a hierarchy of interface size within a protein assembly has been reported in
[15, 11].

Cross-linking (set CXL). Cross-linking is an analytical technique which consists in chemically
linking surface residue of two proteins located nearby. This technique is used to identify protein-
protein interactions, upon disrupting the cell and identifying the cross-linked proteins. The
outcome allows identifying interacting proteins within an assembly, but also transient interactions
which get stabilized by the cross-linker. The distance between the two amino-acids cross-linked is
circa 25Å, including the length of the linker and the span of the side-chains of the two amino-acids
involved.

Due to this distance, the two proteins cross-linked may not form an interface in the sense
de�ned above. However, cross-linking contacts are considered as interfacial contacts in [12],
de�ning a low-resolution topology.

Dimers obtained from various biophysical experiments (set CDim). The following
experiments deliver information on the existence of a dimer involving two proteins:

1Given a van der Waals models, the corresponding SAS model consists of expanding the atomic radii by 1.4Å,
so as to account for an implicit layer of water molecules on the model. The SAS model also allows capturing
intersections between atoms which are nearby in 3D space, but are not covalently bonded.
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� Mass spectrometry (MS1) or Tandem Mass spectrometry (MS2): upon collecting a dimer,
and since no re-arrangement occurs in gas phase, the two proteins form a dimer in the
assembly analyzed.

� Tandem a�nity puri�cation (TAP): a bait put on one protein pulls down another protein,
upon capturing the marked protein on a a�nity puri�cation column.

� Co-immuno-precipitation of two proteins: as above.

� Native Agarose Gel electrophoresis: two proteins are inferred to be interacting if instead
of two sharp bands (assuming mol. wt. to be di�erent) a broad band spread over a range
of molecular weight is observed.

� NMR titrations: information of the interacting residues of one protein is inferred from the
perturbation of the chemical shifts of the interfacial residues obtained when adding the
partner.

Contacts observed in Yeast two-hybrid assays (set CY2H). Because such contacts are
prone to false positive, we reported such contacts within our tables for the sake of completeness,
but did not use them to assess our algorithms.

Reference sets used for our assessments. Owing to the reliability of the three sets of
contacts CXtal,CDim, and CXL , for a given assembly, we de�ne the interface contacts

CExp = CXtal ∪ CDim ∪ CXL. (9)

8.2 Contacts for the Assemblies of Interest

NB: No cross-linking or cryo-EM or x-ray data is available for eIF3.
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Table 2 List of contacts determined from experiments for Yeast Exosome

CXtal (26 contacts) CDim (7 contacts)

X-Ray Crystallography, 2.8 Å[18] TAP,MS1, MS2,
Chains Subunits #Interface atoms Partial Denaturation [10] [25]
CG (Rrp43, Rrp40) 2 (Rrp43, Csl4)
EI (Rrp42, Csl4) 6 (Rrp45, Rrp40)
AF (Rrp45, Mtr3) 19 (Rrp46, Rrp40)
FH (Mtr3, Rrp4) 24 (Rrp45, Rrp46)
DF (Rrp46, Mtr3) 54 (Rrp45, Rrp41)
AH (Rrp45, Rrp4) 59 (Rrp43, Rrp46)
HI (Rrp4, Csl4) 60 (Rrp42, Mtr3)
AC (Rrp45, Rrp43) 72
DI (Rrp46, Csl4) 79
AJ (Rrp45, Dis3) 95
GI (Rrp40, Csl4) 117
CJ (Rrp43, Dis3) 148
CI (Rrp43, Csl4)† 211
BE (Rrp41, Rrp42) 223
EJ (Rrp42, Dis3) 231
AG (Rrp45, Rrp40)† 245
EF (Rrp42, Mtr3)† 313
FI (Mtr3, Csl4) 327
AD (Rrp45, Rrp46)† 349
BH (Rrp41, Rrp4) 352
CD (Rrp43, Rrp46)† 369
BJ (Rrp41, Dis3) 371
DG (Rrp46, Rrp40)† 411
CF (Rrp43, Mtr3) 446
EH (Rrp42, Rrp4) 458
AB (Rrp45, Rrp41)† 463

† signi�es those contacts which are also recovered by other biophysical experiments, TAP,MS1, MS2
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Table 3 List of contacts determined from experiments for Yeast 19S Proteasome Lid

CDim (3 contacts) CXL (14 contacts) CY2H (9 contacts)

Nat. Agarose Gel [21] CX − DSSO,DSS, BS3 References Ref - [21]
(Rpn5, Rpn8) (Rpn3, Rpn7) [12][14] (Rpn3, Rpn7)
(Rpn6, Rpn8) (Rpn3, Rpn8) [12] (Rpn3, Rpn12)
(Rpn8, Rpn9)† (Rpn3, Rpn12) [12] (Rpn5, Rpn6)

(Rpn3, Sem1) [12][21] (Rpn5, Rpn8)
(Rpn5, Rpn6) [12] (Rpn5, Rpn9)
(Rpn5, Rpn9) [12][14] (Rpn5, Rpn11)
(Rpn6, Rpn7) [12] (Rpn8, Rpn9)
(Rpn6, Rpn11) [12] (Rpn8, Rpn11)
(Rpn7, Rpn11) [12] (Rpn9, Rpn11)
(Rpn7, Sem1) [12][21]
(Rpn8, Rpn9) [12]
(Rpn8, Rpn11) [12]
(Rpn3, Rpn5) [21]
(Rpn3, Rpn11) [14]

Table 4 List of contacts determined from experiments for eIF3

CDim (19 contacts) CAUX (1 contact)

TAP,MS1, MS2, Partial Denaturation [26]
(a, b) (b, e)
(b, i)
(b, g)
(d, e)
(e, l)
(f, h)
(f, m)
(g, i)
(h, m)
(k, l)

Immuno − precipitation [26]
(b, f)

NMR Titrations [9]
(b, j)

Native Agarose Gel, [23] [7]
(a, c)
(b, c)
(b, h)
(j, c)
(j, f)
(j, h)
(j, k)
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