
HAL Id: hal-00817336
https://hal.archives-ouvertes.fr/hal-00817336v2

Submitted on 27 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure and Efficient Approximate Nearest Neighbors
Search

Benjamin Mathon, Teddy Furon, Laurent Amsaleg, Julien Bringer

To cite this version:
Benjamin Mathon, Teddy Furon, Laurent Amsaleg, Julien Bringer. Secure and Efficient Approximate
Nearest Neighbors Search. 1st ACM Workshop on Information Hiding and Multimedia Security, Jun
2013, Montpellier, France. pp.175–180, �10.1145/2482513.2482539�. �hal-00817336v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49774671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00817336v2
https://hal.archives-ouvertes.fr

Secure and Efficient Approximate Nearest Neighbors
Search

Benjamin Mathon
INRIA Rennes, France

benjamin.mathon@inria.fr

Teddy Furon
INRIA Rennes, France
teddy.furon@inria.fr

Laurent Amsaleg
IRISA - CNRS,
Rennes, France

laurent.amsaleg@irisa.fr

Julien Bringer
MORPHO - SAFRAN

Issy-les-Moulineaux, France
julien.bringer@morpho.com

ABSTRACT
This paper presents a moderately secure but very efficient
approximate nearest neighbors search. After detailing the
threats pertaining to the ‘honest but curious’ model, our ap-
proach starts from a state-of-the-art algorithm in the domain
of approximate nearest neighbors search. We gradually de-
velop mechanisms partially blocking the attacks threatening
the original algorithm. The loss of performances compared
to the original algorithm is mainly an overhead of a con-
stant computation time and communication payload which
are independent of the size of the database.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, in-
tegrity, and protection; H.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Retrieval
models

Keywords
Approximate Nearest Neighbors search; Privacy; Security.

1. INTRODUCTION
This paper deals with nearest neighbors search, an al-

gorithm that finds the closest elements from a query vector
within a database, according to a given distance metric. The
main challenge in this field had been for a long time scala-
bility: to retrieve the k nearest neighbors (in short k-NN)
among a large database of n elements, n being extremely
large (106 − 109), with a short time response. This chal-
lenge has been addressed in many research works proposing
approximate nearest neighbors (k-ANN) search. The best
solutions return some vectors which are likely to be the true
nearest neighbors, striking a trade-off between efficiency and
quality of search. There are mainly two ways. First, an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IH&MMSec’13, June 17–19, 2013, Montpellier, France.
Copyright 2013 ACM 978-1-4503-2081-8/13/06 ...$15.00.

approximate distance, which is faster to compute, is used
instead of the given metric. Second, the database is indexed
offline, i.e. it is partitioned into groups. The k-ANN is pro-
cessed within the group the query vector belongs to. This
speeds up the search because the cardinality of this group is
smaller than n. Both solutions can be used independently
or in conjunction. This article focuses on the first idea as it
is based on the state-of-the-art k-ANN algorithm Product-
Quantization codes (PQ-codes) [6].

Recently, other challenges have raised in this field: secu-
rity and privacy. The query vector belongs to the User, the
database to the Owner, and none of them is willing to share
their property. This case happens for instance in biometrics
identification. The main axiomatic in biometric claims that
no database can be stored securely. Therefore, a Server can-
not have the database of biometric templates in the clear
since a pirate would steal these highly valuable data. In
the same way, the User is reluctant in sending his biometric
template in the clear.

The nearest neighbor search is also the pivot of some clas-
sification algorithms. A class is associated to each vector
of the database, and the goal is to predict the class of the
query vector from the class of its nearest neighbors. The
Owner does not want to share its collection of pairs of vec-
tor and class, as this is the fruit of his know-how in collecting
and assessing the quality of these data. The User is inter-
ested in the prediction value but does not want to disclose
his query vector for some privacy issues. This happens in
applications such as medical diagnostic (vectors are medical
records like ECG) or user recommendation system (vectors
are the user profiles). Another application is Content Based
Retrieval where the User looks for multimedia contents (im-
ages, videos, audio clips) perceptually similar in some sense.
This technology is now deeply used in Digital Right Man-
agement systems where copyright holders are reluctant in
disclosing neither their contents nor the features extracted
from their contents.

There are already solutions providing secure nearest neigh-
bors search based on cryptographic primitives such as ho-
momorphic encryption, oblivious transfer, argument based
encryption, secure multiparty computation protocol. We
provide a critical overview in Sect. 3.1. In brief, we be-
lieve that these solutions put security and privacy on top of
the requirements list, sacrificing a lot the scalability and the
speed of the search. Scalability and speed are of utmost im-
portance in some applications and these past solutions are

just not adequate here because they are too slow. Another
point is that the security levels of these cryptographic prim-
itives are very high, whereas, in some applications, they do
not prevent some basic attacks on the global system. There
is no use in rising big walls if the door is weakly secured.
One motto in security is ‘A system is as secure as its weak-
est link’. This implies that using too strongly secure bricks
is useless or even harmful if they degrade other features of
the system, like scalability and speed in k-NN search.

This article presents a moderately secure but highly scal-
able and fast approximate nearest neighbors search. Our
philosophy is to start from a state-of-the-art technique in
this field, i.e. PQ-codes [6] presented in Sect. 3.2, to analyze
the threats, and to patch it avoiding as much as possible
bricks too much penalizing the scalability and the speed.
On the other hand, we do not completely prevent the play-
ers to infer some knowledge, but these limitations are well
explained and experimentally assessed. The experimental
body uses database of size much bigger than what the past
secure solutions can handle.

2. THE STARTING POINT

2.1 The framework
The framework considers an Owner having a collection

of n pairs of a vector xi ∈ Rd and metadata ti (defined
in some space). Define X = {xi}ni=1. The Owner subcon-
tracts the k-NN (or k-ANN) search to an entity called the
Server. For this purpose, the Owner gives a representation
of each vector h(xi) together with the metadata ti (or an
encrypted version of the metadata). The User has a query
vector q ∈ Rd and he is interested in some information about
the subset N (q) of the k-NN of q. Depending on the appli-
cation, this can be their indices (N (q)), the values of these
vectors ({xi}i∈N (q)), or their metadata ({ti}i∈N (q)).

For instance, in a classification application, the metadata
ti is the class associated to the vector and the prediction
of the class of q is a function of the classes of the k-ANN
vectors. In a Content Based retrieval scenario, ti is the ID
of the content from which the feature vector xi has been ex-
tracted. By a voting mechanism, the most similar contents’
ID are detected. In a biometric identification problem, the
metadata is the user ID. An exhaustive k′-NN search over
the returned k-ANN (k′ < k) can also refine the result. The
paper does not deal with this extension.

2.2 The threats
Our work adopts the ‘honest but curious’ model where

the Server and the User follow the protocol but they might
be willing to infer more information from what they know.
More precisely, we explicitly list the potential threats under
this model. The curious Server might want to:

S1 Reconstruct xi from h(xi),

S2 Cluster the database vectors from {h(xi)} (i.e. by run-
ning k-ANN among vectors of the database),

S3 Reconstruct q from what it receives from the User,

S4 Detect similar queries (from one or different Users).

The curious User might want to:

U1 Know in advance whether two similar queries q and q′

yield the same k-ANN subset,

U2 Explore efficiently a wider neighborhood of q by sub-
mitting few almost similar queries.

Note that this list of attacks is not exhaustive. It is worth
repeating that the spirit of our work is not to prevent these
threats absolutely. We enforce scalability first thanks to a
moderately secure approach which yields a trade-off between
the performance of the search and the feasibility of the at-
tacks. In other words, instead of claiming that a threat is
strictly impossible, we measure to which extend that threat
is possible.

3. STATE OF THE ART

3.1 Secure NN search past approaches
We present some past approaches working for Euclidean

distance based search. However, we omit solutions dealing
with indexing (i.e. partitioning the vector space, see Sect. 1).

3.1.1 Homomorphic encryption
The Euclidean distance between the vectors of two par-

ties can be computed without revealing them thanks to the
homomorphic encryption primitive [1, 9, 7]. In a nutshell,
the User sends an encrypted version of the query to the
Server which, thanks to the homomorphism, sends back the
encryption of the distance that the User deciphers.

This has two drawbacks. First, the Server knows X (threat
S1). If dishonest or if this database is stolen, exploitation
of the data (threat S2) is performed without the Owner’s
permission. On the other hand, threats S3 and S4 are im-
possible if the encryption is not broken. Threats U1 and U2

are not possible.
In practice, the computation of the Euclidean distance

in the encrypted domain is slow and demands exchanging
ciphers bigger in size than the vector. The search per se
is exhaustive, running n times the protocol. There is no
factorization between queries coming from two users since
vectors must be processed by the public key of the User.
This ‘secure’ k-NN takes in the order of 10 seconds to run
the identification over a database of 320 entries [7, Tab. 3].

More general Secure Multiparty Computation (SMC) so-
lutions have also been designed [7]. They rely on garbled
circuits to securely evaluate a distance between two par-
ties. Paper [4] introduces an efficient solution for Hamming
distance based on Locality-Sensitive Hashing (LSH), which
avoids the exhaustive search. However existing solutions for
Euclidean distance-based search are still exhaustive and the
database is stored in clear.

3.1.2 Hamming embedding
Another approach securely computes approximated dis-

tances. In the protocol of [3, Sect. IV-C], xi is mapped to a
binary representation h(xi) ∈ BM (B = {0, 1}) such that the
Hamming distance between representations reflects the Eu-
clidean distance between sufficiently close real vectors. This
so-called Hamming embedding is parametrized by a matrix
A, a dither vector w and a quantization step ∆.

Since the Server needs these parameters to run the proto-
col, threat S1 is possible according to [2] up to the quanti-
zation distortion. Threat S2 is performed with the approxi-
mated distance. Nevertheless, threat S3 is stopped because
the Server never sees h(q) in the clear ([3, Step 1]). S4 is
not feasible since h(q) is semantically securely encrypted.

Threats U1 and U2 are not prevented in ([3, Step 3]) since
the User controls the binary embedding of the query. Be-
sides, the User sorts the distances ([3, Step 6]) and requires
the metadata of the vectors it is interested in. The Server
has no control on this selection.

The search is approximated (because based on Hamming
distances) but exhaustive, requiring n homomorphic encryp-
tions of the database representations with the User public key
at the Server side ([3, Step 5]). This prevents the scalability
of the search.

3.1.3 Attribute based encryption
Paper [8] builds a solution using attribute based encryp-

tion to avoid the last two drawbacks of 3.1.2. The User is
able to decrypt the metadata ti if and only if it knows a
vector q such that ‖q− xi‖2 ≤ τ (vectors are here elements
of Zd and τ ∈ N). The enormous advantages follow:

• The database is composed of the metadata encrypted
once for all with the Server public key,

• The Server does not store xi or h(xi).

Threats S1, S3, and S4 are precluded. Threats U1 and U2

rarely occur for some specific setup. Yet, the Server which
has the private key can unlock the ciphers (threat S2).

However, the complexity is diabolic: the User must down-
load the n encrypted metadata and perform τ decryptions
(in interaction with the Server) per entry of the database to
get the metadata ti associated to the vectors xi which are
at most

√
τ away from q (if any).

3.2 An overview of PQ-codes
PQ-codes efficiently run k-ANN search at large scale [6].

3.2.1 Offline
The Owner has a database of vectors in Rd: X = {xi}ni=1.

The vectors are split in intoM subvectors of length `. We as-

sume d = M` and denote x
(m)
i = (xi((m−1)`+1), . . . ,xi(m`))

the m-th subvector of xi. Denote [a] = {1, · · · , a} for any
a ∈ N∗. Then, ∀m ∈ [M], the Owner runs a K-means over

the subvectors in X (m) = {x(m)
i }i∈[n]. It consists in ran-

domly drawing K vectors in R` and applying the Lloyd-Max
algorithm until convergence. This ends up with a codebook

of K centroids C(m) = {c(m)
i }i∈[K]. This defines the m-th

quantizer Q(m)(· · ·) : R` → [K] as:

Q(m)(x(m)) = arg min
i∈[K]

‖x(m) − c
(m)
i ‖, ∀x(m) ∈ R`, (1)

where ‖ · ‖ denotes the Euclidean distance. The K-means
converges to a local minimum of the total reconstruction
error distortion

∑
x∈X (m) ‖x − Q(m)(x)‖2. To shorten this

preparation time, the Owner applies it on a training set
which is a random subset of X (m). The results of the K-
means depends on this subset, the initial random sampling,
and the number of iterations. We define the global quantizer
Q(·) : Rd → [K]M as the product quantizer Q(1)×. . .×Q(m):

Q(x) = (Q(1)(x(1)), . . . , Q(M)(x(M))), ∀x ∈ Rd. (2)

We denote by Q−1(·) : [K]M → Rd the operator mapping a
sequence of indices to the concatenation of centroids:

Q−1((k1, . . . , kM)) =
(
c
(1)
k1

>
. . . c

(M)
kM

>)>
. (3)

The Owner sends the Server the database Q = {Q(xi)}i∈[n]
(i.e. h(·) = Q(·)) and the set ofM codebooks C = {C(m)}m∈[M].
The role of the Owner stops here.

3.2.2 Online: the symmetric search
The Server pre-computes the distances between centroids

of the same codebook:

ds(i, j,m) = ‖c(m)
i − c

(m)
j ‖2, ∀(i, j,m) ∈ [K]× [K]× [M].

(4)
The matrix ds will be used as a lookup table.

Online, when receiving a query q from the User, the Server
first computes Q(q). It proceeds the k-ANN search based
on the approximated square distance

D̂(q,xi) = ‖Q−1(Q(q))−Q−1(Q(xi))‖2, (5)

instead of the true square distance ‖q − xi‖2. This is effi-
ciently done thanks to the lookup table:

D̂(q,xi) =

M∑
m=1

ds(Q
(m)(qm), Q(m)(xmi),m). (6)

The min-heap algorithm returns the indices (i1, . . . , ik) yield-
ing the k smallest approximate distances. The Server sends
the metadata (ti1 , . . . , tik) associated to these k vectors.

There exists a variant of PQ-codes, so-called asymmetric
search, which is not used in the paper.

4. SLOWLY RISING THE WALLS
The goal of this section is to underline the relationships

between the threats listed in Sect. 2.2 and the key elements
of PQ-codes, which are the centroids codebook C and the
distance table ds. We start our analysis with the original
PQ-codes as presented in Sect. 3.2.

4.1 Scenario 1: original PQ-codes
First, the Server cannot reconstruct xi, but only an esti-

mation x̂i = Q(−1)(Q(xi)) because it has the indices Q and
the centroids of C (threat S1). Second, the Server can run
k-ANN searches without the Owner’s permission, e.g. with
the purpose of clustering the vectors of X (threat S2). Obvi-
ously, PQ-codes are not compliant with privacy because the
User sends his query q in the clear to the Server (threats S3

and S4). On the other hand, this renders the User harmless
(threats U1 and U2 are void).

4.2 Scenario 2: confiscating the codebook
Suppose that we succeed to make the query quantization

at the User side. Then, the Server no longer needs C.
Having ds, the Server knows the K(K − 1)/2 distances

between the K centroids of C(m), ∀m ∈ [M]. Since K is usu-
ally much bigger than the subspace dimension `, the Server
can construct a constellation of K points sharing the same
inter-distances. This does not fully disclose the codebook C,
but up to an ambiguity which is an isometry of R`, i.e. a
transformation of the space that preserves distances (say a
rotation followed by a translation).

This ambiguity plus the quantization loss is sufficient for
preventing an accurate reconstruction of the database vec-
tors from Q (threat S1) and the query vector from Q(q)
(threat S3). The Server cannot query alone, but it can clus-
ter the database vectors according to their approximated
distances D̂(xi,xj) thanks to the lookup table ds (threat

S2). The Server can detect almost similar queries q and q′

by computing D̂(q,q′) (threat S4).
To perform the quantization of the query, The User is

being given the centroids. Now, he knows in advance that
two queries q and q′ yield the same k-ANN if Q(q) = Q(q′)
(threat U1). He can also adapt his query: forging a query
q′ which equals q except for one subvector pertaining to a
different Voronoi cell will yield another set of k-ANN vectors.
In other words, he can explore a wider neighborhood of q
more efficiently (i.e. with less queries - threat U2).

4.3 Scenario 3: confiscating the lookup table
Suppose now that the Server knows neither C nor ds. It

does not have the centroids, which prevents vector recon-
struction, be it from the database (threat S1) or the query
(threat S3). It is missing ds to compute approximated dis-
tances between entries of Q. Yet, it can still infer database
vector neighborhood by forging the lookup table:

dp(i, j,m) = 1− δi,j , ∀(i, j,m) ∈ [K]× [K]× [M], (7)

where δi,j is the Kronecker function (= 1 if i = j, 0 oth-
erwise). This method provides a very crude approximation
of nearest neighbors (see Fig. 3 blue dotted line). In other
words, threat S2 seems to be barely feasible. However, the
following section provides a working implementation of this
scenario but this particular threat is not totally precluded.

5. OUR PROPOSAL
The previous section demonstrated that the Server can

hijack information and threaten the entire system. We pro-
pose in this section several mechanisms making the job of
the curious Server more difficult for threatening the secu-
rity and privacy of k-ANN searches with PQ-codes. The
main idea to enforce the above-mentioned Scenario 3 is the
introduction of two quantizers.

5.1 The algorithm
The Owner creates offline CS , a set of M codebooks of

KS centroids each. This defines the product quantizer QS(·)
used to create the database Q = {QS(xi)}ni=1 given to the
Server. Only the Owner knows CS .

The Owner also creates CU , a set of M codebooks of KU

centroids each, defining QU (·). CU will be sent to the User to
quantize q. The Owner also computes the square distances:

dus(i, j,m) = ‖c(m)
U,i −c

(m)
S,j ‖

2, ∀(i, j,m) ∈ [KU]× [KS]× [M],
(8)

and sends this lookup table to the Server.
Online, the User gets CU , sends QU (q) to the Server which

performs the ANN search with dus. Note that the quantizers
may not have the same number of centroids per subspace. It
is important to have a reasonable KS because the memory
footprint of Q at the Server side is nM log2KS bits. A
bigger KU improves the quality of the approximative search,
while payload of the transmission between the User and the
Server, i.e. M log2KU , slightly increases.

5.2 Threat analysis

5.2.1 Vector reconstruction
As claimed in Sect. 4.2, the Server cannot reconstruct

database vectors (threat S1) because it misses the knowl-
edge of CS . The same is true for query vectors (threat S3)

because it does not have CU . Note that this holds as long
as there is no collusion between a User and the Server, or as
long as the Server cannot usurp the role of the User. These
two cases are excluded in the ‘honest but curious’ model.

5.2.2 Similar queries detection
The Server obviously spots similar queries q and q′ where

QU (q) ≈ QU (q′) (threat S4). However, it has difficulty in
gauging how much different are these two queries because it
is missing the distance table between centroids of CU .

5.2.3 Clustering the database
For a given entry, the Server knows QS(xi) whereas it

would need QU (xi) to compute the approximated distances
against the other entries of Q thanks to dus. This is the
reason why we measure the averaged mutual information

between results of a quantization onto C(m)
U and C(m)

S :

I(QS ;QU) = M−1
M∑
m=1

I(Q
(m)
S (X

(m)
i);Q

(m)
U (X

(m)
i)). (9)

The computation of this quantity is easy since we deal with
discrete random variables.

Another angle of attack is to estimate ds defined in (4).
Eq. (7) was a first attempt, but the Server can do much
better thanks to dus defined in (8). The idea is simple: if

dus(i, j,m) is close to zero, it means that c
(m)
U,i is close to

c
(m)
S,j , therefore the distance dus(i, k,m) should be a good

estimation of ds(j, k,m). The estimation goes as follows:

d̂s(j, k,m) = (dus(I(j), k,m) + dus(I(k), j,m))/2,

with I(j) , arg min
i∈[KU]

dus(i, j,m). (10)

The performances of the k-ANN search with this estimated
distance table are slightly lower than with dus (Fig. 3). This
means that threat S2 cannot be prevented. Note that our
approach is close to one-way private search [5] where only
the User’s data are sensitive.

5.2.4 Threats from the User
Knowing CU and thus the Voronoi cells associated to each

subquantizer, the User knows which queries in the space
will yield the same k-ANN (threat U1): it holds for any
(q,q′) such that QU (q) = QU (q′). In the same way, he can
efficiently explore portion of the space by submitting queries
almost identically quantized (threat U2).

If these latter threats are annoying for the targeted ap-
plication, then a secure distance computation protocol (as
in Sect. 3.1.1) is a solution. The Server generates (skS , pkS)
for an additive homomorphic crypto-system e(·). The owner

encrypts the e(c
(m)
U,i , pkS) and e(‖c(m)

U,i ‖
2, pkS) offline. These

ciphers are privately sent to the User who computes and

sends e(‖q(m)−c
(m)
U,i ‖

2, pkS) back to the Server. The Server
decrypts and computes QU (q) knowing neither q nor CU .
The User no longer sees QU (q). The User together with
the Server have to compute in the encrypted domain M.KU

distances, which is much fewer than n as proposed in 3.1.1.
These secure computations last longer than the ANN search,
so that the runtime is dominated by this constant duration:
this does not spoil the scalability of PQ-codes.

We can even ensure that the Server learns only the value
of QU (q) and nothing else. To this aim, the server com-

putes for each m ∈ [M], Q
(m)
U (q(m)), i.e. the argmin of

the encrypted distances e(D1, pkS), . . . , e(DKU , pkS) with

Di = ‖q(m) − c
(m)
U,i ‖

2, interactively without decrypting the
distances. This prevents the Server from learning the in-
termediate results. First, the User encrypts the distances
through El Gamal encryption E[·] with its public key pkU as-
sociated to its secret key skU and sends the Server the results
E[e(D1, pkS), pkU], . . . , E[e(DKU , pkS), pkU]. The server per-
mutes these ciphers to randomize their order and computes,
thanks to the multiplicative homomorphism of El Gamal,

E[e(Di1 , pkS)α, pkU], . . . , E[e(DiKU
, pkS)α, pkU], (11)

with a random α > 0. This in turn, thanks to the additive
homomorphism of e(·), leads to:

E[e(α.Di1, pkS), pkU], . . . , E[e(α.DiKU , pkS), pkU]. (12)

The role of α is to blind the ciphers such that the User
cannot guess the permutation. The Server sends back the
data to the User who decrypts those but without being able
to retrieve the original order of the data.

Then, the User and the Server execute an interactive sort-
ing algorithm by comparing the distances in the encrypted
domain following the principle of Yao’s millionaire prob-
lem. The secure comparison of two encrypted data e(x, pkS)
and e(y, pkS) is made as follows: let R a big random ele-
ment and R′ significantly smaller than R, the User computes
e(R(x− y)−R′, pkS) thanks to the homomorphic property.
The Server decrypts this message and if it gives a positive
value, it decides that x > y. This enables the Server to de-
termine the index of the minimum distance between the KU

distances by executing KU−1 successive secure comparisons
with the User. As the order is only known by the Server,

the Server obtains Q
(m)
U (q(m)) at the end whereas the User

will not learn the result. Doing so for all m leads to QU (q).
This secure computation of QU (q) has the advantage that
the Server and the User learns the minimum level of details.

6. EXPERIMENTAL BODY
Our experiments are performed on the ANN SIFT1M lo-

cal SIFT descriptors database introduced in [6]. Note that
the ANN SIFT1M database consists of (i) 1, 000, 000 base
vectors of dimension d = 128, (ii) 100, 000 training vectors
for running the K-means, and (iii) 10, 000 query vectors and
a ground truth file which contains, for each query, the identi-
fiers of its nearest neighbors ordered by increasing distance.

6.1 Quality of the search
PQ-codes performs a k-ANN search, meaning that the re-

turned NN are not necessary the true ones. To gauge the
quality of the output, the recall at rank R ≤ k, denoted by
‘r-recall@R’ is measured. This is the proportion of query
vectors for which the r-NN are ranked in the first R re-
turned vectors. As usually done in ANN search papers, we
focus on the 1-recall@R. Fig. 1 shows the 1-recall@R in per-
centage. On the server side, PQ-codes are performed with
M = 16, l = 8, KS = 256 and Ni = 50, the number of
iterations of K-means process. The dashed line shows the
performances of the original PQ-codes. In brief, the search
returns almost surely the NN for R = 100. We increase the
number of centroids for the quantizer QU (from KU = 64 to
4096). This gives a better quality of search when KU > KS .

Usually, the number of centroids is a power of two, so
that the memory footprint of the database is nM log2KS

1 10 20 50 100
20

40

60

80

100

R

1-
re

ca
ll@

R
(%

)

Original PQ
Proposal (KU = 64)
Proposal (KU = 256)
Proposal (KU = 2048)
Proposal (KU = 4096)

Figure 1: 1-recall@R scores for the original and pro-
posed version of PQ-codes: M = 16, l = 8, KS =
256, Ni = 50.

bits. This is a very compact representation of X . The time
response is linear with nM . In our setup with n = 106,
M = 16, KS = 256, the database Q occupies 16MB. Once
QU (q) is computed, one approximated search is completed
within 30 ms (Core i7 platform, single threaded). Parameter
KU has almost no impact on the time response, provided dus
can fit in memory.

6.2 Threat S2

The curious Server has two possibilities for running k-
ANN searches within the database. A first attempt is to use
dus, but the database vectors are improper because they are
not quantizations onto CU . We measure the average amount
of information per quantizer I(QS ;QU) (see (9)) that the
curious Server is missing for using dus. Fig. 2 shows this
amount w.r.t the number of iterations of the K-means algo-
rithm, computed on the ANN SIFT1M training database.

The dashed line shows the entropy of Q
(m)
S (X(m)) when

the quantization of a vector is equiprobably distributed, i.e.
log2(KS). The black line (cross markers) shows the esti-
mation of this entropy, which is smaller. This is due to
the fact that the goal of the K-means is to minimize the
mean square error, not to assure the equiprobability dis-
tribution. I(QS ;QU) increases with KU , but do not reach
the value of the entropy. Therefore, the curious Server is
missing an amount of information which is in the order of
M.(H(QS) − I(QS ;QU)) bits per entry of the database to
use the table dus. The bigger is KU , the bigger is the in-
formation leakage while increasing the quality of search (see
Fig. 1). We can see here the price to pay for more security.

Note that for a few iterations of the K-means process,
the distribution of the centroids is more random, the gap is
bigger, and so the system more secure against this attack.
The reconstruction error distortion is not optimal, but we
have noticed that this number of iterations has no impact
on the quality of search provided it is ≥ 3.

In a second attack, the curious Server either uses dp of (7),
or estimates the missing distance table ds via (10). Fig. 3
shows the 1-recall@R scores when the Server utilizes (i) the
lookup table dus, (ii) the Kronecker lookup table dp (7) and

(iii) the estimated d̂s (10) for different KU (number of iter-
ations of K-means process is 3).

The Kronecker version yields a recall@R below 30% for

0 20 40 60 80 100

5.5

6

6.5

7

7.5

8

Number of iterations (Ni)

I
(i

n
bi

ts
)

H(QS) (equi.) H(QS) (exp.)
QU 6= QS - KU = 256 QU 6= QS - KU = 1024
QU 6= QS - KU = 4096

Figure 2: Empirical mutual informations between
the two quantizers QS and QU w.r.t the number of
iterations of the K-means with M = 16, KS = 256.

1 10 20 50 100
0

20

40

60

80

100

R

1-
re

ca
ll@

R
(%

)

dus (KU = 64) d̂s (KU = 64)
dus (KU = 1024) d̂s (KU = 1024)
dp (KS = 256)

Figure 3: 1-recall@R scores computed with different
lookup tables {dus, dp, d̂s} with M = 16 and KS = 256.

any rank R ≤ 100. The quality of search is too weak for a
possible clustering of the database. The attack based on the
estimation d̂s works much better. A large KU improves the
accuracy of the estimation, and the performances are almost
equal to the original PQ-codes with K = KS . However, in-
creasing KU to some extend also improves the quality of
search for the User (because the query is more finely quan-
tized by QU). At some point, both curves do not evolve,
and rising KU even more just increases computation time
and bandwidth for nothing.

6.3 Threats U1 and U2

Sect. 5.2.4 prevents these threats but at a huge cost in
terms of computation and bandwidth. Let us roughly evalu-
ate the bandwidth first (figures are for KS = 256). The User
needs the encrypted centroids and their norm, i.e. around
M(`+1)KU×2048 bits (10MB). This can be factorized over
several queries. The User sends distances encrypted with El

Gamal, i.e. MKU×4096 bits (2MB). The Server sends back
these ciphers, i.e. same amount. For the Yao protocol, the
User sends MKU × 2048 bits (1MB) to the Server. As for
the computation times, the User makes O(MKU (`+ 3)) ex-
ponentiations (∼50 sec. on a regular PC) and the Server
O(2MKU) (8 sec. on a regular PC).

7. CONCLUSION
The advantages of this proposal are that (i) the database

at the Server side is fixed, (ii) there is no loss w.r.t. the qual-
ity of the search, (iii) the complexity and bandwidth bottle-
neck depends on KU but not on n. The preliminary protocol
is a protection against threats from Users. The drawback of
our proposal is that a Server can search within the database
(for clustering e.g.) with a slight loss of accuracy compared
to quality of search provided to the User. Note that none of
past approaches protect against this threat.

8. ACKNOWLEDGMENTS
This work was supported in part by the National French

project ANR-12-CORD-0014 SecuLar.

9. REFERENCES
[1] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo,

R. Donida Labati, P. Failla, D. Fiore, R. Lazzeretti,
V. Piuri, F. Scotti, and A. Piva. Privacy-preserving
fingercode authentication. In Proceedings of the 12th
ACM workshop on Multimedia and security, pages
231–240, NY, USA, 2010. ACM.

[2] P. Boufounos. Universal rate-efficient scalar
quantization. Information Theory, IEEE Transactions
on, 58(3):1861–1872, 2012.

[3] P. Boufounos and S. Rane. Secure binary embeddings
for privacy preserving nearest neighbors. In
Information Forensics and Security (WIFS), IEEE
International Workshop on, pages 1–6, 2011.

[4] J. Bringer, M. Favre, H. Chabanne, and A. Patey.
Faster secure computation for biometric identification
using filtering. In Biometrics (ICB), 5th IAPR
International Conference on, pages 257–264, 2012.

[5] G. Fanti, M. Finiasz, and K. Ramchandran. One-Way
Private Media Search on Public Databases: The Role of
Signal Processing. IEEE Signal Processing Magazine,
30(2):53–61, 2013.

[6] H. Jégou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 33(1):117–128, 2011.

[7] R. Lagendijk, Z. Erkin, and M. Barni. Encrypted signal
processing for privacy protection: Conveying the utility
of homomorphic encryption and multiparty
computation. IEEE Signal Processing Magazine,
30(1):82–105, 2013.

[8] S. Rane and W. Sun. An attribute-based framework for
privacy preserving image querying. In Image Processing
(ICIP), 19th IEEE International Conference on, pages
2649–2652, 2012.

[9] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
Efficient privacy-preserving face recognition. In
Information, Security and Cryptology - ICISC 2009,
volume 5984 of Lecture Notes in Computer Science,
pages 229–244. Springer Berlin Heidelberg, 2010.

