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Abstract. In this paper we approach the problem of head pose estimation by

combining Multi-scale Gaussian Derivatives with Support Vector Machines.

We evaluate the approach on the Pointing04 and CMU-PIE data sets and to

estimate the pan and tilt of the head from facial images. We achieved a mean

absolute error of 6.9 degrees for pan and 8.0 degrees for tilt on the Pointing04

data set.

1 Introduction

The problem of head pose estimation has been approached by the computer vision com-

munity in two ways: model based approaches and appearance based approaches. In

model based approaches facial key points like eyes, eyebrows, nose, lips etc. have to be

located and tracked and then the pose is estimated according to the relative position of

these facial key points [1,2,3].

In holistic or appearance based approaches an image descriptor is used to represent

the image and a feature vector is assembled using the descriptor values. Then a suitable

machine learning technique is used for discrimination between different

poses [4,5].

A major problem with model based approaches is that key point detection is a dif-

ficult task and tracking these key points is all the more likely to fail. With holistic ap-

proaches one has to choose an image descriptor and a machine learning technique from

a wide array of options. In contrast to the model based approaches one needs training

and testing data to make such approaches work but these approaches do not suffer from

issues like facial key point detection and tracking failure.

Stiefelhagen in [5] used horizontal and vertical image derivatives of the first order

and used neural networks for discrimination between different poses and applied this

approach on the Pointing04 data set. A survey on head pose estimation methods [6]

shows that Stiefelhagen achieved the best results so far on the Pointing04 data set.

We in this paper employ Multi-scale Gaussian Derivatives(MGD) and Support Vec-

tor Machines(SVM) for head pose estimation on the Pointing04 dataset [7] and show

that our choice of descriptor gives better results than those obtained so far.
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In the next section we briefly describe the problem of head pose estimation and the

Pointing04 data set.

2 Head Pose Estimation and the Pointing04 Data Set

The problem of head pose estimation involves inferring the orientation of the head from

static images or video. It is assumed that the human head has three degrees of freedom,

in this paper we estimate only two degrees of freedom namely pan and tilt and the

problem is treated as a multi-class classification problem.

To solve the problem of head pose estimation we need to choose an appropriate

descriptor to extract features from the image and then a pattern recognition algorithm

is required to discriminate between the different poses.

The approach that we present in the following sections was tested on the Pointing04

data set [7,8]. This data was collected by the PRIMA team at INRIA Grenoble Research

Center where 15 people were asked to gaze successively at 93 markers that cover a half-

sphere in front of the person. The head pose database consists of 15 sets of images. Each

set contains of 2 series of 93 images of the same person at different poses. There are 15

people in the database, wearing glasses or not and having various skin colors. The pose,

or head orientation is determined by 2 angles (pan,tilt), which varies from -90 degrees

to +90 degrees.

Fig. 1. A small sequence from the Pointing04 dataset

We use two support vector machines for discriminating between different poses; one

is trained for pan and the other for tilt.

The next section discusses Gaussian Derivatives briefly.
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Fig. 2. How the Pointing04 database was collected

3 Gaussian Derivatives

Gaussian derivatives can efficiently describe the neighborhood appearance of an im-

age for recognition and matching[9]. This can be done by calculating several orders of

Gaussian derivatives normalized in scale and orientation at every pixel.

The basic Gaussian function is defined as:

G(x, y;σ) = e−
x2+y2

2σ2 (1)

Here σ is the scale factor or variance and defines the spatial support. This function

measures the intensity of the neighborhood and does not contribute to the identification

of the neighborhood and can be omitted. The first order derivatives are of the form:

Gx(x, y;σ) =
∂G(x, y;σ)

∂x
= − x

σ2
G(x, y;σ) (2)

Gy(x, y;σ) =
∂G(x, y;σ)

∂y
= − y

σ2
G(x, y;σ) (3)

First order derivatives give information about the gradient (intensity and direction). The

second order derivatives are given by:

Gxx(x, y;σ) =
∂2G(x, y;σ)

∂x2
= (

x2

σ4
− 1

σ2
)G(x, y;σ) (4)

Gyy(x, y;σ) =
∂2G(x, y;σ)

∂y2
= (

y2

σ4
− 1

σ2
)G(x, y;σ) (5)
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Gxy(x, y;σ) =
∂2G(x, y;σ)

∂x∂y
=

xy

σ4
G(x, y;σ) (6)

Second order derivatives provide us with information about image features such as bars,

blobs and corners. Higher order derivatives are only useful if the second order deriva-

tives are strong otherwise they just contain image noise.

Normalizing Gaussian derivatives in scale is not a trivial task. Several methods have

come up in the past addressing this problem. It was suggested by Lindeberg in [10]

that Gaussian derivatives be calculated across scales to get scale invariant features and

then Lowe in [11] defined the intrinsic or characteristic scale as the value of the scale

parameter at which the Laplacian provides a local maximum. The computational cost

of directly searching the scale axis for this characteristic scale can be prohibitively

expensive. A cost-effective method for computing Multi-scale Gaussian derivatives is

described in the following section. The inverse-tangent of the ratio of first order deriva-

tives at any image point is considered to be the direction of the gradient. It has been

shown that Gaussian derivatives are steerable [12] and by using appropriate trigono-

metric ratios the Gaussian derivatives can be rotated in the desired direction.

4 Half-Octave Gaussian Pyramid

(Multi-scale Gaussian Derivatives)

This algorithm has been discussed in detail in [13] and an integer coefficient version of

the same can constructed using repeated convolutions of the binomial kernel (1, 2, 1).

The algorithm involves repeated convolutions with a Gaussian kernel in a cascaded

configuration where the process is speeded up by approximating a Gaussian filter with

separable binomial filters as shown below:

G(x, y;
√
2) =

⎡

⎣

1 2 1
2 4 2
1 2 1

⎤

⎦ =

⎡

⎣

1
2
1

⎤

⎦ ∗
[

1 2 1
]

(7)

A key feature of this algorithm is that for different levels of the pyramid the difference

of adjacent image pixels in the row and column directions are equivalent to convolution

with Gaussian derivatives.

The pyramid is very easy to access, derivative values can be determined for every

image position by using bilinear interpolation and derivatives between scale values can

be computed using quadratic interpolation between adjacent levels of the pyramid. The

following sets of equations explain how different order of derivatives can be calculated

using difference of adjacent image pixels in the row and column directions:

∂p(x, y, k)

∂x
= p ∗Gx(x, y; 2

kσ0) ≈ p(x+ 1, y, k)− p(x− 1, y, k) (8)

∂p(x, y, k)

∂y
= p ∗Gy(x, y; 2

kσ0) ≈ p(x, y + 1, k)− p(x, y − 1, k) (9)
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∂2p(x, y, k)

∂x2
= p ∗Gxx(x, y; 2

kσ0)

≈ p(x+ 1, y, k)− 2p(x, y, k) + p(x− 1, y, k) (10)

∂2p(x, y, k)

∂y2
= p ∗Gyy(x, y; 2

kσ0)

≈ p(x, y + 1, k)− 2p(x, y, k) + p(x, y − 1, k) (11)

∂2p(x, y, k)

∂x∂y
= p ∗Gxy(x, y; 2

kσ0)

≈ p(x+ 1, y + 1, k)− p(x+ 1, y − 1, k)

− p(x− 1, y + 1, k) + p(x− 1, y − 1, k) (12)

In the above equations at the kth level of the pyramid the support is defined by σk =
2kσ0 and the image at the same level is defined by p(x, y, k).

The next section is about dimensionality reduction using Principal Component Anal-

ysis(PCA) and why we need it.

5 Principal Component Analysis

In our experiments the part of the image containing the face was normalized to 24 X 36

pixels this size of 24 X 36 pixels for the normalized region was chosen after extensive

experimentation where normalized images of 24 X 36 pixels gave better results at head

pose estimation as compared to other sizes. Then several types of derivatives were cal-

culated at 2 levels of scale however the region within 4 pixels of the image boundary is

ignored because of boundary effect.

Principal component analysis was then used to omit correlated dimensions by trans-

forming the original dimensions into new dimensions which are a linear sum of the orig-

inal dimensions but are linearly uncorrelated. Then these new dimensions are ranked

according to the variance i.e. the dimension which accounts for the most variability in

the data gets the first rank and so on [14].

PCA is done by eigenvalue decomposition of the data correlation matrix after nor-

malizing the data for each dimension. PCA provides you with scores and loadings. The

scores are the transformed values corresponding to your data point and loadings are the

coefficients your original variable should be multiplied with to get the score.

We found that just 12 dimensions out of 4480 dimensions can account for most of the

variability in data and give us an acceptable accuracy. PCA was used only for dimen-

sionality reduction, Support Vector Machines were then used to discriminate between

different poses. In section seven we compare the execution time of the SVM with and

without using PCA.

6 Support Vector Machines

Support Vector Machines (SVM) belong to a family of generalized linear classifiers and

can be interpreted as an extension of the perceptron [15].
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After using several types of kernels we settled on the radial basis kernel as it provided

us with the maximum accuracy, represented by the following equation:

K(xi, xj) = e−
||xi−xj ||

2

2σ2 (13)

The SVM employed was a soft margin SVM, soft margin SVMs are used when the

classes are not separable even after transforming the data to a higher dimension. The

condition for the optimal hyper-plane can be relaxed by including an extra term ξ [16]:

yi(X
T
i W + b) ≥ 1− ξi, (i = 1, ...,m) (14)

For minimum error,ξi should be minimized as well as ||W ||, and the objective function

becomes:

minimize WTW + C
m
∑

i=1

ξki

subject to yi(X
T
i W + b) ≥ 1− ξi, and ξi ≥ 0; (i = 1, ...,m) (15)

Here C is a regularization parameter that controls the trade-off between maximizing

the margin and minimizing the training error. 1/γ or σ is the width of the radial basis

kernel. The C-penalty parameter was chosen using cross validation. For the data in hand

the value C = 100 and σ = 11 lead to the maximum correlation coefficient between

the predicted pan angles and the actual pan angles. Similarly C = 140 and σ = 6 lead

to the maximum correlation coefficient between the predicted tilt angles and the actual

tilt angles.

Fig. 3. (a) Graph of Correlation Coeff. vs. C-parameter and 1/γ for pan and (b) Graph of Corre-

lation Coeff. vs. C-parameter at 1/γ = 11 for pan
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Fig. 4. (a) Graph of Correlation Coeff. vs. C-parameter and 1/γ for tilt and (b) Graph of Correla-

tion Coeff. vs. C-parameter at 1/γ = 6 for tilt

7 Results

We used 80 percent of the data for training, 10 percent for cross-validation and the

rest for testing. Face detection was then performed on the images in the dataset using

the OpenCV face detector [17]. Following that a half-octave gaussian pyramid was

constructed over a normalized imagette of the face which is of the size 24X36 pixels.

The data was split several times and the accuracy calculated for every split and finally

the average was calculated. The results of the Mean absolute error(MEA) are shown in

the table below and they are better than the state of the art reported in [6].

Our mean absolute errors of 6.9, 8.0 degrees for pan and tilt respectively are much

lower than the best error achieved so far by Stiefelhagen [5] which was 9.5, 9.7 degrees

for pan and tilt respectively. The accuracy achieved for the discrete poses: 64.51, 62.72*

for pan is much higher than the accuracy reported by Stiefelhagen: 52, 66.3. Our accu-

racy for tilt is less than the accuracy achieved in [5] because the authors of that paper

considered only 7 out of the 9 poses for tilt in the Pointing04 data set.

Table 1. Our MEA as compared with the state-of-the-art

MEA pan tilt

our approach 6.9 8.0

state-of-the-art 9.5 9.7

Table 2. Our accuracy over discrete poses as compared with the state-of-the-art

Accuracy% pan tilt

our approach 64.51 62.72

state-of-the-art 52 66.3
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For continuous poses the correlation coefficients for pan and tilt were found to be

0.95, 0.87 for pan and tilt respectively showing that the proposed system can work well

even for continuous poses even though it is trained on a dataset containing only discrete

poses. Table 3 and 4 show the confusion matrices for pan and tilt respectively.

Table 3. Confusion Matrix for Pan, true values are in the first column, predicted values in the first

row

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

-90 23 1 0 1 0 0 0 0 0 0 0 0 0

-75 5 17 3 0 0 0 0 0 0 0 0 0 0

-60 0 3 10 1 0 0 0 0 0 0 0 0 0

-45 0 0 0 16 1 1 0 0 0 0 0 0 0

-30 0 0 0 4 11 2 0 0 0 0 0 0 0

-15 0 0 0 0 1 10 6 0 0 0 0 0 0

0 0 0 0 0 0 4 24 2 1 0 0 0 0

15 0 0 0 0 0 0 5 11 3 0 1 0 0

30 0 0 0 0 0 0 0 3 23 2 0 0 0

45 0 0 0 0 0 0 0 0 4 9 4 3 0

60 0 0 0 0 0 0 0 0 2 6 7 10 1

75 0 0 0 0 0 0 0 0 0 1 4 5 4

90 0 0 0 0 0 0 0 0 0 0 2 8 14

Table 4. Confusion Matrix for Tilt, true values are in the first column, predicted values in the first

row

-90 -60 -30 -15 0 15 30 60 90

-90 3 0 0 0 0 0 0 0 0

-60 0 38 7 0 0 0 0 0 0

-30 0 9 13 4 0 1 0 1 0

-15 0 0 8 17 9 1 0 0 0

0 0 0 2 8 21 11 1 0 0

15 0 0 1 0 7 19 12 0 0

30 0 0 0 0 0 10 23 5 0

60 0 0 0 1 0 0 5 37 0

90 0 0 0 0 0 0 1 0 4

Table 5 shows the prediction times with and without using PCA and we can see that

the PCA speeds up the prediction time by a factor of around 200.

Table 5. Comparison of prediction time with and without using PCA

SVM SVM

with PCA without PCA

Prediction time(sec) 0.108 20.17
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Fig. 5. Schematic of our approach

After training the SVM’s on the Pointing04 dataset we test them on the CMU-PIE

dataset [18]. Although the CMU-PIE dataset is not labeled for pose and hence does not

let you perform a mathematical analysis, we could see that the predicted values of our

SVM’s were in agreement with the general orientation of the head in the data set.

Two representative images form the PIE dataset are given below along with the re-

sults obtained from our SVM’s.

Fig. 6. (a)Pan=-15, Tilt=-15 and (b)Pan=0, Tilt=0 were predicted using our approach

8 Conclusion

We have shown that our approach works better than the state-of-the-art on the Point-

ing04 dataset. Multi-scale Gaussian Derivatives can be used effectively for image rep-

resentation and the problem of high-dimensionality can be resolved using PCA.

The approach can be easily extended to continuous head pose estimation by using a

suitable video database to train the system and a face tracking algorithm.

The developed system is suitable for hand held devices like tablet computers since it

does not require much memory or processing power unlike model based systems.



328 V. Jain and J.L. Crowley

References

1. Gee, A., Cipolla, R.: Fast visual tracking by temporal census. Image and Vision Comput-

ing 14(2), 105–114 (1996)

2. Horprasert, T., Yacoob, Y., Davis, L.: Computing 3-d head orientation from a monocular

image sequence. In: Proceedings of the IEEE International Conference on Automatic Face

and Gesture Recognition, pp. 242–247 (1996)

3. Wang, J.-G., Sung, E.: Em enhancement of 3d head pose estimated by point at infinity. Image

and Vision Computing 25(12), 1864–1874 (2007)

4. Niyogi, S., Freeman, W.: Example-based head tracking. In: Proceedings of the IEEE Inter-

national Conference on Automatic Face and Gesture Recognition, pp. 374–378 (1996)

5. Stiefelhagen, R.: Estimating head pose with neural networks results on the pointing04 icpr

workshop evaluation data. In: Proceedings of ICPR Workshop Visual Observation of Deictic

Gestures (2004)

6. Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey.

IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)

7. Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of

salient facial features. In: Proceedings of POINTING 2004 International Workshop on Visual

Observation of Deictic Gestures (2004)

8. Head Pose Image Database,

http://www-prima.inrialpes.fr/perso/

Gourier/Faces/HPDatabase.html

9. Jain, V., Crowley, J.: Smile detection using multi-scale gaussian derivatives. In: Proceedings

of the 12th WSEAS International Conference on Signal Processing, Robotics and Automa-

tion, pp. 149–154 (2013)

10. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Press (1994)

11. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Confer-

ence on Computer Vision, pp. 1150–1157 (1999)

12. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on

Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)

13. Crowley, J.L., Riff, O.: Springer Lecture Notes on Computer Science. In: Griffin, L.D., Lill-

holm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 584–598. Springer, Heidelberg

(2003)

14. Jolliffe, I.T.: Principal Component Analysis. Springer (2002)

15. Vapnik, V.N.: Statistical Learning Theory. Wiley, NY (1998)

16. Cortes, C., Vapnik, V.N.: Support-Vector Networks. In: Machine Learning, vol. 20,

pp. 273–297. Springer (1995)

17. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer

Vision 20(17), 137–154 (2004)

18. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In:

Proceedings of the IEEE International Conference on Automatic Face and Gesture Recogni-

tion, pp. 46–51 (2002)

http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html
http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html

	Head Pose Estimation Using Multi-scale Gaussian Derivatives
	Introduction
	Head Pose Estimation and the Pointing04 Data Set
	Gaussian Derivatives
	Half-Octave Gaussian Pyramid (Multi-scale Gaussian Derivatives)
	Principal Component Analysis
	Support Vector Machines
	Results
	Conclusion


