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ABSTRACT

In this paper, we use statistical inference and muti-spectral
images to quantify the evolution of skin hyper-pigmentation
lesions under treatment. We show that statistical inference al-
lows getting change maps of the disease which can be useful
for dermatologists to analyze the disease evolution. Indeed, a
local change map is obtained by computing the deviation be-
tween two multi-spectral images in a region of interest (ROI).
Then, we normalize the obtained map and develop a statis-
tical inference framework to quantify the changes. Finally,
we propose a criterion that integrates change maps in order to
quantify the treatment efficacy on a patient.

Index Terms— multi-scale analysis, statistical inference,
multi-spectral image, skin, hyper-pigmentation.

1. INTRODUCTION

In dermatology, spectral information is used to quantify the
severity of pigmentation lesions like melasma. To this end,
spectro-colorimeters allow the measurement of an average
spectrum on a small skin area. Such measurements can be
repeated to get an evolution curve per patient, or to do statis-
tical analysis of a treatment efficacy on a group of patients.
The lack of spatial information about the lesion is the weak
point of spectro-colorimeters. To overcome this limit we
propose to use multi-spectral images. Multi-spectral images
are series of gray scale frames taken at different wavelengths.
For hyper-pigmentation, the range of the wavelengths is from
400 nm to 900 nm.

To characterize hyper-pigmentation lesions, we decom-
pose the image analysis into three steps: the first step is the
lesion segmentation. This segmentation can be done man-
ually, with methods based on physical model [1], on CIE
L∗a∗b decomposition [1], or on independent component anal-
ysis (ICA) [2]. We proposed a method based on support vec-
tor machine (SVM) in [2]. The second step is to design a
spectral signature of the lesion. Such a signature can be em-
pirical, for example the Luminance of the CIE L∗a∗b decom-
position, or a spectrum obtained by physical analysis [1]. We
proposed in [3] a statistical approach based on ICA and on

a function optimisation to obtain a spectral signature. The
third step is evaluating the lesion spatial changes between two
measurements, which is the purpose of this paper. To per-
form this evaluation, we have a series of multi-spectral images
[HS0, ...HSk, ...HSn] taken at times [t0, ...tk, ...tn]. More-
over, we have a binary classification mask Mp0 defining the
ROI computed onHS0 during the first step, and a spectral sig-
nature that allows the integration of the multi-spectral images
into gray scale images [I0, ...Ik, ...In]. Thereby, we aim to
use the Statistical Parametric Mapping (SPM) methodology
[4] based on statistical inference to map the changes between
I0 and each of the Ik images inside the ROI.

The paper is organized as follows. Section 2 describes the
statistical inference to quantify local significance of changes.
Section 3 proposes a homogeneity criterion to integrate a
change map into a scalar criterion. Finally, we demonstrate
experimental results on patients whose lesions of melasma
have a decreasing severity.

2. STATISTICAL INFERENCE

For skin pigmentation analysis, dermatologists can be inter-
ested by both height and low intensity changes inside a le-
sion. In fact, we are interested to evaluate if a treatment affect
the pathological area by decreasing the pigmentation in local-
ized spots, or affect large areas. To this end we propose to
use statistical inference. Such a methodology was used for
fMRI studies on brain activity [4] to detect small intensity but
spatially consistent changes and height intensity changes with
a multi-scale analysis called SPM. We adapt this framework
to our specific detection problem considering a change map
defined by Ck = Ik − I0.

2.1. Change map normalisation

Statistical inference is a mathematical model for highly cor-
related Gaussian random field. Two transformations are then
need for Ck to fit the model. First, we smooth Ck with a
Gaussian convolution filter to increase it spatial correlation.
Second, the ROI of Ck denoted CMp0

k is defined by a unique



class on a radiometric image. Thus, CMp0

k histogram can be
model as monomodal. We use a histogram specification to
transform C

Mp0

k histogram into a Gaussian distribution. We
center and reduce the obtained distribution to standardize it.
In the following we will denote CNk the normalized change
map.

2.2. Change map thresholding

CNk satisfies the conditions to apply the Gaussian field theory
[5]. An important characteristic of a Gaussian field F of size
S is the DT (Differential Topology) characteristic defined by:

χ(Au) = (−1)(D−1)
D−1∑
k=0

(−1)kχk(Au), (1)

where the excursion set Au is defined by:

Au = {s ∈ S, F (s) ≥ u}, (2)

where u is a given threshold, D the dimension of the field and
χk(Au) the number of points s ∈ Au satisfying the condi-
tions: (a) F (s) = u, (b) F (i)(s) = 0,∀i ∈ [1, D − 1], (c)
F (D)(s) > 0 and (d) the (D− 1)× (D− 1) matrix of second
order partial derivatives of F(s) has exactly k negative eigen-
values. In the above expressions, F (i) denotes the ith deriva-
tive of F . In the 2D case (i.e. D = 2), for a given threshold
u, the expectation of the DT characteristic of a centred and
reduced Gaussian field can be written as [5]:

Eχ(Au) = S(2π)
3
2 |Λ| 12σ−3ue−

u2

2σ2 (3)

with S the area of the field, Λ the 2× 2 correlation matrix of
the field derivatives, and σ2 = E(F 2).

In order to estimate the likelihood of a pixel of CNk and its
neighborhood under the Gaussian field assumption, we com-
pare its characteristic at a threshold u to the DT characteris-
tic. Two parameters can be used to compute this statistic: the
maximum intensity and the spatial extent of the considered
neighborhood above u.

Let x0 denote the maximum intensity of Rx0
u , a region of

CNk above the threshold u. The likelihood of this region under
the Gaussian field assumption is [6]:

P (Rx0
u ∈ F ) =

Eχ(Ax0 )

Eχ(Au)
=
x0
u
e
u2−x2

0
2 . (4)

Let S0 denote the spatial extent of RS0
u , a region of CNk

above the threshold u. The expectation for this region under
the Gaussian field assumption is [6]

E(RS0
u ∈ F ) =

E(Nu)

Eχ(Au)
, (5)

where E(Nu) is the expectation to have Nu pixels above the
threshold u in the random field F . As F follows a standard

Algorithm 1 Statistical Map
Require: I0, Ik, Mp0

1: Ck = Ik − I0
2: Smooth and normalize Ck to get CNk (see section 2.1)
3: Choose a family U = u1, ..., unu
4: for i = 1 to nu do
5: Compute the connected components above ui
6: for each connected component do
7: Calculate P (Rx0,S0

u ∈ F ) with eq. 9
8: end for
9: end for

10: Merge the obtained connected clusters obtained with the
family U to get SMtk

normal distribution,

E(Nu) = S
∫ ∞
u

(2π)
1
2 e−

x2

2 = SΦ(−u) (6)

then,

E(RS0
u ∈ F ) =

Φ(−u)

(2π)
3
2 |Λ| 12ue−u

2

2

. (7)

Thus, the number of pixels in a region above the threshold
u has an exponential distribution with the parameter λu =
1/E(RS0

u ∈ F ). We can then write the probability of a region
RS0
u to appear in a realization of the Gaussian field by:

P (RS0
u ∈ F ) = e−λuS0 = e

(2π)
3
2 |Λ|

1
2 S0ue

−u
2

2

Φ(−u) . (8)

Finally, for a region of CNk above the threshold u with the
maximum intensity x0 and the spatial extent S0, the probabil-
ity of CNk to be a realisation of F is [6]:

P (Rx0,S0
u ∈ F ) = min(P (Rx0

u ∈ F ), P (RS0
u ∈ F )). (9)

Thereby, to detect changes between I0 and Ik we define a
family of nu thresholds U = {u1, ..., unu}. For each ui, CNk
is segmented into regions denoted Rxo,S0

ui . This segmentation
is obtained by a connected components analysis of the class
defined by the pixels of CNk above the threshold ui. Then, we
assign a probability P (Rxo,S0

ui ∈ F ) to each region Rxo,S0
ui .

The superposition of the obtained regions for each threshold
gives SMtk , a statistical map of the changes (Figs. 2 and 3).

The algorithm 1 summarizes the procedure for obtaining
SMtk between I0 and Ik for a given patient.

2.3. Rare event hypothesis

The statistical approach proposed above makes the rare events
hypothesis. In studied images, a large region of the ROI can
change if the disease decreases significantly. Thus, if we ap-
ply the methodology described above, only a small amount of
the changes will be quantified and the resulting homogeneity



criterion will be difficult to analyze. We then introduce the
normalisation:

FNdetk/0
= FNetk/0

+
1

Nr

tk∑
r=t0

(
µCt0 (FNetr/0

)− µCt0 (FNet1/0
)
)
(10)

where Nr is the number of time measurements between t0
and tk. µCt0 (FNetr/0

) (respectively µCt0 (FNet1/0
)) denotes the

average pixel intensity in the interest area of FNetr/0
(respec-

tively FNet1/0
) delimited by Ct0 . If the normalised data with

Eq. (10) does not respect the rare event hypothesis, the calcu-
lated statistics by Eq. (9) will then be biased. Nevertheless,
we do not use the absolute values of these statistics but their
spatial repartition.

3. CHANGE CRITERION

The homogeneity map SMtk can be integrated into a scalar
criterion in order to get a treatment efficacy quantification. To
do so, we firt define a function fs(p) that represents the spatial
repartition of the changes by:

fs(p) =
card{x : SMtk(x) ≤ p}

card{SMtk}
. (11)

fs(p) is an increasing function from [0, 1] to [0, 1]. As the in-
terpretation of fs(p) is not straightforward, we prefer to work
with fptk(s) that is the inverse function of fs(p). A linear in-
terpolation is used to calculate fptk(s) with a regular sampling
along s. fptk(s) is also an increasing function from [0, 1] to
[0, 1]. Then, an integration of fptk(s) to a scalar Htk is com-
puted by:

Htk = 2

∫ 1

0

|fptk(s)− s|ds. (12)

Htk ∈ [0, 1] represents the area between the function fptk(s)
and the identity function Id(s) = s. Id corresponds to the
most heterogeneous repartition that can be expected. Then,
the higher Htk is, the more homogeneous changes are. We
use the Riemann integral to calculate Htk with discrete data.
The homogeneity measure of Eq. (12) makes sense only when
some changes appear in the image between t0 and tk. We
estimated that, if less that 10% of the ROI change between I0
and Ik, the criterion Htk cannot be interpreted.

4. EXPERIMENTAL RESULTS

This section shows results obtained by the proposed method
on patients taken from a clinical study involving melasma. We
used the method proposed in [3] to obtain the spectral signa-
ture that gives Ik, and used a SVM classification to calculate
Mp0

. Then, the images series I0, ... In were co-registered
with the algorithm proposed in [7]. To smoothCk we use a 13
pixel diameter Gaussian kernel. The chosen family of thresh-
olds is U = [1, 1.5, 2, 2.5, 3] for all studied images. This

Fig. 1. Time sequences of H for patients whose pathology
spatially decrease by more than 10%. X-axis: time in weeks
(t0 = 1, t1 = 4, t2 = 8, t3 = 12), Y-axis: H value.

thresholds family has been manually selected on a subset of
images. Figs. 2 and 3 show two examples of obtained maps
for two patients’ time series. Fig. 2 corresponds to a patient
where dermatologist diagnoses a significant change whereas
Fig. 3 corresponds to a patient whose diagnosis reveals few
changes. As one can see, the proposed method allows us to
detect precisely the areas where a change appears. Moreover,
we can distinguish at an earlier stage non significant changes
(in red) that can become significant later (in blue). We ran
the computation of H on a series of 22 patients under a treat-
ment. The clinical analysis of this population concludes that
the treatment had globally an effect. In the population of 22
patients, we observed that for 7 patients the criterion H is not
interpretable. Indeed, for five patients less than 10% of the
ROI changes at time t2 = 8 or t3 = 12 and for two patients
there were less than 10% of the ROI that change in all the time
sequence. For the others fifteen patients (see Fig. 1) we ob-
serve an global growth of H with time. For most patients (in
blue) main changes occurred in the second measurement time
t1 = 4, and for 4 patients (in red), main changes occurred
in time t2 = 8. These results show that the homogeneity
criterion gives relevant interpretation of disease progression
during treatment.

5. CONCLUSION

In this paper, we adapt the SPM methodology to skin lesion
analysis. Associated with a classification and a spectral sig-
nature, it gives a precise map of the changes appearing dur-
ing the treatment phase. For an individual patient, the pro-
posed method gives a spatial analysis of the changes. As
the proposed method is automatic, the severity estimation is
more robust in a time sequence than a human inspection. For
the change detection to succeed, both co-registration between
time measurements and classification of the ROI should be
accurate.



(a) (b)

(c) (d)

(e) (f)

Fig. 2. Change maps obtained for a patient whose pathology
decreased during the treatment period. a,c,e) equalised differ-
ence images on the spectral feature maps between each time
t1, t2 et t3 and t0. b,d,f) homogeneity maps SMtk for the
three time t1, t2 et t3 using the normalisation of Eq. (10).
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