
HAL Id: hal-00841485
https://hal.inria.fr/hal-00841485

Submitted on 4 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS Composition and Analysis in Reconfigurable Web
Services Choreographies

Ajay Kattepur, Nikolaos Georgantas, Valérie Issarny

To cite this version:
Ajay Kattepur, Nikolaos Georgantas, Valérie Issarny. QoS Composition and Analysis in Reconfigurable
Web Services Choreographies. International Conference on Web Services, IEEE, Jun 2013, Santa
Clara, California, United States. �hal-00841485�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49772698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00841485
https://hal.archives-ouvertes.fr

QoS Composition and Analysis in Reconfigurable Web Services

Choreographies

Ajay Kattepur, Nikolaos Georgantas & Valérie Issarny
Equipe ARLES, INRIA Paris-Rocquencourt
Domaine de Voluceau, Le Chesnay, France.

Email: firstname.lastname@inria.fr

Abstract—Quality of Service (QoS) in orchestrated
web services compositions have been well studied
with probabilistic and multi-dimensional models.
Choreographies that involve message passing among
services, on the other hand, require further analysis.
In this paper, we begin with the set of QoS domains
that may be studied in case of choreographies and
the algebraic rules for their composition. As chore-
ographies manage QoS composition in a distributed
fashion, techniques to enrich functional specifications
with QoS are examined using the model proposed in
the CHOReOS project. These are further analyzed
with choreographies that may reconfigure due to
functional or QoS requirements. Studies on the effects
of such reconfiguration on multiple QoS domains
can lead to better understanding of optimal runtime
configurations along with associated tradeoffs. A goal
programming approach is also proposed to choose
Pareto optimal solutions with respect to diverse QoS
domains.

Keywords-QoS; Service Choreographies; Reconfig-
uration; Goal Programming.

I. Introduction

Web services and associated Quality of Service (QoS)
have received considerable attention in the research com-
munity relating to discovery, late-binding and optimal
end-to-end compositions [1], [2]. Maintaining efficient
QoS levels of invoked services is a major prerogative of
composite web service orchestrations, with service level
agreements (SLAs) [3] being employed to ensure this.
QoS metrics being multi-dimensional random variables,
the treatment of QoS composition and SLAs tends to-
ward probabilistic criterion [4].
Web services choreographies involve a “global view”

of message passing and coordination among various sets
of services. Unlike orchestrations that have a centralized
control flow and may be described/run on engines such
as BPEL [5], choreographies involve a shared service
composition framework where only the participants’
functionality and associated message passing are de-
scribed [6]. Languages developed to describe such mes-
sage passing and coordination within choreographies,
such as BPMN [7], WS-CDL [8] and BPEL4Chor [9] have
the following elements: (a) Messages : types and content

This work has been partially supported by the European
Union’s Seventh Framework Programme FP7/2007-2013 under
grant agreement number 257178 (project CHOReOS).

of messages passed between participants (b) Message or-
dering: time-constraints for asynchronous/synchronous
messages with associated pre-/post- conditions (c) End
points : choreography end points that may be accessed
with specific protocols.
When dealing with QoS of web services, techniques

specified by Zeng et al. [2] may be applied to the domains
such as latency, availability, security and so on (see [1]
for a survey). For choreographies, in addition to these
metrics, the evaluation must also take into account the
integrity of messages passed. Unlike data independent
orchestrations, where the centralized orchestrator may
separate functional and QoS analysis, choreography QoS
have to consider [10]:

• Deadlock Freeness : A deadlock occurs when the run-
time deployment of a choreography reaches a (non-
final) state that cannot be left without violating the
message ordering.

• Conformance: A participant of a choreography con-
forms to a message passing specification dependent
on aspects such as correctness of specification.

• Realizability: Choreographies may have participants
that can generate adverse side-effects to other par-
ticipants due to non-compliance of specification-
s/enforcement policies.

While these functional properties are, in general, ver-
ified at design-time, they involve assumptions on run-
time QoS behavior. Deadlock freeness assumes constant
availability (response produced within timeout) while
realizability assumes security/data integrity of messages.
Thus, there are intricate links between choreography
functioning and analysis of QoS metrics.
In this paper, we build on the algebraic formulation

proposed in [4] to integrate QoS metrics for service chore-
ographies. Operators to compose functional behavior
such as message integrity and accuracy of the choreog-
raphy are studied, as they influence (and are influenced
by) QoS. As the management of QoS in choreographies
needs to be decentralized, choreography operations are
enhanced with QoS increments. For this, we extend
the BPMN-based choreography model described in the
CHOReOS project [11] (http://www.choreos.eu) with
QoS values to propagate and aggregate these metrics.
Analysis is then performed with cases where the

choreography adapts to runtime requirements. Such

http:// www.choreos.eu

configuration-aware/self-healing choreographies that dy-
namically adapt [12] may be triggered by functional,
behavioral changes in services (non-availability for ex-
ample) or QoS requirements that differ from design-time
assumptions. Aspects such as deadlock freeness and mes-
sage ordering, that are taken care of during design time,
have to consider such configurations. Studying the QoS
of participating services in such cases further takes into
account the multi-dimensional, probabilistic QoS with
added variability due to such adaptation. By doing so,
extended studies on“good”and“bad”configurations may
be done, dependent on changes produced in composite
choreography QoS. As there are a number of tradeoffs
typically involved in reconfigurations, accurate study
of the QoS composition process along with message
passing is crucial to ensure an“optimal” functional+QoS
configuration.
We emphasize three principal contributions of our work:

1) An algebraic formulation that can handle multi-
dimensional QoS metrics and corresponding com-
position for service choreographies.

2) Study of the effect of runtime reconfiguration on the
composition of QoS metrics and assumptions taken
at design-time.

3) A Pareto optimal technique to manage goal -
dependent selection among traded-off QoS config-
urations.

The rest of the paper is organized as follows: Section
II introduces QoS domains of interest and the algebraic
operators for composing them. The process of integrat-
ing these metrics within the choreography specifications
are studied in Section III. Management of these metrics
in terms of contracts and reconfiguration are briefly
analyzed in Section IV. A Pareto optimal policy for
selecting among various alternative configurations is an-
alyzed in Section V. In Section VI we provide an airport
check-in example of reconfigurable choreographies with
a detailed analysis of QoS composition and tradeoff. This
is followed by related work and conclusions in Sections
VII and VIII, respectively.

II. QoS in Choreographies

In this section, we review the domains of QoS relevant
to our analysis and the algebra used to compose them.

A. QoS Domains

From an atomic/composite web service perspective, QoS
properties of interest may be represented by multi-
dimensional [1] and probabilistic [4] domains:

• Latency δ: End-to-end response time between web
service invocation and response. Availability may be
subsumed as responding within a particular timeout
period. Typically represented by a heavy tailed
distribution.

• Throughput λ: Number of times a web service may
be accessed in a particular period. Represented by
an exponentially valued random variable.

• Cost C: Amount a client has to pay for the ser-
vice (per-invocation, subscription policies). May be
drawn from a uniform/normal distribution with
items accumulated.

• Data Quality ∆: The quality of data produced by
the service including freshness, accuracy and cor-
rectness. Represented as a binomial random variate
with values (high, low).

• Security S: Confidentiality of the data produced
and transmitted by a web service. Represented as
a binomial random variate with values (high, low).

The above metrics may be extended with domains from
choreography behavior, which relate both functional and
QoS properties [10]:

• Accuracy α: Measures how accurately the choreog-
raphy function follows its specification. Represented
as binomial random variate values (valid, invalid).

• Message integrity Mi: Capability of the choreogra-
phy to prevent data corruption and unauthorized
access to information during choreography enact-
ment. Represented as binomial random variate val-
ues (high, low).

• Messaging Efficiency Me: This captures the order-
ing and content of messages being exchanged by
the choreography. Aspects such as deadlock freeness
must be taken into account. Represented as bino-
mial random variate values (high, low).

It must be noted here that these domains are by no
means exhaustive but represent a cross-section of pos-
sible QoS that may be applied.

B. QoS Algebraic Composition

As specified by Rosario et al. [4], a QoS metric q is a
tuple:

q = (D,≤,⊕,
∧

,
∨

) (1)

1) (D,≤) is a QoS domain with corresponding partially
ordered set of QoS values

2) ⊕ : D×D → D defines how QoS gets incremented by
each new event/operation. It satisfies the following
conditions:

• ⊕ possesses a neutral element 0 satisfying ∀q ∈
D ⇒ q ⊕ 0 = 0⊕ q = q.

• ⊕ is monotonic: q1 ≤ q′1 and q2 ≤ q′2 imply
(q1 ⊕ q2) ≤ (q′1 ⊕ q′2).

3) (
∧

,
∨

) represent the lower and upper lattice, mean-
ing that any q ⊆ D has a unique least lower, upper
bound (

∧

q,
∨

q). When taking the best response
with respect to the ordering ≤, the lowest QoS
is taken with

∧

. When synchronizing events, the
operator

∨

amounts to taking the worst QoS as per
the ordering ≤.

Basic classes of QoS domains are displayed in Table I.
Domains D may be real numbers R+ as for latency,
generic domains Q as for security(high, low) or mapped

QoS Metric D ≤ ⊕
∧ ∨

δ: Latency R+ ≤ + min max
C: Cost Q 7→ N ⊆ on N

⋃ ⋂ ⋃

S: Security Q ≥ on Q
∨

max min
∆: Data Quality Q ≥ on Q

∨
max min

λ: Throughput R+ ≤ + min max
α: Accuracy Q ≥ on Q

∨
max min

Mi: Msg. Integrity Q ≥ on Q
∨

max min
Me: Msg. Efficiency Q ≥ on Q

∨
max min

Table I
QoS Domains and Algebra.

BPMN Workflow Pattern Operator
Sequence ⊕
Exclusive Choice - Simple Merge

∧

Multi-Choice - Multiple Merge
∧

Parallel Split - Synchronization/Discriminator
∨

N out of M Join; Cycles/Loops
∨

Milestone; Cancel Activity/Case; Termination
∨

⊥

Table II
QoS Composition with Business Process Patterns.

to sets of values Q 7→ N as with cost. The partial
ordering can be “less is better”(≤ with latency), “more
is better”(≥ with security) or using subsets(⊆ with
cost). The aggregation operator ⊕ results in addition
for the case of latency; however for domains such as
cost(Union

⋃

) or security(
∨

), this would mean taking
the supremum of the QoS values aggregated.
We assume that both choreographies and orchestra-

tions (as previously studied in [4]) have similar com-
position models for end-to-end QoS with additional ag-
gregation required (Section III). Some metrics such as
α, Mi, Me along with S, ∆ are closely dependent on
the “net” effect of the choreography’s functional perfor-
mance. For example, the loss of message efficiency Me

in any of the choreography participants can lead to dead-
lock (

∨

Me) of the entire choreography. Finite domains
such as {high, medium, low} can be composed with

∨

of the result of a composition (high security information
plugged to a low security source).
In order to briefly discuss this composition process,

we present Table II, where common BPMN [7] workflow
patterns are analyzed with their corresponding QoS
operators. The use of the sequential aggregation operator
⊕ and the choice-based infimum

∧

follows from our
algebra. For parallel invocations with synchronizations
and looping, the supremum

∨

should be used. We also
specify

∨

⊥ for terminations/cancellations of executions
(timeouts or sunk-costs, for instance). Such aggregation
techniques are evaluated in detail in [13].
Encoding the QoS algebra (Table I) can be done in a

variety of scripting languages. Such a specification may
be invoked by any choreography description language
to incorporate QoS composition. It specifies how to cal-
culate the QoS increments by employing the associated
algebra with domains D, partial order ≤ and operations
(⊕,

∨

,
∧

). In case of orchestrations, the increments and
composition may be managed by the orchestrator itself
(for monitoring SLAs, for instance). In case of chore-
ographies, this has to be done in a distributed manner
with every functional operation being tagged with a

QoS increment (for aggregation/composition with rules
of Table II). An example specification in python is shown
below:

class Latency: # Latency

def __init__ (self):
self.QoS = student_t(nu) # student -t dist.

def QoSOplus (self ,q2): # oplus operator

return (self.QoS + q2)
def QoSCompare(self ,q2): # partial order

return self.QoS <= q2
def QoSInfimum(self ,q2): # infimum operator

v = [self.QoS ,q2]
return v.sort()

def QoSSupremum(self ,q2): # supremum operator

return max(self.QoS ,q2)

III. QoS within Choreography Specifications

The choreography model used is that of the
CHOReOS project [11], which focuses on large scale
choreographies that connect heterogeneous, adaptable
and QoS-aware services [11]. The generic representa-
tion of the CHOReOS model is shown in Fig. 1 with
services represented by a generic interface to abstract
behavior. The functional interface of the choreography
specification provides a description of the operations,
messages and constraints. Note that there are three
types of services that may participate:

1) Stateless Services : These are just treated atomically
with service requests-responses.

2) Stateful Services : Have internal transitions that are
concealed by the interface. They also have exter-
nally observable transitions that should conform
with the message passing of the choreography, which
are exposed by the interface.

3) Composite Services : Modeled as orchestrations that
can have varied internal control flow. Note that the
interface may hide the internal behavior and these
may be considered a distributed implementation of
a single stateful service.

At the choreography level in Fig. 1, specific roles that
need to be performed by the choreography are assigned
to concrete services. The coordination delegates are spe-
cial entities that wrap such services and adapt - if neces-
sary - their behaviors to their assigned roles, i.e. to the
choreographymessage passing specifications. At the level
of the underlying middleware-based communication, the
generic application connectors ensure interoperability
across services that may employ different interaction
paradigms, e.g., publish-subscribe and tuple spaces be-
sides the typical client-server Web service interaction.
While CHOReOS choreographies are specified in

BPMN [7], this is formally abstracted with labeled tran-
sition system (LTS) specifications, as follows [11]:

Definition 1. Service LTS L = (S, T,D, S0). S is a
finite set of states, T ⊆ O is a finite set of transitions,
where O is the set of service operations that the service
may provide (inbound invocations) or require from other

Role 3

Service
Interface

sync

Interface

Coordination Delegate
Coordination Delegate

Coordination Delegate

Interface

21

Service

Interface

Generic Application Connectors

Role 1

Role 2

Operation

Choreography Specification

Composite Service Stateless Service

Stateful Service

Service Service

Service

Interface

 Service Interface

Service Interface

Service Interface

Figure 1. CHOReOS Choreography Model [11].

services (outbound invocations) as defined by its func-
tional interface, D is the transition relation S × T × S
and S0 is the initial state.

Definition 2. Choreography LTS Lc = (lc,Roles) with
LTS lc having the transition relation T ⊆ Roles × O ×
Roles, with Roles being the universal set of the local roles
provided by the choreographies’ service participants and
O being the universal set of the roles’ operations.

This definition of a Choreography LTS can be used
to bind roles to concrete services by projecting the
Choreography LTS onto each role LTS and by matching
each role LTS with a concrete service LTS. We extend
the above definition to a QoS-aware choreography by
associating QoS increments with specific operations, as
follows:

Definition 3. QoS-centered Choreography LTS Lc(Q) =
(lc,Roles, Q) with LTS lc having the transition relation
T ⊆ Roles × OQ × Roles, with OQ being the QoS
increments from domain DQ associated with operation
O.

Definitions 2 & 3 produce the ability to generate the
output tuple of (functional output, QoS increment),
where the QoS increment is associated to the service
operation that produces the functional output. Such an
output can be used by choreography participants to
monitor QoS increments in a distributed fashion, which
differs from central monitoring of orchestrations. In the
next section, we study some of these QoS management
policies.

IV. QoS Management

The algebraic formulation presented in Tables I and II
along with the QoS interpretation of Definition 3 can be
used in a variety of ways for managing choreographies.
These interactions are managed either through contracts
or by reconfiguring at runtime. Interactions that need
to be strictly monitored for QoS are provided contracts
while best-effort QoS interactions are dealt with through
runtime reconfigurations.

A. QoS Contracts

Service Level Agreements [3] make use contractual guar-
antees for strict monitoring of composite services’ per-
formance. The procedure outlined in Tables I & II are
combined with analytic (queues, flows) or simulation
techniques (e.g. [14]) to generate end-to-end performance
metrics. While the end-to-end performance of a choreog-
raphy is generally not contractually guaranteed, partic-
ipating services can have contractual guarantees. Con-
tracts are applied to service interactions in choreogra-
phies that need to strictly adhere to requirements/QoS
expectations, in order to prevent deviations in function-
ality.

B. Reconfiguration

Reconfiguration from a choreography perspective means
either replacing certain services at runtime (due to
change in requirements, QoS) or modifying the composi-
tion. This is done via self-healing systems, model-based
techniques or goal driven multi-stage approaches, for in-
stance [12]. Further analysis of end-to-end participants’
QoS should be analyzed before/after the re-configuration
has occurred. Reconfiguration assumes that runtime be-
havior may vary and has services/strategies to adapt
when such behavior occurs.

Algorithm 1: Runtime QoS-Aware Reconfiguration

1 Set Functional, QoS Goals: G[f], G[q]
2 Set Design-time Configuration: Ci ∈ Composition C; i := 1
3 while i ≤ imax do

4 Deploy Runtime Configuration Ci

5 Check Goals G[fCi
], G[qCi

] achieved by Ci

6 if
(

G[fCi
] ≤ G[f]

)

∧
(

G[qCi
] ≤ G[q]

)

then

7 Set Cout := Ci

8 break

9 else

10 q :=
∨

q; ∀q ∈ D(δ | λ | C)
11 q := q∅; ∀q ∈ D(S | ∆ | α | Mi | Me)
12 i := i+ 1
13 Re-Configure Ci ∈ C

14 Return QoS-optimal Cout

We make use of Algorithm 1, that represents a
methodology for runtime reconfiguration when design-
time QoS objectives are not met. Loosely, we refer to a
configuration Ci to be a runtime instance of a service
composition C . If a particular configuration that is de-
signed (G[fCi

],G[qCi
]) cannot meet the functional+QoS

goals (G[f],G[q]) represented with partial ordering ≤,
it may trigger a reconfiguration procedure specified by
modeling/agent based techniques [12]. Note that we have
a reset QoS step q :=

∨

q/ q∅ when the objectives
are not met; this step appends the supremum

∨

q of
domains such as latency δ/cost C that have already been
exhausted by the configuration run; it resets the null
value q∅ to domains such as accuracy α/security level S.
Algorithm 1 is computationally inexpensive (maximum
iterations imax) and checks if a particular configuration
reaches the functional+QoS goals of the choreography.

An alternative, more computationally expensive tech-
nique, is to search the entire configuration space for
the optimal configuration with respect to goals, which is
given in Section V. Such techniques of searching through
large composition spaces has been studied further in [15],
using the compositional decision-making process.

V. QoS Optimal Configurations

QoS being multi-dimensional in nature, the optimal
binding/selection procedure would generally be modeled
as a multi-objective optimization problem. There has
been work done to model this problem from the web
services selection/composition perspective as multidi-
mensional multiple-choice knapsack problem (MMKP)
[16], integer/linear programming [2], [17] or with analytic
hierarchy process weights [18].
In Table I and Algorithm 1, we introduce multiple

metrics that are formulated as individual objective val-
ues. As these metrics have dependencies and tradeoffs,
a single solution that simultaneously optimizes each
objective is not trivial. Typically, evaluation would mean
studying the Pareto Optimality of solutions:

Definition 4. For a multi-objective function F(q) =
[F(q)1,F(q)2, . . .F(q)k]

T
to be minimized in domain Q,

a point q′ ∈ Q is Pareto Optimal iff there does not
exist another point q ∈ Q such that F(q) ≤ F(q′) and
F(q)i < F(q′)i for at least one objective function.

A point is Pareto optimal if there is no other point
that improves at least one objective function without
detriment to another function. We consider using a goal
programming approach [19] to study the optimality of
the outputs as set out in Algorithm 1. By specifying
goals G[q]j for each objective function F(q)j , it is
possible to study the deviation of goals produced due
to each reconfiguration. The total deviation from goals
∑k

j=1

(

d(q)+j + d(q)−j
)

is to be minimized with d(q)+j ≥

0 (overachievement) and d(q)−j ≤ 0 (underachievement)
from goal G[q]j for objective F(q)j . The optimization
problem:

minq∈Q :
k
∑

j=1

(

d(q)+j + d(q)−j
)

Subject to: F(q)j + d(q)+j − d(q)−j = G[q]j
d(q)+j , d(q)−j ≥ 0; j = 1, 2, . . . , k

(2)

This may be instantiated to multiple domains (Table I)
with the intention of locating the Pareto optimal QoS
configuration:

Minimize:

σ2(δ̂)− + σ2(δ̂)+ + d(Ĉ)− + d(Ĉ)+ +σ2(λ̂)− + σ2(λ̂)+

+d(∆̂)− + d(∆̂)+ + d(Ŝ)− + d(Ŝ)+ + d(α̂)− + d(α̂)+

+d(M̂i)
− + d(M̂i)

+ + d(M̂e)
− + d(M̂e)

+

Subject to:

µ(δ̂) + σ2(δ̂)+ − σ2(δ̂)− = G[δ̂]; σ2(δ̂)+, σ2(δ̂)− ≥ 0
∨

(Ĉ) + d(Ĉ)+ − d(Ĉ)− = G[Ĉ]; d(Ĉ)+, d(Ĉ)− ≥ 0

µ(λ̂) + σ2(λ̂)+ − σ2(λ̂)− = G[λ̂]; σ2(λ̂)+, σ2(λ̂)− ≥ 0
∨

(∆̂) + d(∆̂)+ − d(∆̂)− = G[∆̂]; d(∆̂)+, d(∆̂)− ≥ 0
∨

(Ŝ) + d(Ŝ)+ − d(Ŝ)− = G[Ŝ]; d(Ŝ)+, d(Ŝ)− ≥ 0
∨

(α̂) + d(α̂)+ − d(α̂)− = G[α̂]; d(α̂)+, d(α̂)− ≥ 0
∨

(M̂i) + d(M̂i)
+ − d(M̂i)

− = G[M̂i];

d(M̂i)
+, d(M̂i)

− ≥ 0
∨

(M̂e) + d(M̂e)
+ − d(M̂e)

− = G[M̂e];

d(M̂e)
+, d(M̂e)

− ≥ 0
(

G[δ̂] +G[∆̂] +G[Ŝ] +G[α̂] +G[M̂i] +G[M̂e]
)

×
(

G[Ĉ] +G[λ̂]
)

= K

This is an instantiation of eq. 2 with the objective
function minimizing the sum of deviations d(q̂)+, d(q̂)−,
where q̂ represents the values in domain Q normalized
to be in range [0, 1] (like in Zeng et al. [2]). The
constraints also follow from eq. 2 with values F(q)
and goals G[q] instantiated from QoS in Table I.
For metrics such as latency δ, the mean F(q̂) = µ
and variance d(q̂) = σ2 is used to set the quality
constraints. For other metrics such as data quality ∆
and message integrity Mi, the supremum F(q̂) =

∨

with deviations d(q̂)+, d(q̂)−. The tradeoff constraints
are included with improvement in some goals meaning
deterioration in others. This is represented with the

goals for cost and throughput
(

G[Ĉ] +G[λ̂]
)

inversely

proportional to the sum of the goals for the other metrics
(

G[δ̂] +G[∆̂] +G[Ŝ] +G[α̂] +G[M̂i] +G[M̂e]
)

, via

linear constant K. Essentially, this states that the
deterioration in cost (higher) and throughput (lower
number of invocations) improves domains such as
latency (lower) and security (better).
While the computational complexity of the approach

is greater than using linear/weighted optimization, the
quality of the output is superior as it uses only the
partial orders along with the probabilistic nature of
these domains. Such an improvement may also be seen
in stochastic programming dependent composition ap-
proaches like in [20]. The Pareto optimal nature of this
output captures both the effect of functional changes in
choreographies (deadlock, conformance through Mi, α)
while also monitoring service behavior though metrics
such as δ, λ. This is crucial for choreographies where
improvement in functionality may be traded-off with
goal deviation in certain QoS domains. Through this,
the optimization formulation loosely resembles the ac-
tual choreography performance – where metrics are not
independent of each other.

VI. Reconfigurable Choreography Example

In order to study the effect of reconfiguration in QoS-
dependent choreographies, we make use of the motivat-
ing airport check-in example.

<invoke>

Passenger Kiosk

Timeout?

Passenger Orchestration Airline Orchestration

checkBooking
Req

checkBookingRes

<invoke>

<invoke>Submit Booking Information

<invoke>
Check Flight Details

<invoke>
Process Passenger

Information<invoke>
Print Boarding Pass

<invoke>
Check−in Baggages

sync

Complete Airline Check−inTimeout Message

noyes
BaggageReq

<invoke>
Associate Baggage Tag

BaggageRes

Figure 2. The design-time airport check-in choreography con-
sisting of the passenger and airline orchestrations with message
passing represented with dotted lines.

A. Example Description

In Fig. 2, the passenger and airline orchestrations
participate with a series of messages to complete the
choreography implementation. This is represented in
a generic form, which may be translated to BPMN
[7]/WS-CDL [8]/BPEL4Chor [9]. In this example, we
consider two composite services (modeled as orches-
trations of stateless services, but could have equally
been two atomic stateful services)that pass messages
specified in the choreography. The Passenger orches-
tration relays the passenger’s request to the passen-

ger kiosk service that subsequently invokes the submit

booking information service. This then passes to the
print boarding pass and the check-in baggages services
in parallel with data collated at the complete airline

check-in service. In this orchestration, function and
QoS interact, with the timeout service monitoring la-
tency (response invalid if after timeout). Similarly, the
Airline orchestration consists of check flight details,
process passenger information and associate baggage

tag services in sequence. In order for the airport check-
in choreography to function properly, messages (rep-
resented by dotted lines) need to be passed between
these two orchestrations. For instance, the print board-

ing pass service requires a confirmation message check

booking response from the process passenger informa-

tion service to proceed. We use asynchronous message
passing to demonstrate that an individual orchestration
can progress in execution while waiting for a response
from a choreography partner. Blocking can take place
at a different service, i.e., where the response is actually
needed; or, in terms of states, the internal orchestration
can change state and block while waiting for a return
from the choreography partner.

To prevent extended deadlocks (due to absence in
availability of certain services), parts of the choreogra-
phy may reconfigure. In our example we fix the passenger
orchestration (monitored with SLAs) and allow reconfig-
uration of the airline orchestration and of the message
passing in the airport check-in choreography. The QoS
analysis is then performed on the passenger orchestration
with changes reflected in the observed outputs. Some

checkBookingReqPassenger Kiosk

Submit Booking Information

Information
sync

Passenger Orchestration Airline Orchestration

Timeout?

Check−in BaggagesPrint Boarding
Pass

Check Flight Details

yes no

Timeout Message Complete Airline Check−in

BaggageReq

checkBookingRes

BaggageRes

Process Passenger
Baggage Tag

Associate

(a) Runtime Configuration A: Change in airline orches-
tration and choreography message passing.

Associate Baggage Tag

Passenger Kiosk

Submit Booking Information

Print Boarding Pass

sync

Timeout?

no

Check−in Baggages

Check Flight Details

yes

Passenger Orchestration Airline Orchestration

Timeout MessageComplete Airline Check−in

checkBooking
Req

BaggageReq

checkBookingRes
Information

Process Passenger

BaggageRes

(b) Runtime Configuration B: Improved services’ QoS
in airline orchestration; no change in message passing.

Figure 3. Reconfigurations of the airport check-in choreography.

assumptions may be made about analysis such as QoS
distributions of the atomic services being analyzed at
design-time. The following two configurations are stud-
ied (Fig. 3):

• Runtime Reconfiguration A (Fig 3(a)): The air-
line orchestration is reconfigured to produce lower
latency by calling process passenger information

and associate baggage tag services in parallel. It is
sufficient to imagine a case where the computation
of these services are performed in parallel to increase
efficiency of the airline orchestration. This affects
some of the messages that are passed within the
choreography. Such reconfigurations are commonly
observed in most model or agent based reconfigu-
ration schemes [12] triggered by changes in mainly
functional requirements.

• Runtime Reconfiguration B (Fig 3(b)): The airline
orchestration is replaced by“better”performing ser-
vices (represented by double boxes). The improve-
ment can be in certain domains such as latency, data
quality, security levels with tradeoffs of higher cost
for the services. An example instance is when one of
the servers of the airline orchestration is undergoing
maintenance and is replaced by a backup service
at higher cost. Such reconfigurations are typically
observed in measurement-based reconfigurations as
well as late-binding/substitution [2] in QoS depen-
dent composite services.

B. QoS Analysis.

In order to analyze the effects of such reconfigurations
(Fig. 3 with respect to Fig. 2) on the domains of QoS
introduced in Section II, we make use of Monte-Carlo
techniques used in [4], [14] to analyze the end-to-end
QoS of the compositions. The composition of QoS is
performed according to the rules specified in Table II.

QoS values being random variables, the distributions
used in the simulations include the following:

• Latency: Student-t (nctrnd in MATLAB). The val-
ues of latency are represented as random values that
can be drawn from a heavy tailed distribution.

• Accuracy, Security, Message Integrity/Efficiency,
Data Quality: Binomial (binornd in MATLAB). As
these values are typically domains such as {valid,
invalid} or {high, low}, they are accurately repre-
sented by binomial random variables.

• Throughput: Exponential (exprnd in MATLAB).
Throughput/query arrival rate is represented as an
exponentially increasing random variable.

• Cost: Uniform (unifrnd in MATLAB). Units of
cost are drawn from a uniform distribution to be
aggregated.

Random variables are drawn from these distributions
by changing the mean and shape to model different
service behavior and are composed with the algebraic
rules presented in Section II with 20, 000 Monte-Carlo
runs in MATLAB. The effects of the reconfigurations
from Section VI-A on the end-to-end QoS distributions
are presented as follows:

• Reconfiguration A (Fig. 4(a)): As specified, this
reconfiguration allows the airline orchestration and
the message passing order to change. Though con-
siderable the improvement in latency is not directly
seen for the orchestrations in Fig. 4(a), the airport
check-in choreography improves considerably due
to changes in the message passing. As seen in Fig.
4(a), the cumulative density of choreography runs
completing before 100 ms. improves from 0.5 to 0.7.

• Reconfiguration B (Fig. 4(b)): This reconfiguration
improves certain domains for the airline orchestra-
tion such as lower latency/throughput and better
accuracy/security/message integrity at the expense
of higher costs. Similar changes are also observed
for the airport check-in choreography. For instance
in Fig. 4(b), the cumulative density of choreography
runs completing before 100 ms. improves from 0.5 to
0.9. However, this is traded-off with the cumulative
density of cost units < 500 reducing from 0.25 to
nearly 0.

Essentially, for each QoS domain, there may be “good”
and “bad” reconfigurations with respect to the current
one. For the overall choreography QoS, a configuration
that makes the ⊕ operator tend to the infimum

∧

of the
domain is “good”(e.g. lowest costing service); that which
drives it towards the supremum is “bad” (e.g. worst
case latency). Though these are generic observations
that may be violated in data-dependent choreographies
(that are bound to follow a message sequence pattern),
it provides basis for automated configuration analysis.
These tradeoffs can be combined with the approach
provided in Section V to automate the QoS optimal
selection.

0 50 100 150 200 250
0

0.5

1

Latency (milliseconds)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

Accuracy, Msg. Integity/Efficiency, Security, Data Quality (High−Low)

0 2 4 6 8 10 12 14 16
0

0.5

1

Throughput (invocations/minute)

C
um

ul
at

iv
e

D
en

si
ty

0 200 400 600 800 1000 1200
0

0.5

1

Cost (units)

Passenger Orchestration
Airport Orchestration
Check−in Choreography
Reconfigured Airport
Orchestration A
Reconfigured Check−in
Choreography A

(a) Runtime QoS changes due to Reconfiguration A

0 50 100 150 200 250
0

0.5

1

Latency (milliseconds)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

Accuracy, Msg. Integity/Efficiency, Security, Data Quality (High−Low)

0 2 4 6 8 10 12 14 16
0

0.5

1

Throughput (invocations/minute)

C
um

ul
at

iv
e

D
en

si
ty

0 200 400 600 800 1000 1200
0

0.5

1

Cost (units)

Passenger Orchestration
Airport Orchestration
Check−in Choreography
Reconfigured Airport
 Orchestration B
Reconfigured Check−in
Choreography B

(b) Runtime QoS changes due to Reconfiguration B

Figure 4. QoS due to Choreography Reconfigurations.

VII. Related Work

QoS issues in web services span multiple topics such as
optimal late-binding (discovery, selection, substitution)
and contract management (SLAs, negotiation, moni-
toring). In [13], Jaeger et al. provide a comprehensive
analysis of QoS composition with associated workflow
patterns. Such aggregation techniques are used by Alrifai
and Risse [17] and Zeng et al. [2] for optimal decomposi-
tion of global QoS constraints into local constraints. In
[16], the optimization of dynamic service compositions
are modeled as a multidimension-multichoice knapsack
problem (MMKP). The probabilistic contractual frame-
works introduced by Rosario et al. [4] has been used by
Kattepur et al. for both accelerated contract composition
[14] and negotiation [21] policies.
While QoS issues in composite services based on

centralized control (orchestrations) has received some
attention [1], the metrics relevant to choreographies are
still poorly understood. This is more complex due to
extensive data dependencies and message passing among
participants in choreographies. In [10], Mancioppi et al.
provide a structured overview of the possible metrics to
be incorporated. Xiangpeng et al. [22] provide a formal
analysis of integrating QoS into the language Chor and
provide composition techniques for latency and cost. In
[23], [20], stochastic models are used as an intermediate
to evaluate QoS/SLAs in choreographies. Automatic
triggers and strategies for QoS aware re-planning of
composite orchestrations are studied in [24], which may
prove promising for extension into choreographies. In
our paper, we provide an algebraic formulation based on
multi-dimensional probabilistic QoS models that may be
composed in the case of choreographies.

Adaptive and self-healing choreographies have been
studied with the survey by Leonardo et al. [12] providing
a systematic overview of model, measurement, agent and
formal methods driven techniques for adaptation. In [25],
runtime adaptation to dynamically changing resources
is studied, with optimal selection algorithms presented.
Both functional and QoS requirements are studied with
goal-modeling techniques combined with constraint pro-
gramming approaches in [26]. The MAP protocols in [6]
allow runtime distribution of the language to peers that
may be specified and executed. In [27], QoS analysis and
adaptation for realtime applications such as streaming
services are analyzed. In [15], Ma et al. consider large
compositional spaces for analysis of Pareto-optimal sets,
that satisfy QoS requirements of reconfigurable compo-
sitions.
Our work combines reconfigurable choreographies

along with QoS composition algebra to provide a frame-
work for evaluating configurations. We are able to handle
both orchestration and choreography QoS composition
within a unified framework. Building on the choreogra-
phy architectural model provided in [11], we extend the
functional specifications to integrate QoS increments.
Evaluation of improvements/deterioration in QoS do-
mains is further achieved through multi-objective anal-
ysis such as goal programming [19]. Such a framework
could prove critical to understand the effect of functional
changes (reconfiguration) and corresponding QoS com-
position in the case of service choreographies.

VIII. Conclusions

While QoS composition and resulting optimal late bind-
ing have received considerable attention in case of web
services orchestrations, this is still not well understood
for choreographies. The problem is punctuated by in-
tricate links with functionality, dynamic configurations
and multi-dimensional QoS metrics in choreographies.
In this paper, we firstly provide an algebra to compose
QoS metrics from choreographies that have links to func-
tional aspects. A corresponding framework is provided
to examine QoS increments within choreography specifi-
cations of the CHOReOS project. The metrics are then
used to analyze the effects of runtime reconfigurations on
the end-to-end QoS and consequent tradeoffs. This can
lead to optimal choreography configurations that may be
selected with goal programming methods, for instance.
Future work would involve automatic triggers : self-

adapting configurations could monitor deterioration or
goal deviations and trigger reconfiguration.

References

[1] J. O. Sullivan, D. Edmond, and A. T. Hofstede, “What’s in a
service? Towards accurate description of non-functional ser-
vice properties,” Distributed and Parallel Databases, vol. 12,
pp. 117–133, 2002.

[2] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “QoS-aware middleware
for web services composition,” IEEE Trans. on Software
Engineering, vol. 30, pp. 311–326, 2004.

[3] P. Bhoj, S. Singhal, and S. Chutani, “SLA management in
federated environments,”Computer Networks, vol. 35(1), pp.
5–24, 2001.

[4] S. Rosario, A. Benveniste, and C. Jard, “Flexible probabilistic
QoS management of transaction based web services orchestra-
tions,” in ICWS, 2009, pp. 107 –114.

[5] OASIS, “Web services business process execution language
version 2.0,”OASIS Web Services Business Process Execution
Language, Tech. Rep., 2007.

[6] A. Barker, C. D. Walton, and D. Robertson, “Choreographing
web services,” IEEE Trans. on Services Computing, vol. 2, pp.
152–166, 2009.

[7] S. A. White, “Process modeling notations and workflow pat-
terns,” IBM, Tech. Rep., 2009.

[8] W3C, “Web services choreography description language ver-
sion 1.0,”W3C working draft, Tech. Rep., 2004.

[9] G. Decker, O. Kopp, F. Leymann, and M. Weske,
“BPEL4Chor: Extending bpel for modeling choreographies,”
in ICWS, 2007.

[10] M. Mancioppi, M. Perepletchikov, C. Ryan, W.-J. van den
Heuvel, and M. P. Papazoglou, “Towards a quality model for
choreography,” in ICSOC, 2010.

[11] CHOReOS, “Deliverable D1.3: Initial architectural style for
CHOReOS choreographies,” Large Scale Choreographies for
the Future Internet, Tech. Rep., 2011.

[12] L. A. F. Leite, G. A. Oliva, G. M. Nogueira, M. A. Gerosa,
F. Kon, and D. S. Milojicic, “A systematic literature review
of service choreography adaptation,” Service Oriented Com-
puting and Applications, pp. 1–18, 2012.

[13] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “QoS aggre-
gation for web service composition using workflow patterns,”
in Intl. Enterprise Distributed Object Computing Conf., 2004.

[14] A. Kattepur, “Importance sampling of probabilistic contracts
in web services,” in ICSOC, 2011.

[15] H. Ma, F. Bastani, I.-L. Yen, and H. Mei, “QoS-driven service
composition with reconfigurable services,” IEEE Trans. on
Services Computing, vol. 6, no. 1, pp. 20–34, 2013.

[16] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for
web services selection with end-to-end QoS constraints,”ACM
Transactions on the Web, vol. 1, 2007.

[17] M. Alrifai and T. Risse, “Combining global optimization with
local selection for efficient QoS-aware service composition,” in
WWW Conf., 2009.

[18] A. Kattepur, A. Benveniste, and C. Jard, “Optimizing deci-
sions in web services orchestrations,” in ICSOC, 2011.

[19] D. F. Jones and M. Tamiz, Practical Goal Programming.
Springer Books, 2010.

[20] W. Wiesemann, R. Hochreiter, and D. Kuhn, “A stochastic
programming approach for QoS-aware service composition,”
in 8th Intl. Symp. on Cluster Computing and the Grid, 2008.

[21] A. Kattepur, A. Benveniste, and C. Jard, “Negotiation strate-
gies for probabilistic contracts in web services orchestrations,”
in ICWS, 2012.

[22] Z. Xiangpeng, C. Chao, Y. Hongli, and Q. Zongyan, “A
QoS view of web service choreography,” in Intl. Conf. on e-
Business Engineering, 2007.

[23] A. P. Diaz and D. M. Batista, “A methodology to define
QoS and SLA requirements in service choreographies,” in Intl.
Wksp. on Computer Aided Modeling and Design of Commu-
nication Links and Networks, 2012.

[24] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani,
“QoS-aware replanning of composite web services,” in ICWS,
2005.

[25] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, “Dynamic
configuration of resource-aware services,” in ICSE, 2004.

[26] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes,
“Using constraint programming to manage configurations in
self-adaptive systems,” IEEE Computer, vol. 12, pp. 48–55,
2012.

[27] F. Buccafurri, P. D. Meo, M. Fugini, R. Furnari, A. Goy,
G. Lax, P. Lops, S. Modafferi, B. Pernici, D. Redavid, G. Se-
meraro, and D. Ursino, “Analysis of QoS in cooperative ser-
vices for real time applications,”Data & Knowledge Engineer-
ing, vol. 67, pp. 463–484, 2008.

	Introduction
	QoS in Choreographies
	QoS Domains
	QoS Algebraic Composition

	QoS within Choreography Specifications
	QoS Management
	QoS Contracts
	Reconfiguration

	QoS Optimal Configurations
	Reconfigurable Choreography Example
	Example Description
	QoS Analysis.

	Related Work
	Conclusions
	References

