
HAL Id: hal-00842402
https://hal.inria.fr/hal-00842402

Submitted on 9 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming and Timing Analysis of Parallel Programs
on Multicores

Eugene Yip, Partha Roop, Morteza Biglari-Abhari, Alain Girault

To cite this version:
Eugene Yip, Partha Roop, Morteza Biglari-Abhari, Alain Girault. Programming and Timing Analysis
of Parallel Programs on Multicores. International Conference on Application of Concurrency to System
Design, ACSD’13, Jul 2013, Barcelona, Spain. pp.167–176. �hal-00842402�

https://hal.inria.fr/hal-00842402
https://hal.archives-ouvertes.fr

Programming and Timing Analysis of Parallel Programs on Multicores

Eugene Yip, Partha S Roop, Morteza Biglari-Abhari
Department of Electrical and Computer Engineering

University of Auckland
Auckland, New Zealand

eyip002@aucklanduni.ac.nz, {p.roop, m.abhari}@auckland.ac.nz

Alain Girault
INRIA

Grenoble, France
alain.girault@inria.fr

Abstract—Multicore processors provide better power-
performance trade-offs compared to single-core processors.
Consequently, they are rapidly penetrating market segments
which are both safety critical and hard real-time in nature.
However, designing time-predictable embedded applications
over multicores remains a considerable challenge. This paper
proposes the ForeC language for the deterministic parallel
programming of embedded applications on multicores. ForeC
extends C with a minimal set of constructs adopted from
synchronous languages. To guarantee the worst-case perfor-
mance of ForeC programs, we offer a very precise reachability-
based timing analyzer. To the best of our knowledge, this is
the first attempt at the efficient and deterministic parallel
programming of multicores using a synchronous C-variant.
Experimentation with large multicore programs revealed an
average over-estimation of only 2% for the computed worst-
case execution times (WCETs). By reducing our representation
of the programs state-space, we reduced the analysis time for
the largest program (with 43, 695 reachable states) by a factor
of 342, to only 7 seconds.

Keywords-parallel programming; synchronous languages;
WCET analysis

I. INTRODUCTION

Embedded systems have recently exploded in complexity
and functionality, motivating the use of high-performance
but low-power multicore processors. Consequently, mul-
ticores are penetrating many embedded market segments
including those with considerable safety concerns, such as
automotive engine control units (ECUs) [1]. These systems
have hard real-time constraints and a key requirement is the
need to always behave in a functionally-correct and time-
predictable manner [2].

C is the programming language of choice for embedded
systems. Multithreading libraries using the shared memory
model, like OpenMP [3] and Pthreads [4], are popular for
parallel programming. As highlighted in [5], such multi-
threading is inherently non-deterministic and requires the
programmer to manage shared memory. This makes the
understanding and debugging of parallel programs very
difficult and time consuming [6]. Such drawbacks are un-
desirable when programming safety-critical applications.

Synchronous languages [7] offer an alternate approach for
deterministic concurrency. All concurrent threads execute in
lock-step to the ticks of a global clock (hence the term global

tick). The synchrony hypothesis makes the simplifying as-
sumption that the program reacts instantaneously to the
changing environment. This abstraction separates the time
of the executing machine from the physical environment and
enables formal analysis [7]. Hence, synchronous languages
are widely used to program safety-critical applications.
However, synchronous programs are notoriously difficult to
parallelize [8]–[10] due to the need to resolve: (1) signal sta-
tuses, and (2) causality issues. Thus, concurrency is typically
compiled away to produce sequential code. The common ap-
proach for parallelizing synchronous programs is to automat-
ically parallelize an intermediate representation of the pro-
gram [8]–[11]. The techniques differ in the heuristics used
to partition the program to achieve sufficient parallelism.
SynDEx [12] also considers the cost of communication
when partitioning and allocating code to specific process-
ing elements. C-based lightweight multithreading libraries
with synchronous semantics, such as PRET-C [13] and
SC [14], are recent developments. They offer deterministic
concurrency but their semantics prescribes a sequential order
for executing concurrent threads, which is unsuitable for
multicore execution. Unlike these, ForeC, as proposed here,
supports a truly parallel synchronous semantics tailored for
multicore execution. Using the shared memory model [3],
threads communicate via shared variables, which eliminates
the need to resolve signal statuses. Thread-safe access to
shared variables is achieved by providing threads with local
copies of shared variables in each global tick. Thus, threads
execute in isolation as changes made by other threads cannot
be observed, which also simplifies the execution behavior.
After each global tick, the local copies are written back to the
shared memory, by first combining the copies of each shared
variable with a shared memory combinator (see Section III).
This behavior ensures that ForeC programs are causal and
deterministic [7] by construction.

To validate the synchrony hypothesis of a synchronous
program, the longest time needed to complete a global tick
has to be determined. This is known as the worst-case
reaction time (WCRT) analysis [15]. The techniques used
by existing approaches can be classified broadly as Max-
Plus algebra [15], model checking [13], reachability [16],
or Integer Linear Programming (ILP) [9], [17]. The time

Table I
APPROACHES TO WCRT ANALYSIS.

Approach Technique Time Complexity
Boldt et al. [15] Max-Plus Sum of thread states
Roop et al. [13] Model checking Product of thread states + bi-

nary search
Kuo et al. [16] Reachability Product of thread states
Ju et al. [9], [17] ILP NP-hard
Proposed Reachability Product of thread states

complexity for each approach is summarized in Table I.
In [15], the maximum WCRT of each thread is summed
together for the program’s WCRT. The technique is fast but
assumes that the worst-case paths of all threads will occur
in the same global tick, which usually leads to large over-
estimations. In [9], [17], an objective function, describing
the program’s execution costs, is maximized to determine the
WCRT. Solving ILP is known to be NP-complete. In [13], a
model checking based formulation was developed to take the
state-dependencies between threads into account for tighter
analysis. Subsequently, a similar formulation was developed
using ILP [17]. The model checking approach [13] requires
a binary search to find the program’s WCRT. In [16], the
binary search is avoided by computing the execution time of
all reachable global ticks and reporting the largest computed
time as the WCRT. This ensures reachability has a lower
complexity than model checking and ILP.

Apart from [9], all approaches are developed for single
core execution and, therefore, do not analyze the inter-core
interactions that exist for multicores. To the best of our
knowledge, only [9] is developed for multicore execution.
In [9], the program is sequentialized on each core and ILP
is used for timing analysis (see Table I). Instead, we propose
the timing analysis of parallel programs using reachability.
Our approach is significantly different from [16] because we
need to compute the execution time of multiple cores and
take complex inter-core dependencies and bus schedules into
account.

The main contributions of this paper are:

1) ForeC is the first known C-based synchronous lan-
guage for the deterministic parallel programming of
multicore applications. To the best of our knowledge,
ForeC excels compared to traditional synchronous
programs, such as Esterel [7], and associated parallel
execution because: (1) causality analysis is not needed,
(2) a new shared memory combinator provides thread-
safe access to shared memory, and (3) signal resolution
is not needed.

2) The proposed reachability-based timing analysis is
more efficient than the only other known approach [9]
for synchronous programs on multicores. Benchmark-
ing reveals that the proposed approach computes very
tight WCRTs in a fast and scalable manner, even when
programs are distributed over additional cores. This
demonstrates the efficacy of the proposed approach for

Thread

distribution

ForeC

source code
CCFG

Static

scheduling

Compiled

program

CCFG with

assembly

Architecture

model

Reachability
Computed

WCRT

Compilation

(Section IV)

Timing Analysis

(Section V)

Programming

(Section III)

Figure 1. Overview of the proposed framework.

Core 1 Core i
Inst Mem Inst Mem

Global Data Mem

Shared Bus (TDMA)

Data Mem Data Mem

Figure 2. The multicore architecture.

the design of safety-critical embedded systems using
multicore processors.

A. Overview

Fig. 1 provides an overview of the proposed parallel
programming and timing analysis framework, and the layout
of the paper. The architecture of the multicore processor that
the framework targets is outlined in Section II. The program-
mer begins by writing the parallel program in the ForeC
language, described in Section III. Using an intermediate
representation of the program, called Concurrent Control-
Flow Graph (CCFG), Section IV describes how the program
threads are distributed and scheduled over the available
cores. The proposed timing analysis using reachability is
presented in Section V and is evaluated in Section VII. The
paper is concluded in Section VIII.

II. ARCHITECTURE OF THE MULTICORE PROCESSOR

Fig. 2 illustrates the multicore architecture for execut-
ing ForeC programs, similar to existing predictable mul-
ticores [1], [18]. In this paper, we do not focus on the
processor micro-architecture or caches during the timing
analysis. Thus, we assume a homogeneous set of cores
with in-order pipelines free from timing anomalies [1]. Only
local (data and instruction) and global (data) memories are
used. The data coherence between the local copies of shared
variables is managed by the ForeC runtime support. A
shared bus, using Time Division Multiple Access (TDMA)
arbitration, connects the cores to the global data memory. For
experimentation, an existing single-core Xilinx MicroBlaze
simulator [19] was used. We extended the simulator to
be cycle-accurate, to support multiple cores, and a shared
TDMA bus, and to use the stated architectural assumptions.

III. THE FOREC LANGUAGE

ForeC is a C-based, multi-threaded, synchronous language
that enables the deterministic parallel programming of mul-
ticores with minimal extensions to C. A ForeC program

Table II
SUMMARY OF FOREC EXTENSIONS TO C.

Statement and Semantics
input i

Declares an input variable i, the value of which is updated by
the environment at the start of every global tick.
output o

Declares an output variable o, the value of which is emitted to
the environment at the end of every global tick.
shared s combine with c

Declares a shared variable s that is accessible by multiple
threads. In each global tick, threads are provided with a local copy
of the variable. At the end of each global tick, the modified copies
are combined into a single value with function c and then assigned
back to the shared variable.
pause

Pauses the execution until the next global tick.
par (f0, ..., fn)

Forks the functions f0 to fn to execute as parallel threads and
then waits until all the threads have terminated (joined back).
[weak] abort {b} when [immediate] (c)

Executes the body b when execution reaches the abort statement.
In subsequent global ticks, the condition c is checked before the
body is executed. If c is true, then the body is preempted. The weak
variant allows the body to execute one last time when preemption is
triggered. The immediate variant checks c when execution reaches
the abort statement.

executes in discrete steps governed by a global clock. In each
global tick, the input variables are sampled, the threads
are executed, and the output variables are emitted. The
semantics of the extensions are described in Table II. In the
design of safety-critical systems, the use of C is typically
restricted [20], [21] so as to ensure deterministic execution.
These restrictions concern the use of pointers, dynamic
memory allocation, recursion, unbounded loops, and expres-
sions with side-effects. Polyspace [22] and Parasoft [23] are
two examples of tools that can check the absence of such
constructs in C programs.

In ForeC, fork-join parallelism is captured by the par
statement and parallel threads can execute in any order. A
thread executes until it terminates or completes its local tick
by reaching a pause statement. The global tick is reached
when all threads have reached their local tick. A pause
acts as a state boundary by pausing the thread’s execution
until the next global tick. We illustrate the ForeC execution
semantics with the following example.

A. Motivating Example

Consider a robot that inspects hazardous tunnels for cracks
using a pair of cameras. The robot has a speed of one
meter/second and reports the total number of cracks found.
To ensure all sections of the tunnel are inspected, the pictures
must overlap and need to be taken and processed every 0.25
seconds. To complete these tasks within one global tick, the
robot’s WCRT cannot be longer than 0.25 seconds. We refer
to this example as the robot example.

Fig. 3 is the ForeC program for the robot example. Line 1
defines the functions used in the program. Lines 2 and 3
declares inputs from the pair of cameras, a data link and

1 # i n c l u d e <f u n c t i o n s . h>
2 input i n t camLef t [SIZE] , camRight [SIZE] ;
3 input i n t l i n k I n p u t , s t o p ;
4 output i n t l i n k O u t p u t , motorL , motorR ;
5 shared i n t t o t a l =0 combine with p l u s ;
6 void main (void) {
7 abort {
8 whi le (1) {
9 par (camL () , camR () , move () , l i n k ()) ;

10 }
11 } when immediate (s t o p ==1) ;
12 }
13 void camL (void) {
14 t o t a l = c r a c k s (camLef t) ; pause ;
15 }
16 void camR (void) {
17 t o t a l = c r a c k s (camRight) ; pause ;
18 }
19 void move (void) {
20 motorL=moveMotorL () ; motorR=moveMotorR () ;
21 pause ; p a t h P l a n n i n g () ;
22 }
23 void l i n k (void) {
24 par (l i n k I n () , l i n k O u t ()) ; pause ;
25 }
26 void l i n k I n (void) {
27 r e c e i v e L i n k I n p u t (l i n k I n p u t) ;
28 }
29 void l i n k O u t (void) {
30 l i n k O u t p u t = t o t a l ;
31 }
32 i n t p l u s (i n t copy1 , i n t copy2) {
33 re turn (copy1+copy2) ;
34 }

Figure 3. The ForeC source code for the inspection robot example.

stop button. Line 4 declares outputs for the number of
cracks found in each global tick, and to drive the robot’s
motors. Line 5 declares a shared variable to store the number
of cracks found (total). The main function defines the
program’s entry point (line 6). The functions camL (line 13)
and camR (line 16) analyze the pictures from each camera
for cracks. The function move (line 19) decides the robot’s
movement and path planning. The functions link (line 23),
linkIn (line 26), and linkOut (line 31) handle commu-
nication coming in and out of the robot.

At the program’s first global tick, the inputs are sampled
before main is executed. Execution reaches an abort
(line 7), which supports the preemption of its body (lines 8 -
10). Before the body is executed, the preemption condition
(line 11) is checked. If the condition is false, the body is
executed. Otherwise, the body is preempted and execution
jumps to line 12.

Line 9 forks the child threads camL, camR, move and
link to execute in parallel. The parent thread (main) is
suspended while it waits for its child threads to terminate.
As an example of nested parallelism, link forks (line 24)
two more child threads, linkIn and linkOut. The global
tick ends when all threads complete their respective local
ticks. Then, the outputs are emitted.

The threads camL, camR and linkOut communicate

via the shared variable total. Only shared variables
can be used for thread communication. That is, all non-
shared variables can only be accessed by one thread. Thread-
safe communication is ensured by providing threads with
local copies of shared variables at the start of their local
tick. During their local tick, threads only access their local
copies. Thus, all parallel accesses to shared variables are
mutually exclusive. This isolates the thread execution as
changes made in one thread cannot be observed by others.
On lines 14 and 17, new local values are assigned to total.
When the global tick ends, the modified local copies are
combined automatically by a shared memory combinator.
The combinator is a programmer defined commutative and
associative function that specifies the computation needed to
combine two local copies. To combine n-copies of a shared
variable v with a combine function c, the computation is
c(v1, c(v2, . . . c(vn−1, vn))). Line 32 is the combinator for
the shared variable total, with input parameters for two
local copies. The combined value is written back to total.

IV. PARALLEL EXECUTION

In this section, we describe the scheduling of ForeC
threads for parallel execution. The threads are scheduled
statically and non-preemptively over the available cores,
which results in one possible thread schedule for each global
tick. This simplifies timing analysis by avoiding the need
to analyze multiple thread schedules for each global tick.
Currently, the programmer provides the thread distribution
over the cores and the compiler defines an arbitrary thread
scheduling order for each core. The order is based on the
textual order of the threads in the par statements. For the
robot example, the programmer may define the following
thread distribution over two cores:

• Core 1: {main, camL, link, linkIn}
• Core 2: {camR, move, linkOut}

The following total order is used to decide the scheduling
order for threads on the same core: main, camL, camR,
move, link, linkIn, linkOut.

The distribution of program code is performed on an
intermediate representation, called Concurrent Control-Flow
Graph (CCFG), similar in spirit to the CCFG of [13]. The
robot example’s CCFG is shown in Fig. 4. The CCFG
is constructed by creating a node for each statement and
connecting them according to the program’s control-flow.
For reference, the nodes are labeled n followed by an integer.
A par statement is a pair of fork/join nodes (e.g., n3
and n16), with the child threads appearing between them.
An abort statement is a pair of abort nodes (e.g., n1
and n17) with a directed edge representing the scope. On
preemption, control jumps to the end of the abort scope
(n17). Using the programmer-defined thread distribution, the
compiler partitions the CCFG over the cores. To preserve
the execution semantics of par, the forking/joining of child
threads is synchronized among the participating cores. The

Fork

Join

Computation

Condition

Pause

Abort

Graph End

Graph Start

linkIn linkOut

camL link

movecamR

main

F
T

T

1

2

2

1

1

1

F

n1

n2

n3

n4

n5

n6

n7

n8

n9

n12 n13

n11

n14

n15

n16

n17

n10

Figure 4. The CCFG for the inspection robot example.

synchronization occurs over global variables, representing
thread execution states, by using (blocking) receive and
(non-blocking) send routines. When a thread completes its
local tick, by forking, terminating, or pausing, the thread
uses the send routine to send its new execution state to global
memory. A core uses the receive routine when it needs to
receive new thread execution states from the global memory.
Hence, the receive routine lets the core to wait for a parent
thread to fork, or for all child threads to terminate.

If an abort body contains threads that are distributed
over different cores, then the preemption behavior needs
to be preserved across those cores. Currently, we replicate
the abort checking on each participating core. As the abort
condition is evaluated in parallel, this technique requires the
abort conditions to be side-effect free. The abort checking
is performed before the participating threads are executed.
When a strong (resp. weak) preemption occurs, the threads
are terminated before (after) they are executed. Their exe-
cution states are then updated with a send routine.

To preserve the notion of a global tick, the cores synchro-
nize after executing their allocated threads. The compiler
chooses one core to perform the following housekeeping
tasks when the global tick ends: emitting outputs, combining
the shared variables, and sampling inputs. The compiler
generates an executable program for each core, containing
its partition of the CCFG and a light-weight static scheduler.
All synchronizations are implemented using global variables.

s

e

n5

10

0

(a) camL

s

e

n7

10

0

(b) camR

s

e

n9

15

20

(c) move

s

e

n15

20

0

(d) link

Figure 5. FSMs for threads camL, camR, move, link from the robot
example.

The next section describes our timing analysis approach for
validating the synchrony hypothesis.

V. STATIC WCRT ANALYSIS

WCRT analysis is needed to validate that the implemen-
tation of a synchronous program adheres to the synchrony
hypothesis. Such static analysis needs the model of the
underlying hardware architecture, such as the (1) processor
pipeline and micro-architecture, (2) underlying memory hi-
erarchy, and (3) buses or inter-connection networks used in
connecting the cores in a multicore system. In this work, we
have modeled the Microblaze-based multicore architecture
that was described in Section II. The analysis begins by
annotating the nodes of the CCFG (Fig. 4) with the assembly
instructions in each core’s executable. Using the model
of the multicore architecture, the execution time of each
instruction is computed. The CCFG is analyzed to find the
execution time needed to complete each global tick. The
longest such time is the program’s WCRT. The WCRT
analysis for multicores must consider: (1) the overlapping
of thread execution times from parallelism, (2) the inter-
core synchronizations, (3) the scheduling overheads, and (4)
the variable delays in accessing the shared bus. These four
factors must be considered simultaneously when computing
the WCRT to capture the parallel nature of execution. This
makes the timing analysis of multicores very challenging
compared to single cores. To the best of our knowledge, our
proposed timing analysis approach is the first to consider all
mentioned factors for synchronous programs. The approach
of [9] considers inter-core synchronization arising from
signal resolution, and the overlapping of execution times.
However, the variability in bus delay is not discussed, and
their approach does not require any scheduler to ensure the
correct execution of Esterel programs.

In Max-Plus [15], the WCRT of each thread is computed
and summed together for the program’s overall WCRT. The
WCRT of a thread is the longest time needed to complete a
local tick. Thus, Max-Plus makes the assumption that all
threads will execute their longest local tick in the same
global tick. This results in very efficient analysis but trades
off precision as the above assumption is not always true. For
complex programs, the imprecision can lead to large over-

n16
n2
n3

n4
n5

n6
n7

n8
n9

n11

n12 n13

n14
n15

n1
n2
n3

n4
n5

n6
n7

n8
n9

n11

n12 n13

n14
n15

n1
n17

n1

n17
n2

n16

n17
n2

state 1

Global Tick 1 Global Tick 2

n17

state 2

state 4

state 3

state 5

state 6

n10

n10

Figure 6. Illustration of reachability for the robot example.

estimations. We illustrate this observation with Fig. 5 and
use it to motivate our reachability approach.

Each sub-figure in Fig. 5 is a finite state machine (FSM)
representing one of main’s child threads (camL, camR,
move, and link) from the robot example. Each state in
an FSM corresponds to the start (s) or end (e) of the
thread body, or a pause in the thread (black circle with
its corresponding label from Fig. 4). Each edge corresponds
to a local tick and is annotated with its execution time on
the target architecture in clock cycles. The longest local tick
of each thread is in bold font. If the threads were statically
scheduled to execute sequentially on the same processor,
then Max-Plus would compute a maximum execution time of
10+10+20+20 = 60 clock cycles, assuming no scheduling
overheads or bus delays (addressed later in Section V-C).
However, threads in a synchronous program execute in lock-
step, relative to the global clock. Following this execution
semantics, the possible alignments [13] of the local ticks in
Fig. 5 are (camL = 10, camR = 10, move = 15, link =
20) and (camL = 0, camR = 0, move = 20, link = 0). The
WCRT of all threads never align together and the maximum
execution time should be 10 + 10 + 15 + 20 = 55 clock
cycles instead of 60. Thus, the tight WCRT computation of
a program must consider the alignment of local ticks. By
sacrificing some efficiency in the overall WCRT analysis,
much higher precision can be gained. In the following, we
describe the use of reachability to explore the local ticks
alignments.

A. Reachability

The intuition for using reachability is based on the ob-
servation that threads in a synchronous program execute
in lock-step, relative to the global clock. A combination
(alignment) of local ticks is executed in each global tick,
resulting in a new program state. To find all the global ticks
with feasible local tick alignments, the program’s CCFG is
traversed according to the ForeC semantics.

Fig. 6 is a graph showing all the reachable global ticks

73

Core 1

Core 2

clock

cycles

n1 n2 n3

TDMA Core 1 Core 2 Core 1 Core 2 Core 1 Core 2 Core 1 Core 2

sf
1

105 15 20 25 30 35 40

rf
1

n4 n5 lt
1

cs
3

n11 sf
2

cs
5

n12 lt
4

rj
1

Core 1 Core 2

45 50

Core 1 Core 2

55 60

rf
2

cs
2

n6 n7 lt
2

cs
4

n
3
4n8 n9 lt

3
rf

3
cs

6

n
4
1 lt

5

rj
2

n13

Core 1 Core 2

65 70

Core 1

75

cs
7

n14 n15 g
t1

cs
1

camR move linkOut

main camL link linkIn link

End of global tick

Figure 7. Computing the execution time of state 3 from Fig. 6 for the robot example.

for the robot example. Each state in the figure is a unique
alignment of local ticks, annotated with the traversed CCFG
nodes. An edge connects a state to its next reachable state(s).
Reachability begins from the CCFG’s start node (n1) using
ForeC execution semantics. Whenever an abort (n1) or
condition node (n2) is reached, the state is duplicated to
explore each outgoing edge. Hence, a state only explores
a single execution path through each thread. States 1 and
2 are the result of branching from the abort and condition
nodes. Whenever a fork node (n3) is reached, each child
thread is traversed. For state 3, the traversal of each child
thread ends at their pauses (n5, n7, n9, n15). For the second
global tick, the program can only proceed from state 3.
Before continuing to traverse the child threads, the enclosing
abort is checked. On preemption, n17 is reached (state 4).
Otherwise, the join node (n16) is reached and the traversal
of main is resumed (states 5 and 6). Note that state 6 ends
at the same pauses as state 3 (n5, n7, n9, n15). Hence, we
ignore the successors of state 6 as they would be the same as
state 3’s. The traversal of the CCFG is guaranteed to reach a
fix-point because the number of nodes in the CCFG is finite
and previously visited states are ignored. This ensures the
termination of reachability.

B. Computing the Reaction Time
The execution time of each program state can be com-

puted during reachability because the CCFG is traversed
using ForeC semantics and the thread scheduling is statically
known. Fig. 7 is a timeline showing how the execution
time of state 3, from Fig. 6, is computed. The computation
starts from the left of the timeline. The computed execution
time for Cores 1 and 2 are tracked separately by their own
integer counter, initially set to 0. This allows us to handle
thread execution times that overlap due to parallel execution.
As threads are traversed, the counters are incremented by
the computed execution times of their allocated threads,
scheduling overheads, TDMA bus delays, and inter-core
synchronization costs. Threads in the CCFG are traversed in
the total order defined for static scheduling to preserve the
scheduling order on each core. Thus, we compute the execu-
tion time of main, followed by camL, camR, and so forth.
Each core’s execution times are shown in Fig. 7 as a row
of blocks annotated with the executed CCFG nodes (from
Fig. 4) or scheduling overheads (listed in Table III). The
black blocks represent bus delays and the patterned blocks

Table III
TYPES OF SCHEDULING OVERHEADS.

Type Description Type Description
sf Send a fork. cs Context-switch.
rf Receive a fork. lt End the local tick.
rj Receive a join. gt End the global tick.

represent inter-core synchronization costs. The remainder of
this section describes how the scheduling overheads, TDMA
bus delays, and inter-core synchronizations are resolved
during timing analysis.

C. Scheduling Overhead, Bus Delay, and Synchronization

For each type of scheduling overhead (Table III), its
execution time is computed by analyzing the assembly
instructions and control-flow of the scheduling code. The
use of non-preemptive thread scheduling means that the
overheads only occur between local ticks. For example, in
Fig. 7, main’s execution time is computed first and assigned
to core 1. Since main completed its local tick by forking, the
overhead for synchronizing the fork across the participating
cores needs to be computed. For core 1, the overhead is the
execution time of the (non-blocking) send routine, labeled
sf1 in Fig. 7. However, the send routine requires access to
global memory which must go through the shared TDMA
bus. The TDMA bus allocates fixed-length time slots to each
core for accessing the bus. The slots are statically scheduled
in a round-robin manner, called a bus schedule. In Fig. 7, the
row labeled TDMA shows the bus schedule for cores 1 and 2
repeated over time. Each slot is 5 clock cycles long. Arrows
between the scheduling overheads and bus schedule indicate
read/write accesses to global memory. If an access occurs
within the core’s slot, then the access is granted immediately.
If the access does not finish within the core’s remaining slot
time, then the access is aborted and retried at the core’s next
slot. If the access occurs outside of the core’s slot, then the
access is delayed until the core’s next slot. The bus delays
need to be computed precisely for tight WCRT analysis. The
starting times of each slot in the TDMA bus schedule can
be modelled by the following recurrence relation:

Si
n = Si−1

n +D; S0
n = In (1)

where Si
n is the starting time of core n’s slot in the i-th

repetition of the TDMA bus schedule, D is the duration of
the bus schedule, and In is the initial start time of core n’s

slot. For Fig. 7, the bus schedule is 10 clock cycles long
and core 1 and 2’s slot starts from 0 and 5 clock cycles,
respectively. Using equation 1, core 1’s slots start from 0,
10, 20, . . . clock cycles. The bus delays for core 1’s accesses
can be computed from the slot start times by taking into
account each slot is 5 clock cycles long.

We continue with the computation of the synchronization
overheads for main’s fork. The send routine sf1 in Fig. 7
completes without any bus delay. For core 2, the overhead
is the execution time of the (blocking) receive routine. The
routine is delayed until core 2’s TDMA slot is scheduled
because it accesses global memory. The bus delay is shown
as a black block. The routine prepares to block and this
initial overhead is computed, labeled rf1 in Fig. 7. The
blocking can only finish after sf1 has sent the fork. Thus,
we advance core 2’s execution time to core 1’s execution
time computed so far (11 clock cycles). Note that, core 2’s
execution time would not be advanced if it was greater than
core 1’s. The routine stops blocking the next time it accesses
the global memory to receive the fork. This final overhead
is computed and labeled rf2 in Fig. 7. The patterned block
between rf1 and rf2 is the inter-core synchronization time.

The traversal of the CCFG continues for the child threads
camL, camR, move, followed by link. For each thread,
the context-switching overhead is computed first (labeled,
for example, cs1 in Fig. 7). For camL, camR, and move, the
overhead also includes the cost to copy the shared variable
total, which requires global memory access. Next, the
execution time of the thread’s local tick is computed. Then,
we compute the overhead for updating the thread’s execution
state and, if applicable, the overhead for writing its modified
copy of total to global memory. This overhead is labeled,
for example, lt1 in Fig. 7. Since link completes its local
tick by forking, the synchronization overhead for cores 1
and 2 are computed (labeled sf2 and rf3). The traversal
of the CCFG continues for the child thread linkIn and
then linkOut. After completing these traversals, we need
to compute the synchronization overhead for joining the
child threads back to its parent, link. As send and receive
routines are used for synchronization, we follow the same
approach used to compute the synchronization overhead for
a fork. In Fig. 7, rj1 is the initial overhead to block for
linkOut’s execution state. The patterned block after rj1 is
core 1’s inter-core synchronization time and rj2 is the final
overhead to stop blocking.

When all the threads in the program state have been tra-
versed, the overhead for ending the global tick is computed.
The overhead is the execution time needed to perform the
housekeeping tasks and it is assigned to core 1, the nomi-
nated core (labeled gt1 in Fig. 7). Finally, the execution time
of the global tick is computed as max(Core 1, Core 2) =
73 clock cycles.

cost = 1

cost = 4

cost = 3

cost = 1

(a)

cost
= 1 + 3
= 4

cost
= 1 + 4 + 1
= 6

(b)

cost = 6

(c)

Figure 8. CCFG optimizations. (a) The original CCFG, (b) merging of
computation and condition nodes, and (c) merging of edges.

D. Time Complexity

The time complexity of reachability is equal to the
program’s total state-space. Let ti denote the number of
reachable pauses in thread i. Then, the program’s total state-
space is the product of the reachable pauses of each thread,
or t1× . . .× tn for n number of threads. The complexity of
computing the synchronization costs is O(c), where c is the
number of cores. The complexity of computing the context-
switching costs and the sending of thread execution state is
constant. The complexity of computing the cost to copy the
shared variables for each local tick is O(s), where s is the
number of shared variables. The complexity of computing
the cost to complete the housekeeping tasks at the end of the
global tick is also O(s). The complexity of computing the
TDMA bus delays is constant. Therefore, the overall time
complexity of the approach is O(t1 × . . .× tn × s× c).

E. Optimizations

Our reachability approach (Section V-A) does not use
value analysis to prune away infeasible paths arising from
conditional branches. Thus, reachability explores a superset
of all feasible global ticks. However, this allows us to reduce
the size and complexity of the CCFG [16] to improve the
performance of reachability without losing precision. We
illustrate two optimizations on the CCFG sub-graph shown
in Fig. 8a. The cost to execute a node is placed on its
incoming edge.

1) Merging Computation and Condition Nodes: This
reduces the number of nodes that have to be traversed in
the CCFG. We take an outgoing edge from a computation
or condition node and merge it with the outgoing edges of its
destination node. The cost on the outgoing edge is added to
the destination edges. Applying this optimization to Fig. 8a
produces Fig. 8b.

2) Merging Edges: This reduces the program’s reachable
state-space by reducing the number of paths in the CCFG.
When multiple edges exist between two nodes (Fig 8b),
reachability explores all edges separately. We observe that
the state containing the edge with the highest cost always

linkIn linkOutcamL

link

move

camR

main

1

2

2

1

n3

n16

10

20

20

10

20

10

10

10 10

n11

n14

Figure 9. Simplified CCFG of Fig. 4 for Max-Plus.

has the highest execution time. Thus, only the edge with the
highest cost is kept (Fig. 8c).

VI. MAX-PLUS FOR MULTICORE EXECUTION

The existing Max-Plus approach [15] only targets the
single-core execution of synchronous programs. To allow for
a comparison between Max-Plus and Reachability, we mod-
ify the Max-Plus approach to target multicores by adding
support for the computation of the fork/join, inter-core
synchronization costs. We start by computing the WCRT
of each individual thread and then simplifying the threads
in the CCFG into single edges annotated with their WCRT.
Applying this simplification to Fig. 4 produces Fig. 9. The
simplified CCFG has only one reachable global tick because
each thread is an instantaneous path. For the parent threads
(main and link), their computed WCRT appears twice on
the incoming and outgoing edges of the fork and join nodes,
respectively. This is needed to consider the possibility that
their child threads could fork or join at the start or end of a
local tick. Using the simplified CCFG, the program’s WCRT
is computed according to Sections V-B and V-C.

VII. RESULTS

In this section, we compare the precision and performance
of the proposed Reachability approach (Section V-A) against
the Max-Plus approach (Section VI) for timing analysis.
We implemented a C++ timing analysis tool that targets
programs compiled for execution on the multicore simulator,
presented in Section II. The simulator had the following
memory configuration. Each core had 16KB of local data
and instruction memory with 1 cycle access time. The global
memory was 32KB in size with 5 cycle access time. The
shared TDMA bus had a fixed-length time slot of 5 cycles for
each core. Thus, the TDMA bus schedule was 5×(number
of cores) cycles long.

Table IV
BENCHMARK PROGRAMS.

Program Lines Threads Levels
802.11a 2147 26 (10) 2

FmRadio 808 13 (4) 1
Fly by Wire 204 9 (7) 2

Life 1020 11 (8) 2
Matrix 232 9 (8) 1

We chose moderate to large sized ForeC programs with
varying levels of parallelism for benchmarking. In Table IV,
the first and second column gives the name of each program
and the number of lines of ForeC source code. The third
column gives the total number of threads in the program. The
maximum number of threads that can be forked in parallel
is given in brackets. The fourth column gives the deepest
level of thread nesting. 802.11a and FmRadio are large
signal processing applications taken from [24]. The original
C programs were modified to ForeC programs, suitable for
multicore execution. Both programs contain complex control
and data-dominated computations and operate on large data
sets in global memory. 802.11a is the largest program and
its threads have unbalanced workloads. Fly by Wire is
based on the PapaBench [25] and chosen for its control-
dominated computations and threads with unbalanced work-
loads. Lastly, Life and Matrix, were chosen for their
data-dominated computation of matrices.

We analyzed each program using Reachability and Max-
Plus, and recorded the computed WCRTs. The programs
were distributed up to their maximum number of parallel
threads and the analysis was repeated for each possible
distribution. The timing analyzer produced a timing trace
for the WCRT, which was used to (manually) refine the
thread distributions. To evaluate the tightness of the com-
puted WCRTs, we executed the programs on the multicore
simulator (Section II) for one million global ticks or until
the program terminated. The timing analyzer also reported
the program state with the computed WCRT. Test vectors
were generated to elicit this program state by studying the
program’s control-flow. The simulator reported the execution
time of each global tick and the longest was taken as the
observed WCRT. All experiments were performed on a 2.20
GHz Intel Core 2 Duo computer with 3GB RAM, with the
Linux kernel 2.6.38.

We begin by comparing the observed and computed
WCRTs of the programs (in clock cycles), plotted as bar
graphs in Fig. 10. Apart from Matrix, Reachability com-
putes much tighter WCRTs than Max-Plus, even when the
programs are executed on one core. Max-Plus has large over-
estimations because the assumption that all thread WCRTs
occur in the same global tick is not valid. However, the
assumption is valid for Matrix because it completes its
execution in one global tick. Hence, Max-Plus computes
a tight WCRT for Matrix. For Max-Plus, the amount
of over-estimation depends on the program’s structure and

0

50,000

100,000

150,000

200,000

1 2 3 4 5 6 7 8 9 10
Cores

802.11a

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 2 3 4 5 6 7

Cores

Fly by Wire

020,00040,00060,00080,000100,000120,000140,000160,000180,000200,000

1 4 7 10

Observed

Reachability

MaxPlus

Key

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1 2 3 4

Cores

FmRadio

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 3 4 5 6 7 8

Cores

Matrix

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1 2 3 4 5 6 7 8

Cores

Life

Figure 10. WCRT results for the benchmark programs in clock cycles.

R

M

0

500

1,000

1,500

2,000

2,500

1 2 3 4 5 6 7 8 9 10

A
n

a
ly

si
s

T
im

e
 (

se
c
o

n
d

s)

Cores

(a) Reachability and Max-Plus without
optimizations.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
n

a
ly

si
s

T
im

e
(s

ec
o

n
d

s)

Cores

 Merge

 Merge-b

(b) Reachability with optimizations.

Figure 11. Analysis times for 802.11a.

thread distribution. For example, the WCRTs of sequentially
executed threads get summed together. Sequential execution
can result from control-flow dependencies, such as the
sequencing or nesting of par statements. Threads allocated
to the same core will also execute sequentially. Also, the
parent thread’s WCRT is summed again after each join
for a sound WCRT computation. Such program structure
contributes towards the high over-estimations for FmRadio
and Life. For Reachability and Max-Plus, the inter-core
synchronization time is over-estimated by assuming the
worst-case scenario. The worst-case is when the receive
routine reads from the global variable just before it is
updated by the send routine.

For 802.11a, Fig. 11a plots the analysis time for Reach-
ability (R) and Max-Plus (M) without CCFG optimizations.
Reachability has much higher analysis times because the
analysis complexity (Section V-D) is much higher than
Max-Plus. Fig. 11b plots the analysis time for Reachability
with CCFG optimizations (Section V-E). Merge denotes
the merging of CCFG nodes, and Merge-b denotes the
merging of CCFG nodes and edges. The average speed up in
analysis time was a factor of 9.34 for R-merge and a factor
of 342 for Merge-b. For Merge-b, the maximum analysis
time was only 6.93 seconds. This dramatic speed up is
due to the reduction in the program’s reachable state-space
(Section V-E2). Table V gives the number of reachable states
for the programs, with (Merge, Merge-b) and without (None)
the optimizations. The slow increase in analysis time for

Table V
REACHABLE PROGRAM STATES.

Program None Merge Merge-b
802.11a 43,695 43,695 515

FmRadio 4,296 4,296 36
Fly by Wire 50,032 50,032 1,032

Life 2,053 2,053 1,029
Matrix 1 1 1

Merge-b demonstrates its scalability over increasing number
of cores.

The observed WCRTs in Fig. 10 show that the programs
benefit from multicore execution. Matrix had the greatest
speedup of 5.94 times on 8 cores. Although its 8 parallel
threads are symmetrical, they cannot be distributed evenly
over 5 to 7 cores. Thus, some cores are always allocated with
2 threads and the WCRT cannot improve. Fly by Wire
had the least speed up of 2.12 times on 4 cores. This was
because the thread workloads could not be balanced over
the cores, which prevented the full utilization of the cores.
For 802.11a, its WCRT at 5 cores corresponded to the
execution time of one thread which was already allocated
to its own core. Thus, the WCRT could not be improved
by distributing the remaining threads. The WCRT increases
after 5 cores because of the increasing scheduling overheads
and cost of accessing global memory. These costs reduce the
benefit of multicore execution.

Overall, the results show that Reachability computes far
tighter WCRTs than Max-Plus. Reachability with CCFG
optimizations demonstrated a large reduction in analysis

time without trading-off precision. In addition, our imple-
mentation of the Reachability approach provides a timing
trace for the program’s WCRT. This feedback allows for
an effective approach to design space exploration. The effi-
ciency of the timing analysis enables it to be used early on in
the exploration. The speed up in WCRTs also demonstrates
ForeC’s ability to take advantage of multicore execution.
The only other known approach to the timing analysis of
synchronous programs over multicores is [9]. Unfortunately,
we cannot compare with [9] as their results are only for a
four-core system with no precision results reported by them.

VIII. CONCLUSIONS

The ForeC language and associated timing analysis are
presented to address the need for a predictable design
framework over embedded multicores. ForeC augments the
popular C-language with a small set of synchronous con-
structs. Determinism and parallelism are key properties
of ForeC that aids in simplifying the understanding and
debugging of parallel programs. A static timing analysis
framework was presented for guaranteeing the worst-case
performance of ForeC programs. Through benchmarking, we
demonstrated the precision, scalability and efficiency of the
analysis. For future work, we plan to incorporate instruction
cache analysis, prune more infeasible paths by using value
analysis, and use heuristics to decide thread distributions that
best reduce the WCRT.

REFERENCES

[1] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Bur-
guiere, J. Reineke, B. Triquet, and R. Wilhelm, “Predictability
Considerations in the Design of Multi-Core Embedded Sys-
tems,” in Proceedings of Embedded Real Time Software and
Systems, 2010, pp. 36 – 42.

[2] M. Paolieri and R. Mariani, “Towards Functional-Safe
Timing-Dependable Real-Time Architectures,” in On-Line
Testing Symposium, 2011 IEEE 17th International, 2011, pp.
31 – 36.

[3] OpenMP Architecture Review Board, “OpenMP,”
http://openmp.org/wp/.

[4] B. Barney, “POSIX Thread Programming,”
https://computing.llnl.gov/tutorials/pthreads/.

[5] E. A. Lee, “The Problem with Threads,” Computer, vol. 39,
no. 5, pp. 33 – 42, 2006.

[6] C. E. McDowell and D. P. Helmbold, “Debugging Concurrent
Programs,” ACM Comput. Surv., vol. 21, no. 4, pp. 593 – 622,
Dec. 1989.

[7] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L.
Guernic, and R. de Simone, “The Synchronous Languages 12
Years Later,” Proceedings of the IEEE, vol. 91, no. 1, pp. 64
– 83, 2003.

[8] A. Girault, “A Survey of Automatic Distribution Method for
Synchronous Programs,” in International Workshop on Syn-
chronous Languages, Applications and Programs, SLAP’05,
ser. ENTCS, F. Maraninchi, M. Pouzet, and V. Roy, Eds.,
2005.

[9] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty,
“Timing Analysis of Esterel Programs on General-Purpose
Multiprocessors,” in Proceedings of the 47th Design Automa-
tion Conference, Anaheim, California, 2010, pp. 48 – 51.

[10] S. Yuan, L. H. Yoong, and P. S. Roop, “Compiling Esterel for
Multi-core Execution,” in Digital System Design (DSD), 2011
14th Euromicro Conference on, Oulu, Finland, Sep. 2011, pp.
727 – 735.

[11] D. Baudisch, J. Brandt, and K. Schneider, “Multithreaded
Code from Synchronous Programs: Extracting Independent
Threads for OpenMP,” in Design, Automation and Test in
Europe (DATE), Dresden, Germany, 2010, pp. 949 – 952.

[12] D. Potop-Butucaru, A. Azim, and S. Fischmeister,
“Semantics-Preserving Implementation of Synchronous
Specifications Over Dynamic TDMA Distributed
Architectures,” in International Conference on Embedded
Software (EMSOFT). ACM, Nov. 2010, pp. 199 – 208.

[13] P. S. Roop, S. Andalam, R. von Hanxleden, S. Yuan, and
C. Traulsen, “Tight WCRT Analysis of Synchronous C Pro-
grams,” in Proceedings of the 2009 international conference
on Compilers, architecture, and synthesis for embedded sys-
tems, Grenoble, France, 2009, pp. 205 – 214.

[14] R. von Hanxleden, “SyncCharts in C - A Proposal for
Light-Weight, Deterministic Concurrency,” in Proceedings of
the International Conference on Embedded Software (EM-
SOFT’09), Grenoble, France, Oct. 2009, pp. 225 – 234.

[15] M. Boldt, C. Traulsen, and R. von Hanxleden, “Worst Case
Reaction Time Analysis of Concurrent Reactive Programs,”
Electronic Notes in Theoretical Computer Science, vol. 203,
no. 4, 2008.

[16] M. Kuo, R. Sinha, and P. Roop, “Efficient WCRT Analysis
of Synchronous Programs using Reachability,” in Design
Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE,
San Diego, USA, 2011, pp. 480 – 485.

[17] L. Ju, B. K. Huynh, S. Chakraborty, and A. Roychoudhury,
“Context-Sensitive Timing Analysis of Esterel Programs,”
in Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE, San Francisco, USA, 2009, pp. 870 – 873.

[18] M. Schoeberl, “Time-Predictable Computer Architecture,”
EURASIP J. Embedded Syst., vol. 2009, pp. 2:1–2:17, 2009.

[19] J. Whitham, “Scratchpad Memory Management Unit,” 2012,
http://www.jwhitham.org/c/smmu.html.

[20] G. Gebhard, C. Cullmann, and R. Heckmann, “Software
Structure and WCET Predictability,” in Workshop on Bring-
ing Theory to Practice: Predictability and Performance in
Embedded Systems (PPES), Grenoble, France, 2011, pp. 1 –
10.

[21] G. J. Holzmann, “The Power of 10: Rules for Developing
Safety-Critical Code,” IEEE Computer, vol. 39, no. 6, pp. 95
– 97, 2006.

[22] Polyspace, http://www.mathworks.com/products/polyspace/.
[23] Parasoft, http://www.parasoft.com.
[24] A. Pop and A. Cohen, “A Stream-Computing Extension to

OpenMP,” in Proceedings of the 6th International Confer-
ence on High Performance and Embedded Architectures and
Compilers, Heraklion, Greece, 2011, pp. 5 – 14.

[25] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. D.
Michiel, “PapaBench: A Free Real-Time Benchmark,” in
6th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, Dresden, Germany, 2006.

