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Abstract: A multi-phase optimization problem in terms of consumption of an electric vehicle involved
in the European Shell Eco-marathon race is formulated. An open-loop optimal driving strategy is
derived. Next, a time-varying Model Predictive real-time controller is developed to track the optimal
solution and to achieve the minimum consumption. The stability and the convergence of the time-varying
Model Predictive controller is proved. The convergence is guaranteed despite the variation of the MPC
constraints in time. An example emulating an actual race illustrates the effectiveness of the approach.

1. INTRODUCTION

With the aim of promoting the research and innovation around
the solution of the low consumption problem and the reduc-
tion of harmful emissions by the use of alternative sources
of energy, the EcoMotionTeam of the École Supérieure des
Sciences et Technologies de l’Ingénieur de Nancy (ESSTIN),
has participated in the European Shell Eco-Marathon race since
the year 2000. Over 200 teams, from high schools and univer-
sities coming from all over Europe, participate in this academic
competition that involves ecological and economical vehicles.
The goal of this contest is to drive a fixed number of kilometres
in a limited range of time and with the lower consumption.
Several categories are distinguished according to the energy
source: fuel cell (hydrogen), battery, solar energy.

In the field of transport, the research of energy efficiency
has been carried out for few decades in the industry (diesel-
electric locomotives). Achieving a low consumption requires
three central works. First, it must be obtained a valuable model
of the vehicle. Secondly, and of special interest, is the problem
of how using different energy sources, if any, so that the energy
efficiency can be maximized and/or how the vehicle must be
driven so that the minimum quantity of fuel is used, the real
time implementation constraints being taken into account. This
is the driving strategy Sciarretta and Guzzella (2007); Santin
(2007); Bordons et al. (2010). The reference driving trajectory
must be derived in terms of expected position and velocity all
along the circuit. Both tasks can be performed off-line. Finally,
a powerful tracking strategy must be designed and implemented
so that it can works in real-time Sciarretta and Guzzella (2007);
Manrique et al. (2012).
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Initially, the driving strategy proposed by the EcoMotionTeam
was so far a stop-and-go one, that merely reduced to manually
turn on or off the engine by the pilot according to whether the
vehicle was going up or down, or to drive around an average
value, the efficiency of the converter/motor being better when
working at full regime.

The objective of this paper is to design a control law which
guarantees low energy consumption and satisfies the constraints
inherent to both the dynamics and the path. The problem
of finding the control law is formulated as two successive
optimization problems, where the dynamics of the vehicle and
the conditions of the race, such as the maximum final time
to complete the task and the road shape (total length, slope,
curves), are the main constraints to take into account.

An optimal reference driving strategy is first designed for the
nonlinear dynamics. The main issue for achieving this purpose
is that the related optimal control is given by a solution of a non-
convex optimization problem in the continuous-time domain.
Such a problem cannot be solved on-line, but it should be com-
puted off-line using the information on the road path, the system
dynamics and the relation between the energy consumption and
the system variables. The solution of the optimal control prob-
lem results in an open-loop control law that would not be able to
compensate the unavoidable model mismatches, disturbances,
etc. Therefore, as a second step, the problem of tracking is
solved. The knowledge of the current state, available in real-
time, is used to compensate such perturbations by means of an
additional closed-loop control. Additionally, as will be shown
in section 4.1, the formulation of the tracking task implies time-
varying input constraints that must be properly included in the
loop without compromising the performance of the controller.
As it turns out, Model Predictive Control (MPC) is not only
known to have an appealing ability to ensure robustness despite
the uncertainties in the model Bordons et al. (2010); Koot et al.
(2005), but also allow us to include the time-varying constraints
properly in the loop. Hence, this is the control we will consider
here for achieving the tracking.



Fig. 1. The Vir’Volt prototype in the Shell Eco-Marathon 2011.

This paper is organized as follows. In Section 2, the dynamics
of the low consumption electric vehicle of the EcoMotionTeam
named Vir’Volt is briefly presented. In Section 3, the low con-
sumption problem is formulated as a multi-phase optimization
problem in terms of the characteristics of the path profile. In
Section 4, the time-varying MPC algorithm that will achieve
the tracking of the driving strategy is detailed and a study
of the stability and the convergence is carried out. Finally, in
Section 5, an example emulating an actual race is presented
to illustrate the computation of the optimal solution and the
tracking performed by the controller. Section 6 is devoted to
a conclusion and sketches future works.

2. THE LOW CONSUMPTION ELECTRIC VEHICLE

The EcoMotionTeam has developed successive vehicles over
the past 12 years. The prototype named Vir’Volt is the fifth
generation. This prototype, shown in Fig. 1, has been ranked in
2011 2nd in the Plug-in (battery) category among 12 others ve-
hicles and 7th among the 100 participants of the European com-
petition with a result of 532km/kWh (equivalent to 4732km
with one litre of fuel). The prototype is a three wheels vehicle
that can reach the speed of 35km/h, the direction is controlled
by the front wheel and the propulsion by one of the two rear
wheels. The power-train configuration motor-torque coupler-
wheel, is composed by a Kypom 22.2V battery that feeds a DC
Maxon 200Watt motor which develops 0,4Nm. The torque of
the motor is transmitted to one of the rear wheels by a torque
coupler. The total weight of the car is 40kg, the pilot needs to
weight at least 50kg according to the Shell Eco-Marathon rules.
Thus, the total mass of the vehicle is 90kg.

If one assumes that the path profile has no elevation (flat path)
or that the effect of the slope on the dynamics is negligible, then
the dynamics of the vehicle can be described by the following
nonlinear state-space dynamics involving the mass m[kg] of the
vehicle and its acceleration dx2(t)

dt [m/s2] Guzzella and Sciarretta
(2005):

ẋ1(t) = x2(t),

ẋ2(t) =
u(t)Cmot +(1−u(t))Cmin−Cpivot

mrw
−Nrg− 1

2
ρCxS

m
x2(t)2,

(1)

with x1(t) the position in [m] and x2[m/s] the velocity (in
magnitude) of the vehicle. Cmot [Nm] is the torque obtained over
the wheel due to the motor and after the torque coupler. Instead,
if the engine is not working, a torque of Cmin[Nm] is obtained.
Cmot is assumed to be constant since the maximum torque of
the motor does not significantly change in the range of low
velocities in consideration. Since in the electric motor the motor
current is proportional to the motor torque, the input u(t)∈ [0,1]
is introduced, where u(t) is the duty cycle of the driving period
during which the engine is on, and (1− u(t)) is the portion of
the period during which the motor is off. Therefore u(t)Cmot +
(1−u(t))Cmin is the average torque over the wheel. Cpivot [Nm]
is the bearing resistance in the connecting rod of the wheels,
and rw[m] is the radius of the wheel. The frontal area S[m2]

of the vehicle, the aerodynamic drag coefficient Cx and the air
density ρ[kg/m3], represent the aerodynamic frictions. Nr is the
rolling resistance and g[m/s2] is the gravitation acceleration.
The rotational inertias present in the power-train, such as the
rotor inertia, are neglected by being smaller than the vehicle
mass. For more details on the dynamics of the Vir’Volt vehicle,
the reader should refer to Manrique et al. (2012).

3. OPEN-LOOP OPTIMAL NONLINEAR CONTROL

In this section, we consider the off-line computation of the
reference driving strategy which must achieve the minimization
of the energy consumption despite some constraints due to
the dynamics and to the race path. During a race, the road
profile (slope, curves, etc.) and the constraints in terms of
maximum velocity allowed at each curve, maximum time of
the race and total number of kilometres, are the main factors
to be considered. For a prescribed circuit, the driving strategy
which achieves minimal consumption is defined by the triplet
(x∗1(t),x

∗
2(t),u

∗(t)) where x∗2(t) corresponds to the required
velocity assigned to the position x∗1(t) in the circuit at time t
and u∗(t) is the required input to achieve x∗1(t) and x∗2(t).

It turns out that, since the current of the battery is proportional
to the torque of the motor and this last one can be written
in terms of the input u(t) as u(t)Cmot , then the minimum
consumption is achieved if the minimum control signal u∗(t) is
used to perform the driving task. Defining the state space vector
x(t) = [x1(t), x2(t)]T ∈ R2, this optimization problem can be
written as:

min
u(t),x(t), t f

∫ t f

0
u(t)dt

s.t. (1)
t f ≤ t f max,
x(0) = 0,
x1(t f ) = x1total ,
x2(t)≤ x2max,∀t ≤ t f

x2curve ≤
√

Ft rc/m,
u(t) ∈ [0,1],∀t ≤ t f ,

(2)

with t f max the maximum time allowed to complete the race,
x1total the total distance to cover, and x2max the vehicle max-
imum allowable speed due to the maximum velocity allowed
for the motor. In a curve, the centrifugal force over the car
Fc = m(x2)

2/rc, with rc[m] the radius of the curve, must not
be larger than the total frictions forces wheel-road Ft [N] to
prevent the car slipping over, and therefore x2curve ≤

√
Ftrc/m

Santin (2007). The optimal values of the nominal control input
u∗(t) and the related optimal trajectory x∗(t) are solution of the
problem (2).

It can be observed that the constraint on the velocity in curves
x2curve≤

√
Ftrc/m≤ x2max is concerned exclusively to the posi-

tion x1 where there is precisely a curve, otherwise the constraint
is only x2 ≤ x2max. To include appropriately these constraints in
the solution of (2), the space state x1(t) ∈ [0,x1total ] is divided
into consecutive phases depending if there is a curve or not,
and for every phase, the curve constraint is applied or not. To
illustrate this, the example lap road of Fig. 2 to be run counter
clockwise from x1(0) = x1Start to x1(t f ) = x1Finish is considered.
This road has four π/2 curves with radius rci, i = 2,4,6,8 and
four straight paths of length l j, j = 1,3,5,7 each one. As a
result, for this road, the state x1 is divided in eight consecutive
phases e.g. straight path number 1, curve number 2, second
straight path number 3, curve number 4 and so on. The end of



Fig. 2. Example road with straight lines and curves. This road
has eight phases indicated by the circles.

a phase is the beginning of the next one. Only for phases 2,4,6
and 8, the constraint for curves x2curve ≤

√
Ftrc/m ≤ x2max is

applied. This is important to stress that the problem (2) and
the algorithm presented here, can be formulated and solved for
any road with any quantity of curves and straight paths, where
the angle of the curves can be different from π/2 and also
sequences of curve-curve can be considered.

The solution of the above multi-phase optimization problem
is computed using the General Pseudospectral Optimal control
Software (GPOPS) Rao et al. (2010); Garg et al. (2011a). This
software uses the orthogonal Radau Pseudospectral Method
Garg et al. (2011b), to solve optimal control problems of mul-
tiple phases where for each phase, the next functions need to
be defined: the cost function to be minimized, the dynamics
constraints and its relation with the cost function, the boundary
conditions at the beginning and at the end of each phase, the
inequality path constraints of the solution from the beginning
until the end of each phase, and finally the linkage constraints
between phases. Since the open-loop optimization problem de-
scribed in (2) has a multiphase nature that requires the con-
straints between phases to be properly defined, the GPOPS tool
is well suitable for the solution of this problem. An example of
the multiphase nature of the optimization problem will be given
in Section 5 devoted to results.

4. MODEL PREDICTIVE CONTROL

This section is devoted to the controller design, which is in-
tended to be embedded on-board during the race, and must
guarantee the tracking of the driving strategy despite unpre-
dictable events like emergency braking, wind, etc. and the
modelling mismatches. In addition, the formulation of this
close-loop problem highlights the existence of time-varying
constraints, as will be shown in subsection 4.1, that must be
properly included in the control law. As pointed out in the intro-
duction, a Model Predictive Control approach is well suited for
those purposes. A discrete-time linear system is used to model
the error between the ideal system and the real one. Assuming
that the nonlinear dynamics is close to the real one, such errors
can be considered to be small enough and then the discretization
and linearization error might be tolerable.

From (1), the linearized discrete-time state space dynamics is
obtained:

x̂(k+1) = Ax̂(k)+Bû(k), (3)

where x̂(k) = [x1(k)+ x2eTs, x2(k)− x2e]
T ∈ R2, û(k) = u(k)−

ue and

A =

[
1 Ts

0 1− ρCxSTs

m
x2e

]
, B =

 0
(Cmot −Cmin)

mrw
Ts

 ,

with Ts the sample time. The linearization point is given by the
average velocity x2e that together with the input ue ∈ [0,1] fulfill
the steady-state condition ẋ2 = 0 in (1), i.e.:

x2e =

√
2 ·

(Cmot −Cmin)ue +Cmin−Cpivot −Nrgmrw

ρCxSrw
, (4)

Notice that, as expected, the steady-state values for the nonlin-
ear continuous-time systems, i.e. x2e and ue, are also steady-
state for the discrete-time linear one. The full state is assumed
to be accessible, which means that both the position and the
velocity are measured.

4.1 Time-varying Model Predictive Control

This subsection addresses the problem of driving the vehi-
cle in real-time in order to guarantee that the state x(k) =
[x1(k), x2(k)]T ∈ R2 of the vehicle remains as close as possible
to the optimal one, as defined in Section 3, for every sample
time i.e. x∗(k) = [x∗1(k), x∗2(k)]

T .
Remark 1. We consider as constant values the nominal optimal
velocity x∗2 and input u∗ within the prediction horizon. That is,
u∗2(k + i) = u∗2(k), x∗2(k + i) = x∗2(k) and x∗1(k + i) = x∗1(k) +
iTsx∗2(k) for all i = 0, . . . ,Np with Np prediction and control
horizon. This assumption introduces some additional uncer-
tainty, but it allows to prove the stability of the linear time-
varying MPC, see Section 4.2.

Define ∆u(k) = u(k)− u∗(k) as the difference between the
predicted input u(k) and the target control u∗(k) at the instant
k. Furthermore, define ∆x(k) = x(k)− x∗(k) as the difference
between the predicted state x(k) and the target state x∗(k) at the
instant k. By Remark 1, in ∆u(k) and ∆x(k), the optimal profiles
u∗ and x∗2 remain constant during the prediction horizon. Notice
that, from the accessibility of x(k) and the availability of x∗(k),
so it is for ∆x(k). Defining the error ∆û(k) and ∆x̂(k) for the
linear system (3) as ∆û(k) = û(k)− (u∗(k)− ue) = ∆u(k) and
∆x̂(k) = x̂(k)−(x∗(k)+[x2eTS;−x2e]

T ) = ∆x(k) at every instant
k, then the dynamics of the error ∆u(k) and ∆x(k) is given by:

∆x(k+1) = A∆x(k)+B∆u(k), (5)

As for the constraints on the tracking error state ∆x, we impose
bounds on their value. In particular we pose

∆xmin ≤ ∆x(k)≤ ∆xmax, (6)

where ∆xmax ∈ Rn and ∆xmin ∈ Rn are respectively the desired
upper and lower bounds. The constraints on the input u(k) are

0≤ u(k)≤ 1, (7)

recalling that the input is the duty cycle of the driving strategy.
We have that the input of the error system (5) has to satisfy, for
every k, the parameter-dependent constraints

∆umin(k)≤ ∆u(k)≤ ∆umax(k), (8)

with
∆umin(k) =−u∗(k),
∆umax(k) = 1−u∗(k),

(9)

In plain words, the constraints depend on the value of the
nominal optimal control input u∗(k) that can change at any
instant. Notice that the formulation of the MPC problem allows
us to include the time-varying constraints (9) in a suitable way.
The MPC problem to solve on-line is then the following:



min
∆u(k), ...,∆u(k+Np−1)

Np−1

∑
i=0

(
∆xT (k+ j)Q∆x(k+ j)+∆uT (k+ j)R∆u(k+ j)

)
+

+∆xT (k+Np)P∆x(k+Np),

s.t. ∆x(k+ i+1) = A∆x(k+ i)+B∆u(k+ i), ∀i = 0, . . . ,Np−1,
∆x(k+ i) ∈ X , ∀i = 0, . . . ,Np−1,
∆u(k+ i) ∈U(k), ∀i = 0, . . . ,Np−1,
∆x(k+Np) ∈ Ω̄(k),

(10)
which is the classical MPC problem for linear systems, see
Scokaert and Rawlings (1998); Mayne et al. (2000); Camacho
and Bordons (2004), except the fact that the constraints on the
input and on the terminal predicted state depend on the nominal
optimal input u∗(k) at time k. This means that the control
input and the terminal predicted state are constrained within
sets which might be changing in time. As a matter of fact,
such bounding sets will be denoted hereafter and with a slight
abuse of notation, U(k) = U(u∗(k)) and Ω̄(k) = Ω̄(u∗(k)).
Considerations on how to obtain the set Ω̄(u∗(k)) such that it
ensures stability for constant nominal inputs and such that it
is easily computable on-line are the purposes of Section 4.2.
The positive definite matrix P is obtained by solving the LQR
problem for the system (5) with weighting matrices Q and R.
Indeed, P is involved in the terminal cost, that is in the term
corresponding to the cost to infinity. As a result, it means that
implicitly, we suppose that after Np steps, the infinite horizon
LQR control gain is applied, as usual.

4.2 MPC stability

The MPC problem under consideration here is the regulation
of a linear system with time-varying input constraints. In the
time-invariant case, the standard method to prove stability is
based on the existence of the invariant set as terminal constraint,
see Mayne et al. (2000). The greatest one is usually pre-
computed (since hard to be obtained on-line) and then used
on-line. Here, since it depends on the constraints, we cannot
compute the greatest one on-line. To circumvent the problem,
we propose here a method for obtaining a parameter dependent
invariant set. The result is a smaller invariant set but the on-line
computation required is very low, almost negligible.
Assumption 1. The constraint sets X ∈ Rn and U(k) ∈ Rm are
assumed to be convex, compact and to contain the origin in their
interior.

The Assumption 1, supposed to hold in the following, permits
us to use properties of convex, compact sets. The case of
unbounded sets X and U would deserve specific considerations.
Nevertheless, from the practical point of view, there is no loss
of generality in assuming their boundedness since both the state
and the input are bounded in actual applications.
Definition 1. Given the value of u∗ ∈ Rm, define the sets

U(u∗) = {u ∈ Rm :−u∗ ≤ u≤ 1−u∗},
Û = {u ∈ Rm :−1≤ u≤ 1},

Ū(u∗) = {u ∈ Rm :−α(u∗)≤ u≤ α(u∗)},
(11)

with
α(u∗) = min

i∈Nm
min{|u∗i |, |1−u∗i |}= min{‖u∗‖∞, ‖1−u∗‖∞}.

The set Ū(u∗) provides an inner bound of the input dependent
constraint set U(u∗(k)).
Proposition 1. Given u∗ ∈ Rm, one have that 0 ∈ Ū(u∗),
0 ≤ α(u∗)≤ 0.5 and

Ū(u∗) = α(u∗)Û ⊆U(u∗), (12)

for all u∗ such that 0 ≤ u∗ ≤ 1. Moreover if 0 < u∗ < 1 then
0 ∈ int(Ū(u∗)) and 0 < α(u∗)< 0.5.

Proof: The facts that 0 ∈ Ū(u∗) and Ū(u∗) = α(u∗)Û fol-
low directly from the Definition 1 and from the non-negativity
of α(u∗) for all u∗ ∈Rm. Since u∗i ≥ 0, which implies u∗i = |u∗i |,
we have

−u∗i ≤max{−|u∗i |,−|1−u∗i |}=
=−min{|u∗i |, |1−u∗i |} ≤ −α(u∗),

for all i ∈ Nm. Analogously, from 1−u∗i ≥ 0, it follows that
α(u∗)≤min{|u∗i |, |1−u∗i |} ≤ 1−u∗i ,

for every i ∈ Nm and thus u ∈ U(u∗) if u ∈ Ū(u∗). Moreover
α(u∗) ≥ 0 and α(u∗) ≤ 0.5 since min{u∗i ,1− u∗i } ≤ 0.5 for
all i ∈ Nm. If 0 < u∗ < 1 then u∗i > 0 and 1− u∗i > 0 for all
i ∈ Nm which implies that α(ui)> 0. Hence the origin is in the
interior of Ū(u∗). Finally 0 < α(u∗)< 0.5 is due to the fact that
0 < min{u∗i ,1−u∗i }< 0.5 for all i ∈ Nm, for every 0 < u∗ < 1.

Hence from Proposition 1 and (8), we have that Ū(u∗(k)) ⊆
U(u∗), which means that ∆u ∈ Ū(u∗) is a sufficient condition
for the constraints (8) to hold. Such condition will be implicitly
imposed in the MPC in place of the condition (8) for ∆uk with
k≥ Np. This, if on one hand introduces some conservativeness,
on the other permits us to design an input dependent invariant
set which can be determined on-line with no significant com-
putational effort. Notice that the computation of an invariant
set whose elements satisfy some constraints, useful to prove
the convergence of the MPC, requires a computational effort
which has usually to be performed off-line, Gilbert and Tan
(1991); Kolmanovsky and Gilbert (1998); Blanchini and Miani
(2008). Since in our case, the constraints on the input (and then
on the state, once a local feedback law is determined) change
in time, such invariant computation should be repeated at any
change of u∗, which is not admissible. Then, the aim is to
parametrize the invariant set Ω̄(k) in terms of α(u∗), to have
at every instant k that the invariant set is Ω̄(k) = α(u∗(k))Ω̂,
with Ω̂ precomputed.

Given a stabilizing feedback control law ∆u = K∆x we design
off-line an invariant set for the closed-loop system

∆x+ = (A+BK)∆x = Â∆x. (13)

We consider as K the solution of the LQR problem for system
(5) with weighting matrices R and Q and P the definite positive
matrix determining the quadratic optimal cost. We recall the
definition of invariant set for a linear deterministic discrete-time
system, see Blanchini and Miani (2008).
Definition 2. A set Ω ⊆ Rn is an invariant set for the system
(13) and constraints ∆x ∈X if Ω ⊆X and Â∆x ∈ Ω, for all
∆x ∈Ω.

Notice that in our case, the state constraint X is time-varying
and nominal input dependent since given by the constraints on
the input ∆u. In fact, from (6) and (8), we have that the system
has to satisfy the input and state constraints ∆u = K∆x ∈U(u∗)
and ∆x ∈ X , for a properly defined X . This is equivalent to
∆x ∈X (u∗) with

X (u∗) = {x ∈ Rn : x ∈ X , Kx ∈U(u∗)}= X ∩Xu(U(u∗)), (14)

where
Xu(U) = {x ∈ Rn : Kx ∈U}, (15)

for every U ⊆ Rm. The set X (u∗) depends on u∗ and then it
is time-varying in general. A method to design the necessary



parameter dependent invariant set is proposed in what follows,
focusing in particular to the low computational requirement for
it to be obtained on-line. The lemma below is functional to that
purpose.
Lemma 1. Given U,V ⊆ Rm, the set Xu(·) as in (15) is such
that Xu(U) ⊆ Xu(V ) if U ⊆ V . Given moreover α ∈ R then
αXu(U) = Xu(αU) if α > 0 and αXu(U)⊆ Xu(αU) if α ≥ 0.

Proof: The first part follows directly from definition (15).
Concerning the second part, if α > 0 we have

αXu(U) = {αx ∈ Rn : Kx ∈U}=
= {y ∈ Rn : Ky ∈ αU}= Xu(αU).

If α = 0 we have αXu(U) = {0} and Xu(αU) = Xu({0}) =
ker(K) (ker stands for the kernel) which implies αXu(U) ⊆
Xu(αU) in this case.

The method is based on the following proposition, which stems
from the properties of invariant sets for linear systems Blan-
chini and Miani (2008).
Proposition 2. Considering the Definition 1, given an invariant
set Ω̂⊆Rn for the system (13) with constraints ∆x∈ X̂ = 2X∩
Xu(Û), then the set Ω̄(u∗) = α(u∗)Ω̂ is an invariant set for (13)
with constraints ∆x ∈ X (u∗), as in (14), for all u∗ such that
0≤ u∗ ≤ 1.

Proof: From properties of invariant sets for linear systems
with constraints ∆x ∈ X̂ , we have that also the set αΩ̂ is
an invariant set for the same constraints and for every α ∈
[0,1]. From 0 ≤ u∗ ≤ 1 and the Proposition 1, it follows that
0 ≤ α(u∗) ≤ 0.5 and then also Ω̄(u∗) is an invariant set for
the system (13) with constraint ∆x ∈ X̂ , which means that
ÂΩ̄(u∗) ⊆ Ω̄(u∗) ⊆ X̂ . From Proposition 1, Lemma 1 and
definition (14) we have that

Ω̄(u∗) = α(u∗)Ω̂⊆ α(u∗)
(
2X ∩Xu(Û)

)
⊆

⊆ X ∩α(u∗)Xu(Û)⊆ X ∩Xu(α(u∗)Û) =
= X ∩Xu(Ū(u∗))⊆ X ∩Xu(U(u∗)) = X (u∗),

and then Ω̄(u∗)⊆X (u∗). From this and the fact that ÂΩ̄(u∗)⊆
Ω̄(u∗), we have that Ω̄(u∗) is an invariant set for (13) with
constraints ∆x ∈X (u∗), by definition.

Then, finally, given a value of the nominal control input 0 ≤
u∗ ≤ 1, it is sufficient to compute α(u∗) to have an invariant
set Ω̄(u∗) for the system (13) with constraint ∆x ∈X (u∗), the
set Ω̂ being known. Hence, the asymptotic stability and the
constraints satisfaction of the MPC can be proved for constant
values of u∗ using standard results Mayne et al. (2000).
Proposition 3. For every constant u∗ ∈Rm such that 0≤ u∗ ≤ 1
if the problem (10) is feasible at k0, then the system (5) in
closed-loop with ∆uk = ∆u∗k is exponentially stable and the
constraints ∆uk = K∆x ∈ U(u∗) and ∆xk ∈ X are satisfied for
all k ≥ k0.

The Proposition 3 ensures convergence of the closed-loop sys-
tem and recursive constraints satisfaction for every constant
value of u∗, with 0 ≤ u∗ ≤ 1, provided that the problem is
feasible at the initial instant. Since in such case, the problem
is reduced to a deterministic linear MPC, it is sufficient to
have that Ω̄(u∗) is an invariant set for (13) with constraints
∆x ∈X (u∗), that is proved in Proposition 2.
Remark 2. The problem could have also been dealt with by
means of techniques of tracking MPC Fiacchini et al. (2006);
Limón et al. (2008). On the other hand, in our specific case, the

objective is not to steer the state to different constant values,
only the constraint on the input changes in time. The stability
is then proved provided that an invariant set for the particular
constraint set is available.

5. RESULTS

5.1 Parameter estimation

The nonlinear model (1) involves two unknown parameters
Cx and Nr. For the estimation of those parameters, multiple
deceleration to zero experiments have been performed for the
Vir’Volt vehicle. It has been done by turning off the motor after
accelerating the vehicle until it reaches a maximum velocity
Velini in a low slope variations road and without curves. For
the Vir’Volt vehicle and its environment, the physical known
parameters are the gravity acceleration g = 9.81[m/s2], the
wheel radius R = 0.24m, the frontal surface S = 0.275m2,
the total mass m = 90kg, the air density ρ = 1.225[kg/m3],
Cmot = 6.228[Nm], Cmin = 0[Nm], Cpivot being neglected. The
maximal velocity is Velini = 40km/h. The experiment gives
Cx = 0.085 and Nr = 0.0029. The 63% response time of the
nonlinear system in tr = 20s. Finally, the linear discrete-time
model (3) has been obtained by considering a sampled time
Ts = 0.2s. The operating point ue = 0.5 considered for the
linearization corresponds to the middle of the range [0,1], being
thereby as far as possible from the lower and upper bounds.

5.2 Open-loop optimal solution

Let us consider the track shown in Fig. 2 characterized by
the straight paths with lengths l1 = 150m, l3 = 180m, l5 =
330m, l7 = 100m and the curves with radius rc2 = 150m,
rc4 = 70m, rc6 = 100m, rc8 = 200m, with a total distance of
x1Total = 1.5768km, a maximum final time of t f max = 1h and
Ft = 2.5428[N]. The solution of the multi-phase optimization
problem (2), where the end of each phase is the beginning of
the next one, is obtained by using GPOPS and is depicted in
Fig. 3. The solution found has a final time t f = 737.61s, the
final position reached is x1(737.61s) = 1.5768km, the velocity
in curves is not bigger than the allowed velocity x2curvei for the
curve with radius rci. This fact can be appreciated in the flat
regions obtained in the velocity solution x∗2, where the velocity
remains constant all along the curve. Besides, the input is not
bigger than 1 or smaller than 0, accomplishing in this way
all the constraints imposed in (2) for the minimization of the
consumption. The MPC controller must guarantee the tracking
of the obtained optimal profile x∗2(k) respecting the constant
constraints ∆xmin and ∆xmax, and assuring that the difference
∆u(k) remains between the time-varying constraints ∆umin and
∆umax given by (9) and shown in Fig. 3.

5.3 MPC controller

The MPC controller has been tested in simulation for the
tracking of the low consumption strategy depicted in Fig. 3
with the MPC state restrictions set as ∆xmin = −5km/h and
∆xmax = 5km/h (see (6)). The prediction horizon is Np = 10 and
the weighting matrices Q and R in (10) are identity matrices.
An error of ±10% has been added to the estimation of the
parameters Cx and Nr. In Fig. 4 the tracking differences (x2−
x∗2) and (u−u∗) are depicted for a variation in the vehicle mass
m of 10%, 20% and 50%. Notice that the constraints ∆xmin and
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Fig. 3. Solution of the optimization problem.

0 200 400 600 800 1000 1200 1400
0

5

10

15

x
1
[m]

x 2[k
m

/h
]

 

 
− − −  x

2
*

0 200 400 600 800 1000 1200 1400

−3

−2

−1

0

x
1
[m]

(x
2−

x 2*)
[k

m
/h

]

0 200 400 600 800 1000 1200 1400
−1

0

1

x
1
[m]

(u
−

u*
)

Fig. 4. Tracking simulation experiment for a mass variation of
10% (blue), 20% (red) and 50% (black).

∆xmax are accomplished, and also that ∆u remains between the
boundaries ∆umin and ∆umax. The results shown in Fig. 4 point
out a good tracking of the driving strategy, which guarantees a
low consumption near the optimal one.

6. CONCLUSION AND FUTURE WORKS

The issue of achieving the minimum consumption of an electric
vehicle involved in the European Shell Eco-marathon race has
been formulated as a multi-phase optimization problem. A
model of the vehicle has been obtained and used to design a
time-varying Model Predictive Control tracking strategy. The
controller achieves good tracking performances, despite the
estimation error introduced in the loop. Also, stability and

convergence has been proved for the time-varying MPC law.
As future work, the controller will be tested on board for the
actual race.
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