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Adaptive Kalman Filtering for Multi-Step ahead Traffic Flow Prediction

Luis Leon Ojeda* Alain Y. Kibangou** Carlos Canudas de Wit***

Abstract— Given the importance of continuous traffic flow
forecasting in most of Intelligent Transportation Systems (ITS)
applications, where every new traffic data become available
in every few minutes or seconds, the main objective of this
study is to perform a multi-step ahead traffic flow forecasting
that can meet a trade-off between accuracy, low computational
load, and limited memory capacity. To this aim, based on
adaptive Kalman filtering theory, two forecasting approaches
are proposed. We suggest solving a multi-step ahead prediction
problem as a filtering one by considering pseudo-observations
coming from the averaged historical flow or the output of other
predictors in the literature. For taking into account the stochas-
tic modeling of the process and the current measurements we
resort to an adaptive scheme. The proposed forecasting methods
are evaluated by using measurements of the Grenoble south
ring.

I. INTRODUCTION

Short-term traffic flow forecasting has drawn a lot of
attention on the research field over the past decades due
to the crucial and easily witnessed impact on daily life
basis. Its importance can be seen in different traffic control
applications, for instance [1], [2]. This subject has been
amply investigated and several survey papers are available
in the literature (see for example [3] and [4] and references
therein). There exist several alternatives to categorize short-
term traffic flow forecasting methodologies. One of them, as
presented in [5], is from the standpoint of how information
is used. Considering this, the literature can be divided into
three groups: 1) approaches that make use of historical
information exclusively: auto-regressive integrated moving
average (ARIMA) family of models [6]–[8], non-parametric
techniques, including non-parametric regression [6], [9]–
[11], and neural networks [12]–[14]; 2) those using current
information exclusively: strategies based on smoothing tech-
niques [15]–[17], state-space models [18]–[20], and support
vector machine [15]; and 3) those using both historical
and current data: [5], [15], [21], [22]. In this framework,
some works are worth noting. For instance the approach
proposed in [5] uses, under a stochastic approach, both
current and historical traffic data in an integrated way. On the
other hand [21] uses a deterministic mixture of a constant
predictor, defined as the difference between the historical
and current flow levels at the starting time of prediction,
and a nonparametric approach. This predictor succeeds to
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capture current dynamics of the traffic flow. A more recent
work, [22], proposes an on-line monitoring algorithm that,
integrated with ARIMA models, can adapt itself to any
potential new regimes. This result was met with greater
accuracy than the basic ARIMA, but the main disadvantage
is that an ARIMA model needs to be previously fitted.

Although an important part of the literature has been
oriented to compare the performance of the different fore-
casting approaches, none has clearly pointed out the best
solution. However, after its publication, the GML (Gaussian
Maximum Likekihood) approach, proposed in [5], has been
compared with other models, such as non-parametric regres-
sion, ARIMA, neural networks, online SVR, and smoothing
techniques, concluding that GML-based predictor presented
the best forecasting performance, under typical traffic condi-
tions [15], [23], [24].

Apart from accuracy, another crucial matter in traffic flow
forecasting is the development of approaches that forecast
more than one step ahead in the future, as well as ones that
can efficiently be implementable on-line. When it comes to
multi-step ahead forecasting methodology, research shows
that most authors prefer the use of approaches, such as
neural networks [25]–[27], non-parametric regression [9],
ARIMA model [28], and ATHENA model [29] (based on
ARIMA model). Nevertheless, some other strategies can be
used to achieve this goal, for instance, smoothing techniques
[15], [21], GML-based predictor [5], and state-space based
approaches [30].

Most of the forecasting results reviewed are based on
offline computation. For online implementation, to the best to
our knowledge, only few techniques have given rise to online
implementation where low computational load and short time
model calibration are required. Among these techniques,
ARIMA models have been applied in different real scenarios.
However, as [6] pointed out, the necessary model calibration
for the seasonal ARIMA models was quite time-consuming.
Online SVR [15] is another example. It is a support vector
machine learning approach. The resulting algorithm can be
applied in real time. Its main advantage is that it can be very
responsive when current data draws away for the historical
information. However, it needs time for model calibaration
and high quality training sets.

In order to meet the requirements treated so far, this
work proposes four easy implementable adaptive algorithms
based on Kalman filter theory. The prediction problem is
reformulated as a filtering one by using historical data or
the output of a given predictor as pseudo-observations of the
future observations. We adopt a Gaussian assumption for the



distribution of the error between the unknown current data
and the pseudo-observations. The optimality of the filtering
being related to the a priori knowledge of the variance of
the modeling error, we resort to an adaptive Kalman filtering
approach to accommodate such lack of a priori knowledge.
A similar Kalman strategy for traffic flow forecasting was
proposed in [31], where the model to be fitted is a Seasonal
ARIMA model, and the coefficients of the short-term oper-
ator are obtained through an adaptive Kalman filter, and the
system’s observations are computed from the prediction of
the Kalman filter. The main disavantage seen in this approach
is the important amount of past data needed to calibrate the
model and the time needed to achieve it. Nevertheless in
this work, the author succeded to obtain an online traffic
flow forecasting methodology to later predict travel time.

This paper focuses on the development of a responsive
multi-step ahead forecasting methodology that, under an
easily on-line implementable algorithm can achieve accurate
prediction performance, with no requirement of extensive
data calibration nor large historical database.

II. PROBLEM FORMULATION

Given available measurements {ϕt,D}, t = 0,1, · · · , t0, of
the traffic flow until time t0 of the day D and historical
data

{
ϕt,d

}
, t = 0,1, · · · ,T , d = 1,2, · · · ,D− 1. Our aim is

to predict the flow at time t = t0 + 1, · · · , t0 +∆T . For this
purpose, we review first some forecasting methods whose
efficiency has been demonstrated in the literature. These
methods will be compared to the new approaches suggested
in this paper. Then in section III, we introduce our adaptive
Kalman filtering approach.

A. Historical increment flow based predictor

Let us consider a first-order autoregressive model for the
traffic flow:

ϕt,d = ϕt−1,d + εt,d , (1)

where εt,d is a realization of a white gaussian random vari-
able εt ∼N (µε,t ,σ

2
ε,t). It is then obvious that the minimum

variance one-step ahead predictor is given by

ϕ̂t,D = ϕt−1,D +µε,t . (2)

The underlying idea of this predictor is to make use of
the mean value of the historical increments εt,d in order to
achieve the flow prediction at the time t.

The multi-step ahead predictor counterpart is given by:

ϕ̂t0+τ,D =

{
ϕt0+τ−1,D +µε,t0+τ i f τ = 1
ϕ̂t0+τ−1,D +µε,t0+τ elsewhere . (3)

B. Gaussian maximum likelihood (GML) approach

In this approach, the flow ϕt,d and the flow increment
εt,d = ϕt,d − ϕt−1,d , with d = 1,2, ...,D, are assumed to
be realizationss of normally distributed random variables,
i.e., εt,d ∼ N (µε,t ,σ

2
ε,t) and ϕt,d ∼ N (µϕ,t ,σ

2
ϕ,t) [5]. By

maximizing the likelihood function of the flow level at the
next time interval, the following predictor is obtained:

ϕ̂t,D =
σ2

ϕ,t(µε,t +ϕt−1,D)+σ2
ε,t µϕ,t

σ2
ϕ,t +σ2

ε,t
(4)

Means and variances involved in (4) are computed using
historical data. The corresponding multi-step ahead predictor
is then given by:

ϕ̂t0+τ,D =
σ2

ϕ,t0+τ

(
γt0+τ−1,D +µε,t0+τ

)
+σ2

ε,t0+τ µϕ,t0+τ

σ2
ϕ,t0+τ +σ2

ε,t0+τ

(5)

with γt0+τ−1,D = ϕt0+τ−1,D if τ = 1; else γt0+τ−1,D =
ϕ̂t0+τ−1,D.

C. Constant and heuristics based predictor

This deterministic methodology is based on a combination
between a constant and a nonparametric predictor [21].
The constant predictor acts for small prediction horizon,
while with the increasing of the horizon heuristics are used
for prediction. Based on this consideration, the following
predictor was proposed:

ϕ̂to+τ,D = ϕ
H

to+τ,D +K∆ϕto,D, (6)

with
∆ϕto,D = ϕto,D−ϕ

H
to,D (7)

and K =

{
η(1− τ

∆tmax
), i f 0 < τ ≤ ∆tmax

0, i f τ > ∆tmax
,

ϕH
to,D being the flow level of the averaged historical data,

η being the weight of the mismatch between the current and
the historical data, and ∆tmax the maximum horizon for the
constant model. The optimal values for the parameters η and
∆tmax will be taken from the results presented in [21], i.e.
η = 0.57, ∆tmax = 37.

III. ADAPTIVE KALMAN FILTERING APPROACH

Let us consider the following Gauss-Markov model:

xt = xt−1 +wt
yt = Htxt + vt ,

(8)

where wt ∼ N (qt ,Qt) and vt ∼ N (0,Rt) are independent
from the initial condition of the state xt and mutually
independent. The sub-optimal τ-step ahead predictor is given

by x̂t+τ|t = x̂t|t +
τ

∑
i=1

qt+i [32], where x̂t|t stands for the output

of a Kalman filter, i.e.

x̂t|t = (I−KtHt)x̂t−1|t−1 +Ktyt +(I−KtHt)qt , (9)

with
Kt = Pt|t−1HT

t
(
HtPt|t−1HT

t +Rt
)−1

, (10)

Pt|t = (I−KtHt)Pt|t−1, (11)

and
Pt|t−1 = Pt−1|t−1 +Qt−1. (12)

Clearly, in such a framework a multi-step ahead Kalman
predictor is not well indicated since the prediction consists
in keeping constant the future values of the state plus



an additive term given by the mean value of the process
noise. Therefore, we suggest to transform a multi-step ahead
prediction problem to a filtering one. For this purpose,
we suggest considering pseudo-observations. Two kinds of
pseudo-observations are considered.

The first one corresponds to the use of the average
historical flow as noisy measurements of the current flow
during the prediction interval, i.e. using the historical data
base as the system’s measurements. Since traffic volume can
vary substantially depending on various external factors, the
major drawback in this strategy is the high reliability on the
historical data. Thus, the model might not be quite responsive
to eventual structural changes.

The second kind of pseudo-observations is obtained by
using the predicted flows of the model proposed in [21] as
observations. Since the predictor in [21] does not represent
an important burden in the forecasting computation, it can
be combined with the Kalman filter. The main motivation
to propose this second strategy is the fact that the model in
[21] was proven to capture easily special events in the current
traffic flow, i.e. significant mismatches between on-line and
historical data.

When using these pseudo-observations, the noise statistics
are a priori unknown. Therefore, we suggest resorting to an
adaptive Kalman filtering approach, where the mean and the
variance of both process and observation noises are estimated
with the available data. This problem has been widely studied
in the literature, and several results have been presented [33]–
[36]. Because of its simplicity and its ability to handle both
systematic and random errors, in this paper, we resort to the
method proposed in [36].

A. Online noise statistics estimation

1) Statistics of the observation noise: From the obser-
vation model, an approximation of the observation noise is
given by rt = yt −Htxt|t−1. By considering rt as samples of
the observation noise, given N consecutive observations, for
instance from t = t0−N +1 to t = t0, an unbiased estimate
of the mean is given by

r̂ =
1
N

N

∑
t=1

rt . (13)

Following the strategy in [36] the unbiased estimation of
R becomes

R̂ =
1

N−1

N

∑
t=1

((rt − r̂)(rt − r̂)T − (N−1)
N

HtPt|t−1HT
t ).

(14)
2) Statistics of the process noise: An approximation of

the process noise is given by considering the samples of the
state noise qt = xt|t−xt−1|t−1, for instance from t = t0−N+1
to t = t0. Following the previous, the estimation of the mean
and covariance for the state noise statistics are

q̂ =
1
N

N

∑
t=1

qt . (15)

Q̂ =
1

N−1

N

∑
t=1

((qt − q̂)(qt − q̂)T − (N−1)
N

(Pt−1|t−1−Pt|t)).

(16)
In what follows, we consider two different state-space

models giving rise to different prediction methods.

B. Filtering based on a first order modeling of the flow (KF1)

Let us assume that two consecutive flow levels, ϕt,D and
ϕt−1,D, are related through a first order model

ϕt,D = ϕt−1,D +wt,D. (17)

The measurement model is

yt,D = ϕt,D +(vt,D− r̂), (18)

where wt,D ∼ N (qt ,Qt) and vt,D ∼ N (r,R). The pseudo-
observations yt,D can be averaged historical flow or predic-
tions using the method in [21]. In the first case the algorithm
is named KF1-I while in the second case it is named KF1-
II. The process and observation noises are modeled as. Note
that by keeping R constant, we can guarantee, in some sense,
that at least for the first steps ahead predictions the trend of
the on-line flow is followed.

Given the following sequence of pseudo-observations
{yt}t=t0−N+1,··· ,t0+∆T , and the actual measurements of the
flow {ϕt,D}t=t0−N+1,··· ,t0 , the KF1 forecasting method acts
as follows:
• Initialization:

– ϕ̂0|0 = ϕt0,D, P0|0 is initialized with a small positive
value,

– r̂ = 1
N

t0
∑

t=t0−N+1
(yt,D−ϕt,D),

R = 1
N−1

t0
∑

t=t0−N+1
(yt,D−ϕt,D− r̂)2,

– q̂0 =
1
N

t0
∑

t=t0−N+1
(ϕt,D−ϕt−1,D),

Q̂o =
1

N−1

t0
∑

t=t0−N+1
(ϕt,D−ϕt−1,D− q̂0)

2.

• Prediction process: for t = t0 +1, · · · , t0 +∆T
– Apply the Kalman filtering equations (9)-(12) to the

state-space model (17)-(18), where ϕt,D stands for
the state xt .

– If t > t0 +N, update the mean and the variance of
the process noise using (15) and (16).

The choice of the number N of past observations is related
to how far into the past we have to look at to guarantee
that any structural change in the current flow is taken into
account. Notice that in (10) Rt = R.

C. Filtering based on a higher-order model (KF2)

Let us assume the following higher order model for the
traffic flow ϕt,D:

ϕt,D = ϕt−1,Dθ 1
t,D + ...+ϕt−n,Dθ n

t,D +(vt,D− r̂t)
ϕt,D = ΨT

t,DΘt,D +(vt,D− r̂t)
(19)



We also assume a random walk model for the regression
coefficients vector:

Θt,D = Θt−1,D +(wt,D− q̂t) (20)

The process and observation noises are modeled as wt,D ∼
N (qt ,Qt) and vt,D ∼ N (rt ,Rt). In contrast to the KF1
approach, here the state xt is constituted with the coefficients
of the regression vector Θt,D. Therefore, the aim of the
Kalman filter is to provide an estimate Θ̂t,D of the adequate
coefficients Θt,D. Then the multi-step ahead flow prediction
is computed as

ϕ̂t+τ,D = Ψ
T

t+τ,DΘ̂t+τ−1,D, (21)

where

Ψt+τ,D = (ϕc
t,D, . . . ,ϕ

c
t−n+1,D) if τ = 1

Ψt+τ,D = (ϕh
t+τ−1,D, . . . ,ϕ

h
t+1,D,ϕ

c
t,D, . . . ,ϕ

c
t+τ−n,D)

i f τ ∈ {2, ...,n}
Ψt+τ,D = (ϕh

t+τ−1,D, . . . ,ϕ
h

t+τ−n,D) if τ ∈ {n+1, ...,∆}

ϕc
t,D and ϕh

t,D represents the online measurements and
pseudo-observations based on historical flow levels at time t
respectively.

This approach is similar to those in [18]–[20], [30],
[37] designed for one-step ahead predictors. The multi-
step ahead predictors are obtained by using, as previously,
pseudo-observations from averaged historical flow (KF2-I)
or predictions from method in [21] (KF2-II). The proposed
KF2-I and KF2-II methods act as follows:
• Initialization:

– θ̂0|0 is initialized by solving a linear regression
problem with the available current flow measure-
ments from t = to−N to t = to−1.

– The error covariance matrix P0|0 is accordingly
initialized with a small positive value.

– r̂o =
1
N

t0−1
∑

t=t0−N
(ϕt,D−Ψt,DΘt,D),

R̂o =
1

N−1

t0−1
∑

t=t0−N
(ϕt,D−Ψt,DΘt,D− r̂o)

2.

– q̂o =
1
N

t0−1
∑

t=t0−N
(Θt,D−Θt−1,D),

Q̂o =
1

N−1

t0−1
∑

t=t0−N
(Θt,D−Θt−1,D− q̂o)

2.

• Prediction process: for t = t0, · · · , t0 +∆T −1
– Apply the Kalman filtering equations (9)-(12) to the

state-space model (19)-(20).
– If t > t0 +N, update the mean and the covariance

matrix of the process and state noise using (13)-
(16).

– Predict the flow using (21)

IV. EXPERIMENTAL RESULTS

A. Data description and test design

The traffic volume data used to evaluate the proposed
methods were obtained using actual measurements of the

Grenoble south ring aggregated into 1-minute interval on
a time window of 24 hours. A database was created, by
adding white noise and filtering the resulting data with low-
pass filters whose parameters were randomly generated. We
obtained 200 flow profiles a half of these profiles were used
for heuristics and the other half for validation.

Based on these data, the performance of seven predictors
are compared. As it was aforementioned, all of them depend
on the historical average data. Thus, it is assumed that the
current flow profile belongs to a certain cluster. Two com-
monly used criteria are employed to evaluate and compare
the predictor performance. The mean absolute percentage
error (MAPE) and the absolute percent error (APE):

MAPE(%) =
1
N

N

∑
t=1

∣∣∣∣ ϕ̂t,D−ϕt,D

ϕt,D

∣∣∣∣×100% (22)

APEt(%) =
|ϕ̂t,D−ϕt,D|

ϕt,D
×100% (23)

where ϕi and ϕ̂i stand for the true and the predicted
value of the flow at point t respectively. The prediction
performance in tables (I)-(II), is assessed through mean and
standard deviation of the MAPE obtained for each predictor
in the 100 runs.

B. Test results and analysis

After testing different choices of the parameters of the
filters we selected, N = 4 for the online noise statistics
estimate, since it have the minimal APE, and p = 4 as order
of the state for KF2.

Given the level of congestion of the considered demand
flow data-set, three scenarios were carried out, at 9:00 am,
19:00, and 17:00. The assessment of the predictors for
the first two scenarios was achieved by considering three
prediction horizons, 15, 30, and 45 minutes. For the third
case (17:00) only a horizon of 45 minutes will be evaluated.

1) Case 1: Table I presents the forecasting accuracy for
the seven predictors at 9:00 am. Several points are worth
pointing out. The first is the fact that both Kalman filter
based predictors using the average historical flow (KF1-I
and KF2-I) are clearly outperformed by the predictors using
outputs of the predictor [21] as pseudo-observations (KF1-
II and KF2-II). The second thing is that for the shortest
prediction horizon, GML approach gives the best results,
following Kalman filter approaches 1-II and 2-II respectively.
However, as the prognosis horizon increases, KF1-II and
KF2-II present better results. It is also important to say that
the predictor [21] (Const. and heur.) exhibited comparable
results, but slightly inferior, to the ones using a mixture
between this and Kalman filter strategy. This is actually an
interesting result, since as said previously, our objective was
to find a predictor easily implementable online with low
computational burden and high accuracy.

2) Case 2: Table II, presents the forecasting accuracy for
the seven methodologies under study at 19:00. As the case
before, the Kalman filter based predictors 1-II and 2-II clearly
outperform KF1-I and KF2-I. However, in contrast with the



previous example, at 15 minutes of prediction the GML and
historical average flow predictors have better results when
considering mean value of the MAPE, nevertheless they
exhibit higher standard deviation in the performance. This
fact is due to the eventual difference between certain flow
profiles, among the 100 used for the model validation, and
the historical data base.

It is also seen that for all horizons the GML-based predic-
tor outperforms all predictors in terms of mean value, when
considering also standard deviation however, KF 1-II have in
average better results, even better than [21]. Taking all this
into account, this scenario clearly shows that the proposed
KF approaches exhibit higher robustness.

3) Case 3: In order to present a graphic idea of the
prediction results, let us take an example of a forecasting
starting at 17. Figure 1 shows both actual and mean historical
flow profile along 45 minutes horizon. We can see that the
averaged historical flow lags behind the current flow.

Fig. 1. Historical flow average and current flow. Time between
17:00 and 17:45

TABLE I
FORECASTING PERFORMANCE-@9:00 AM

15 minutes 30 minutes 45 minutes
Predictors
@9:00am

MAPE(% ) MAPE(% ) MAPE(% )

KF1-I 2.28 ± 1.50 2.23 ± 1.11 2.24 ± 0.95
KF1-II 1.61 ± 1.13 1.87 ± 0.96 1.96 ± 0.90
KF2-I 2.74 ± 1.97 2.55 ± 1.30 2.40 ± 1.02
KF2-II 1.72 ± 1.17 1.92 ± 0.96 1.99 ± 0.88
Const. and heur. 1.73 ± 1.17 1.93 ± 0.97 2.00 ± 0.90
GML 1.52 ± 1.33 2.28 ± 1.49 3.00 ± 1.90
Hist. inc. flow 1.78 ± 1.40 2.99 ± 2.42 4.55 ± 4.37

TABLE II
FORECASTING PERFORMANCE-@19:00

15 minutes 30 minutes 45 minutes
Predictors
@19:00

MAPE(% ) MAPE(% ) MAPE(% )

KF1-I 4.01 ± 2.33 4.36 ± 2.12 4.46 ± 1.96
KF1-II 2.87 ± 1.66 3.50± 1.66 3.89 ± 1.64
KF2-I 4.78 ± 2.84 4.88 ± 2.39 4.84 ± 2.22
KF2-II 3.07 ± 1.71 3.69 ± 1.75 4.03 ± 1.77
Const. and heur. 3.00 ± 1.68 3.65 ± 1.74 4.01 ± 1.78
GML 2.56 ± 3.50 3.40 ± 4.98 3.87 ± 4.02
Hist. inc. flow 2.76 ± 3.57 3.83 ± 5.25 4.60 ± 5.48

Figure 2 depicts the probability of each forecasting method
to be equal or lower to the value of APE shown in the
horizontal axis in a 45 minutes prediction horizon. It is clear
the superiority of the method KF2-II over the other ones,
being the second best KF2-I. While in overall the predictor
proposed by [21] performed similar to KF1-I and KF1-II. It
is important to point out that for the specific scenario consid-
ered the GML-based predictor had the lowest performance
among all the predictors. To have an idea, methods KF2-
I and KF2-II have a 90% probability to present a value of
APE lower or equal to 4%, whereas predictor [21] has a
65% and GML-based predictor 15% approximately This is an
important fact since this shows that our forecasting methods
can be more responsive to eventual structural changes in
the current traffic flow. Specially the approach KF2-II, that
performs even better than the one proposed by [21].

It is seen hence that, firstly, as pointed out in [15], GML
approach is highly dependant on the quality of the database
and its closeness to the online flow. Secondly, even if KF1-
II (pseudo-observations obtained from [21]) depends also on
the database available, it presents more robust forecasting
results when the historical and the current flows do not match
precisely.

Fig. 2. Probability for achieving an APE lower or equal than the
value in the horizontal axis for different forecasting algorithms
organized from left to right as KF1-I, KF1-II, KF2-I, KF2-II,
Constant and heuristics, GML, and Historical increment flow).
To=17:00 with a horizon of 45 minutes

V. CONCLUSIONS

In this paper, we have proposed four adaptive Kalman
filter approches for the multi-step ahead forecasting of short-
term traffic flow and compared their performances to other
prediction algorithms, such as [5], [21]. It was proved that
two of the Kalman based predictors, the ones using the
result of prediction given by [21] to compute the innovations,
performed well in all scenarios tested, sometimes even better
that [5] and certainly better than [21]. Since Kalman filter
and the constant and heuristics based model proposed in [21]
are very easy to be implemented on-line, do not represent
a heavy computational burden, and need a low calibration



effort, their combination as proposed herein offer very inter-
esting alternatives for improving online traffic forecasting.

Extension of the work presented herein may address the
estimation of other traffic parameter such as travel time, using
forecasting bounds defined by the Kalman covariance matrix.
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