
HAL Id: hal-00843033
https://hal.inria.fr/hal-00843033

Submitted on 10 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Voronoi diagram of smooth convex pseudo-circles:
General predicates, and implementation for ellipses

Ioannis Emiris, Elias Tsigaridas, George Tzoumas

To cite this version:
Ioannis Emiris, Elias Tsigaridas, George Tzoumas. Exact Voronoi diagram of smooth convex pseudo-
circles: General predicates, and implementation for ellipses. Computer Aided Geometric Design,
Elsevier, 2013, �10.1016/j.cagd.2013.06.005�. �hal-00843033�

https://hal.inria.fr/hal-00843033
https://hal.archives-ouvertes.fr

Exact Voronoi diagram of smooth convex pseudo-circles:
General predicates, and implementation for ellipses

Ioannis Z. Emirisa, Elias P. Tsigaridasb, George M. Tzoumasc,∗

aNational and Kapodistrian University of Athens, Hellas
bINRIA Paris-Rocquencourt, UPMC, Univ. Paris 06, LIP6, France

cLE2I – University of Burgundy, France

Abstract

We examine the problem of computing exactly the Voronoi diagram (via the
dual Delaunay graph) of a set of, possibly intersecting, smooth convex pseudo-
circles in the Euclidean plane, given in parametric form. Pseudo-circles are
(convex) sites, every pair of which has at most two intersecting points. The
Voronoi diagram is constructed incrementally. Our first contribution is to pro-
pose robust and efficient algorithms, under the exact computation paradigm, for
all required predicates, thus generalizing earlier algorithms for non-intersecting
ellipses. Second, we focus on InCircle, which is the hardest predicate, and
express it by a simple sparse 5 × 5 polynomial system, which allows for an ef-
ficient implementation by means of successive Sylvester resultants and a new
factorization lemma. The third contribution is our cgal-based c++ software for
the case of possibly intersecting ellipses, which is the first exact implementation
for the problem. Our code spends about a minute to construct the Voronoi
diagram of 200 ellipses, when few degeneracies occur. It is faster than the cgal
segment Voronoi diagram, when ellipses are approximated by k-gons for k > 15,
and a state-of-the-art implementation of the Voronoi diagram of points, when
each ellipse is approximated by more than 1250 points.

Keywords: Voronoi diagram, exact computation, cgal implementation,
InCircle predicate, parametric curve

1. Introduction

Computing the Voronoi diagram, and its dual Delaunay graph, of a set of
sites in the plane has been studied extensively due to its links to other im-
portant questions, such as medial axis computations, but also its numerous

∗Corresponding author
Email addresses: emiris@di.uoa.gr (Ioannis Z. Emiris), elias.tsigaridas@inria.fr

(Elias P. Tsigaridas), George.Tzoumas@u-bourgogne.fr (George M. Tzoumas)

Preprint submitted to Elsevier July 10, 2013

Figure 1: Left: Voronoi diagram and Delaunay graph of 26 ellipses; Right: Voronoi diagram
of 7 intersecting ellipses

applications, including motion planning among obstacles, assembly, surface re-
construction, and crystallography (Anton, 2004). Our work is also motivated by
other problems besides Voronoi diagrams: The predicates examined can be used
to implement an algorithm for the convex hull of smooth convex pseudo-circles
(Elber et al., 2001), whereas some of them appear in the computation of the
visibility map among ellipses (Habert, 2005) (the software being developed for
this problem uses our predicates). Recently, there has been some interest in
applying our methods for contact detection in molecular dynamics(Ogarko and
Luding, 2010)

Exact and certified geometric computing is an important enhancement to
CAGD methods and an area of intense activity, since it exploits the modern
power of geometric and algebraic algorithms which offer speed without jeop-
ardizing robustness. Following this trend, our work guarantees the exactness
of the dual Delaunay graph. This means that all combinatorial information is
correct, namely the definition of the graph’s edges, which, of course, have no
geometric realization. The Voronoi diagram involves algebraic numbers for rep-
resenting the vertices and bisector edges: our algorithms and software handle
these numbers exactly. For instance, they can answer all point-location queries
correctly. Hence, we say that our representation of the Voronoi diagram ad-
heres to the principles of the exact computation paradigm, a distinctive feature
in the realm of non-linear computational geometry. Our methods allow also for
an approximation of the algebraic numbers with arbitrary precision, and this
precision need not be fixed in advance, which is useful for drawing the diagram
on the screen, or in cases where faster, yet approximate, computation is needed.
We use the term exact Voronoi diagram to refer to a Voronoi diagram that is
represented exactly via its dual Delaunay graph, while at the same time its
vertices and edges can be approximated up to an arbitrarily high precision.

1.1. Previous work

Input sites have usually been linear objects, the hardest cases being line
segments and polygons (Held, 2001; Karavelas, 2004); moreover, only the latter

2

(Karavelas, 2004) yields an exact output. The approximation of smooth curved
objects by (non-smooth) linear or circular segments with no G1 continuity may
introduce artifacts and new branches in the Voronoi diagram, thus necessitating
post-processing. It may even yield topologically incorrect results, as explained
in (Ramamurthy and Farouki, 1999b).

The Voronoi diagram has been studied in the case of planar sites with curved
boundaries (Ramamurthy and Farouki, 1999b; Alt et al., 2005), where topolog-
ical properties are demonstrated, including the type of bisector curves, though
the predicates and their implementation are not considered. There are works
that compute the planar Voronoi diagram approximately: In (Hanniel et al.,
2005), curve bisectors are traced within machine precision to compute a single
Voronoi cell of a set of rational C1-continuous parametric closed curves. The
runtime of their implementation varies between a few seconds and a few minutes.
It is briefly argued that the method extends to exact arithmetic, but without
elaborating on the underlying algebraic computations or the handling of degen-
eracies. In (Ramanathan and Gurumoorthy, 2003), the boundary of the sites
is traced with a prescribed precision, while Ramamurthy and Farouki (1999a)
suggest working with lower-degree approximations of bisectors of curved sites.
Finally, error-bounded bisector approximations of planar NURBS for the case
of non-intersecting curves have been considered by Seong et al. (2008) and their
implementation runtimes are within a couple of seconds for up to three sites.
See also (Kim et al., 2001) for the Voronoi diagram of circles, which maintains
topological consistency but not geometric exactness.

Curve-curve bisectors of parametric curves are considered in medial axis
computations. In (Aichholzer et al., 2009) the medial axis of a simply con-
nected planar domain is computed, using a divide and conquer algorithm. The
boundary of the domain is approximated via G1-continuous biarcs. The correct
medial axis up to a predefined input accuracy is computed. The advantage of
this type of approximation is that resulting medial axis is geometrically sta-
ble, exploiting the properties of G1 continuity and the preservation of curvature
maxima.

Few works have studied exact Voronoi diagrams for curved objects. In the
case of circles, the exact and efficient implementation of Emiris and Karavelas
(2006) is now part of (CGAL). There is also the very efficient and robust imple-
mentation of Held (2001), but relies on floating-point computations. For a more
recent implementation that treats (non-intersecting) line segments and circular
arcs, see (Held and Huber, 2009). Conics were considered in (Anton, 2004),
but only in a purely theoretical framework. Moreover, the algebraic conditions
derived were not optimal, leading to a prohibitively high algebraic complexity.
In fact, the approach relied on eigenvector computations, hence was not exact.

Karavelas and Yvinec (2003b) have studied the properties of smooth convex,
possibly intersecting, pseudo-circles in general position. They have shown that
the Voronoi diagram of these sites belongs to the class of abstract Voronoi
diagrams (Klein et al., 1993) and propose an incremental algorithm that relies
on certain geometric predicates.

Our own previous work (Emiris et al., 2008) studied non-intersecting el-

3

lipses, and proposed exact symbolic algorithms for the predicates required by
the incremental algorithm of Karavelas and Yvinec (2003b). Predicates Side-
OfBisector, DistanceFromBitangent were implemented. We established
a tight bound of 184 complex tritangent circles to 3 ellipses (in fact, the result
holds more generally for 3 conics). The upper bound on the number of real
circles is still open, but we have examples with 76 real tritangent circles, when
the ellipses intersect1. Predicate InCircle had been implemented in maple,
and used a different polynomial system than the one in this paper. Some of its
properties had been observed without proof; this is rectified below to yield an
optimal method for resultant computation, using a more suitable polynomial
system.

Emiris and Tzoumas (2008) proposed a certified method for InCircle, rely-
ing on a Newton-like numerical subdivision, which exploited the geometry of the
problem and exhibits quadratic convergence for non-intersecting ellipses, while
for intersecting ones, the convergence is quadratic in general, except some spe-
cial cases where the algorithm converges more slowly. The motivation behind
this approach was to use a fast subdivision algorithm in order to filter out non-
degenerate configurations and revert to slower algebraic algorithms only when
necessary. The implementation made use of the double precision interval arith-
metic library alias2. In this work, we re-implement the proposed subdivision-
based method in c++ using multi-precision floating point arithmetic. Exper-
iments with state-of-the-art generic algebraic software on InCircle (Emiris
et al., 2008), and generic numeric solvers (Emiris and Tzoumas, 2008), imply
that our specialized c++ implementation is much more efficient, both in the
exact as well as in the certified numeric part.

1.2. Our contribution

In this article, which is an improved and finalized version of our work in
Emiris et al. (2009), we extend previous results, that considered only non-
intersecting ellipses, to smooth convex, possibly intersecting, pseudo-circles.
This is the hardest step towards arbitrarily intersecting objects and requires re-
working the predicates, especially InCircle. At the same time, pseudo-circles
are quite powerful. For instance, the Voronoi diagram in free (complementary)
space of a set of arbitrarily intersecting convex objects coincides with the di-
agram of appropriate pseudo-circles (cf. Fig. 12). We propose algorithms for
all necessary predicates and examine the algebraic operations required for an
efficient exact implementation. The algebraic analysis of the required predi-
cates, besides its theoretical importance, sheds light to the intrinsic complexity
of computing with nonlinear objects in an exact way.

To express the Voronoi circle of parametric curves, we introduce a new 5×5
polynomial system, where we trade number of equations and unknowns for poly-

1G. Elber first showed us such examples. Recently, G. Moroz confirmed the same bound
using adaptive sampling methods.

2http://www-sop.inria.fr/coprin/logiciels/ALIAS/

4

nomial degree. Although there is no determinant formula for this resultant, we
exploit the structure of the system to find a succession of Sylvester determi-
nants which eventually yields the resultant. Moreover, this approach bounds
the degree of the algebraic numbers involved. In the case of arbitrary smooth
parametric curves, Cor. 5 provides almost all the extraneous factors of the re-
sultant. In the case of the conics we provide the complete factorization of the
resultant (Th. 3). Our technique is quite general and could be used to other
problems as well.

Finally, we present an implementation3 in c++ for the case of ellipses that
may intersect in pseudo-circles (cf. Fig. 1), extending cgal’s existing imple-
mentation for circles. It spends about 63 sec for the Voronoi diagram of 200
ellipses with few degeneracies. More importantly, it is faster than cgal’s seg-
ment and point Voronoi diagram, when ellipses are approximated by 16-gons
and, respectively, by more than 1000 points roughly.4 This is the first imple-
mentation under the exact computation paradigm for sites more complex than
circles. Our benchmarks demonstrate that carefully implemented algebraic pro-
cedures incur a very reasonable overhead. Our ambition is to support arbitrary
smooth convex objects and we hope CAGD shall benefit from the power of
modern certified computing in the effort of reliable and robust software.

The rest of the paper is organized as follows. The next section introduces
notation, and examines some basic operations on the sites, whereas section 3
studies the predicates of general parametric curves. Section 4 deals with In-
Circle, where we prove certain geometric and algebraic properties that lead to
its efficient implementation. Section 5 presents our c++ implementation along
with benchmarks measuring predicate performance, as well as how it competes
against cgal’s Voronoi diagram for points and polygons, concluding with future
work.

2. Preliminaries

Notation. Our input is smooth convex closed curves given in parametric form.
Smoothness allows the tangent (and normal) line at any point of the curve to be
well-defined. We denote by C(t) a smooth closed convex curve parameterized
by t. We refer to a point p on C(t) with parameter value t̂ by pt̂, or simply
by t̂, when it is clear from the context. By Ct

◦ we denote the region bounded
by the curve C(t). Ct is a smooth convex object (site), so that if p denotes a
point in the plane, p ∈ Ct ⇐⇒ p ∈ C(t) ∪ Ct

◦. When two sites intersect,
we assume that their boundaries have at most two intersections, i.e., they form
pseudo-circles. A curve C(t) is given by the map

C(t) : [a, b] 3 t 7→ (x(t), y(t)) =

(
X(t)

W (t)
,
Y (t)

W (t)

)
, (1)

3http://www.di.uoa.gr/∼geotz/vorell/
4This is for state-of-the-art implementations, as for simpler implementations about 300

points suffice to make them slower.

5

but actual denominators can differ; we use (1) for simplicity in our proofs. Here
X, Y and W are polynomials in Z[t], with degrees bounded by d. Moreover,
a, b ∈ Q ∪ {±∞}. All algorithms, predicates and the corresponding analysis
are valid for any parametric curve, even when the polynomials have different
degrees, though we use (1) for simplicity. We assume that W (t) 6= 0, for any
t ∈ [a, b]. The derivative of a polynomial A(t) with respect to t is denoted by
A′(t). To simplify notation two sites defined by the closed curves C1(t) and
C2(r) will be denoted by Ct and Cr. We do the same for the defining curves,
writing C(t) and C(r). When d = 2 the curves are conics; ellipses and circles
are the only closed convex curves represented. Another example of a curve in

the form of (1) is the bean curve, t 7→ (1+t2

t4+t2+1 ,
t(1+t2)
t4+t2+1).

We represent real algebraic numbers, i.e., the real roots of an integer poly-
nomial, by the so-called isolating interval representation. For such a number α,
this representation consists of a square-free polynomial, say A, which vanishes
on α and an interval, say [a, b], with rational endpoints that contains α and
no other real root of A. The square-free part computation guarantees that the
resulting polynomial does not have multiple roots. The polynomial may not
be irreducible, since to derive an irreducible polynomial we need to perform
factorization, which is a costly operation. In contrast with the computation of
the square-free part which is cheap, as it consists of a GCD computation of a
polynomial and its derivative.

Tangent and normal. Let pt(x(t), y(t)) be a point on the curve C(t). The equa-
tion of the tangent line at pt is (y − y(t))x′(t) − (x − x(t))y′(t) = 0. After the
substitution of the rational polynomial functions of x(t) and y(t), and multipli-
cation of the equation by the denominators, we get a polynomial in Z[x, y, t],
that is linear in x, y and of degree ≤ 2d − 2 in t. The equation of the normal
line at pt is (x− x(t))x′(t) + (y − y(t))y′(t) = 0. As in the case of the tangent,
after substitutions and elimination of the denominators we obtain a polynomial
N(x, y, t) ∈ Z[x, y, t], which is linear in x, y and of degree ≤ 3d− 2 in t.

Properties of pseudo-circles and relative position of sites. Now we characterize
the relative position of sites Ct, Cr, i.e., whether they are separated, inter-
secting, externally or internally tangent, or if one is contained inside the other.
The computation and characterization of all their bitangent lines suffices, due
to the following properties: (i) By definition, Ct, Cr intersect as pseudo-circles
iff they have at most two external bitangent lines. (ii) If one is contained inside
the other, then there are 0 internal bitangent lines, and either 0 (boundaries
separated) or up to a constant number (boundaries tangent) of external bitan-
gent lines. If the number of external bitangent lines is greater than 2, then
the pseudo-circles property is violated; otherwise, sites are internally tangent
at 1 or 2 points. In this case, the pseudo-circles set is not in general position.
We assume that our input is in general position, so that the properties of ab-
stract Voronoi diagrams hold. Detection of internally tangent sites is performed
by picking boundary points on either side of the tangency point, and testing
whether they belong to the interior of the other site. (iii) If the sites do not

6

intersect, then they have 2 internal and 2 external bitangent lines (only one
internal bitangent if they are externally tangent). (iv) Finally, if the sites ad-
mit more than 2 external bitangent lines, then they intersect in more than two
points and then they do not form pseudo-circles.

The same technique decides the relative position of a point and a site since,
if a point is interior to a site, there are no supporting lines tangent to the site.
Consequently, this property is used to identify a site contained inside another,
by considering a boundary point of one of the sites. In the case of conics
(i.e. ellipses) the method of counting and characterizing the bitangents involves
solving a polynomial of degree 4. There are cases where we need to compute
the intersection points of sites Ct,Cr. These are solutions of the resultant
of X(t)W (r) − X(r)W (t) and Y (t)W (r) − Y (r)W (t) with respect to t. This
resultant is a polynomial in r of degree d2.

3. Basic predicates

The insertion of a new site in the Voronoi diagram consists of the following:
(i) Locate the nearest neighbor of the new site, (ii) Find a conflict between
an edge of the current diagram and the new site, or detect that the latter is
does not affect the Voronoi diagram (nor the Delaunay graph), as it is hidden
by other sites (see Sec. 4.4 for a strict definition of hidden sites), (iii) Find
the entire conflict region, defined as that part of the Voronoi diagram which
changes due to the insertion of the new site, and update the dual Delaunay
graph. The randomized complexity of an insertion (in a diagram with n sites) is
O(log2 n) for disjoint sites and O(n) for intersecting or hidden sites. Computing
an exact Voronoi diagram implies that we identify correctly all degenerate cases,
including Voronoi circles tangent to more than 3 sites.

The basic predicates that are used in these steps are: SideOfBisector
that performs nearest neighbor location; DistanceFromBitangent that de-
termines if an infinite (unbounded) edge of the current Voronoi diagram will
be modified, which can also be used to determine the existence of a Voronoi
circle (Sec. 4.4); InCircle that determines if a vertex of the current Voronoi
diagram is in conflict with the newly inserted site; EdgeConflictType which
determines which part of an existing edge of the current Voronoi diagram will
be modified due to the insertion of a new site. We briefly analyze predicates
SideOfBisector and DistanceFromBitangent (abbreviated by SoB and
DFB from now on). For a more elaborate analysis the reader may refer to
(Emiris et al., 2009). Predicate InCircle is presented separately in the next
section due to its higher complexity.

3.1. SideOfBisector

Given a site Ct and a point q in the plane, their (signed) distance equals
minx∈C(t)||q − x|| when q 6∈ Ct and −minx∈C(t)||q − x|| when q ∈ Ct, where
|| · || denotes the Euclidean norm. The absolute value of the distance equals
the radius of the smallest circle centered at q tangent to Ct. Given two sites

7

q

C(t)

C(r)

pt̂
pr̂

N(q1, q2, r̂)
N(q1, q2, t̂)

q′

C(t)

C(r)

C(s)

Figure 2: Left: Deciding SideOfBisector; Right: Deciding DistanceFromBitangent

Ct and Cr and a point q = (q1, q2) ∈ Q2, this predicate decides which site is
closest to the point. If q 6∈ Ct and q ∈ Cr, then q is closer to Cr, due to the
signed distance (cf. point q′ in Fig. 2 left), otherwise, we compute the (squared)
lengths of segments qpt̂ and qpr̂ as algebraic numbers and compare them. Let
ζ denote the squared length of segment q pt̂, where pt̂ = (x(t), y(t)), for t = t̂.
Then we have that ζ − (x(t)− q1)2 − (y(t)− q2)2 = 0. Recall (from Sec. 2) the
equation of the normal line passing through q satisfying N(q1, q2, t) = 0. We
can eliminate t from these two equations by computing R(ζ) = Rest(ζ − (x(t)−
q1)2 − (y(t) − q2)2, N(q1, q2, t)) (i.e. the resultant of the two polynomials with
respect to t). This yields a polynomial R ∈ Z[ζ], of degree 3d− 2, the smallest
positive real root of which is equal to ‖q − pt̂‖2.

The degree of the real algebraic numbers involved in the predicate is 3d− 2.
For conics, this degree becomes 4, and is optimal, as shown in (Emiris et al.,
2008), where it was obtained using the pencil of two ellipses. Note that we do
not compute the bisector of the two curves. The parametric bisector of two
rational parametric curves is a bivariate polynomial of degree 4d − 2 in each
variable, while in the cartesian space (as a polynomial in x, y) the degree is
even higher (see Elber and Kim (1998) and Emiris et al. (2008) for the case of
ellipses). Therefore, the approach presented here is preferred, as we are dealing
with algebraic numbers of lower degree.

3.2. DistanceFromBitangent

Consider two sites, Ct and Cr, and their bitangent line, which leaves both
sites on the right-hand side, as we move from the tangency point of C(t) to the
tangency point of C(r); such a bitangent appears in Fig. 2 right and is called a
CCW bitangent line, because it can be considered as a circle of infinite radius
oriented in CCW direction. This line divides the plane into two halfplanes and
DFB decides whether a third site, Cs, lies in the same halfplane as the other
two. The realization of this predicate consists in deciding the relative position
of Cs with respect to the bitangent line. We define the outcome of the predicate
to be negative, that is DFB(Ct,Cr,Cs) < 0, iff Cs does not lie in the same

8

halfplane as Ct and Cr with respect to the CCW bitangent line. We split the
problem to two sub-problems: compute the external bitangent of interest, and
decide the relative position of the third site with respect to this bitangent.

To compute all bitangents of C(t), C(r), we consider the equation of a tan-
gent line to C(t) that also crosses C(r). For the line to be tangent to both sites,
the discriminant of the corresponding polynomial should vanish. Among the
real roots of the discriminant are the values of the parameter that correspond
to the tangency points, which allow us to compute the implicit equations of
the bitangent lines. We characterize the bitangents as external or internal by
computing their relative position with respect to (rational) points inside the
sites.

To decide the position of Cs with respect to the CCW bitangent line, we first
check if the line crosses Cs. If this is the case, then the predicate is answered
immediately, since Cs cannot lie within the same halfplane as Ct and Cr. If this
line does not cross Cs, then to decide in which halfplane Cs lies, it suffices to
compute the sign of the evaluation of the polynomials of the bitangent over an
interior (rational) point of Cs. To check whether the bitangent line crosses Cs,
we consider the tangency points of all the bitangents of C(t) and C(s), shown
with circular marks in Fig. 2 right. We then decide the position of Cs by the
ordering of the aforementioned points and the tangency point of the bitangent
and C(t), shown with solid circular mark in the same figure. The algebraic
numbers considered in this predicate are of degree ≤ 4(d− 1)2.

The predicates examined so far, apart from the computation of the Voronoi
diagram, can also be used for the computation of the convex hull of smooth
convex pseudo-circles.

4. InCircle

This section introduces a polynomial system for expressing the Voronoi cir-
cle, leading to a robust and fast implementation. Each point q on a Voronoi
edge that is equidistant to two sites Ct and Cr is the center of a disk tangent
to the boundaries C(t) and C(r) of the sites. This disk is called an internal
bitangent Voronoi disk, if it is contained in Ct ∩Cr and an external bitangent
Voronoi disk, if it lies in the complement of Ct

◦ ∪ Cr
◦. Similarly, a Voronoi

vertex equidistant from three sites Ct, Cr and Cs, is the center of a disk tangent
to the boundaries of Ct, Cr and Cs. Such a disk is called an internal tritan-
gent Voronoi disk, if it is contained in Ct ∩Cr ∩Cs and an external tritangent
Voronoi disk , if it lies in the complement of Ct

◦ ∪Cr
◦ ∪Cs

◦.
Given sites Ct, Cr, Cs in this order, we denote their associated Voronoi disk

by Vtrs iff their tangency points on the disk are in CCW direction. In this case,
Vtrs is a CCW Voronoi disk, and Vtsr is a CW Voronoi disk. Since the Voronoi
diagram of smooth convex pseudo-circles is an abstract Voronoi diagram, given
3 sites, there may exist at most one CCW Voronoi disk and at most one CW
Voronoi disk (cf. Fig. 6, where sites Ct,Cr,Cs correspond to ellipses 1,2 and 3
resp.). Note that the boundary of the Voronoi disk is the Voronoi circle.

9

Ct

Cr

Cs

C

Vtrs

Ct

Cr

Cs

C

Vtrs

Figure 3: Conflict of site C with the external Voronoi disk (left) or with the internal one
(right) of Ct, Cr and Cs. Solid line: Voronoi edges. Dotted line: Subset of the Voronoi
diagram that is in conflict with C

Point q on the Voronoi diagram and site C are in conflict if the Voronoi disk
associated with q is an internal Voronoi disk contained in C◦, or an external
Voronoi disk intersecting C◦ (cf. Fig. 3). Given sites Ct, Cr, Cs, let Vtrs be
their Voronoi disk and C be a query site. If Vtrs is an external Voronoi disk, we
say that C is in conflict with Vtrs if Vtrs is intersecting C◦. If Vtrs is an internal
Voronoi disk, we say that C is in conflict with Vtrs if Vtrs is included in C◦.
This type of conflict is called vertex conflict, because when a newly inserted site
C is in conflict with a Voronoi disk, the center of that disk corresponds to a
Voronoi vertex that will no longer exist in the new Voronoi diagram, as shown
in Fig. 3.

InCircle decides if a newly inserted site C is in conflict with Vtrs. A
degeneracy arises when C is also tangent to Vtrs. Given that Vtrs exists, the
predicate is computed as follows: (i) Solve the algebraic system that expresses
the Voronoi circle. Among the solutions (which correspond to various tritangent
circles, cf. Fig. 4 right), find Vtrs. (ii) Determine the relative position of C with
respect to Vtrs. Each step is explained in the subsections that follow.

4.1. Computing the Voronoi circle

The polynomial system expressing all circles tangent to Ct, Cr, Cs is:

N(x, y, t) = N(x, y, r) = N(x, y, s) = Mtr(x, y, t, r) = Mts(x, y, t, s) = 0 (2)

and has a mixed volume of 512 for the case of conics, which immediately provides
an upper bound on the number of roots in C∗. The first 3 equations correspond
to normals at points t, r, s on the 3 given sites. All normals go through the
Voronoi vertex (x, y). The last two equations are linear in x, y and force (x, y)
to be equidistant from the sites: each one corresponds to the (perpendicular)
bisector of the segment between two footpoints (cf. Fig. 4 left). This system
was also used by Ramamurthy and Farouki (1999a). Elimination of x, y from
Mtr(x, y, t, r), N(x, y, t), N(x, y, r) yields the bisector of two sites with respect
to t, r. System (2) shall be solved over R, thus yielding a set of solution vectors
in R5. Only one solution vector corresponds to Vtrs. There exist solution vectors

10

N(x, y, t)

N(x, y, r)

N(x, y, s)

Mtr

Mts
t̂

r̂

ŝ

C(t)

C(r)

C(s)

C(t)

C(r)

C(s)

Figure 4: Left: An external tritangent circle; Right: Various tritangent circles. Dotted line:
CCW(t,r,s), Dashed line: CW(t,r,s)

with CCW orientation of the tangency points, and solution vectors with CW
orientation which do not correspond to the Voronoi circle we are looking for.
They just correspond to some tritangent circle (cf. Fig. 4 right).

The resultant of n+1 polynomials in n variables is an irreducible polynomial
in the coefficients of the polynomials which vanishes iff the system has a complex
solution. Irreducibility occurs for generic coefficients; otherwise, resultants can
be factorized. In particular, sparse (or toric) resultants express the existence of
solutions in (C∗)n (Cox et al., 2005). We employ vectors α = (α1, . . . , αn) ∈ Nn,
where |α| is the 1-norm and we write xα for Πix

αi
i .

Proposition 1. We are given polynomials F0, . . . , Fn ∈ K[x1, . . . , xn] over a
field K, such that Fi =

∑
0≤|α|≤di ui,αx

α is of total degree di, where 0 ≤
i ≤ n. Their resultant with respect to x1, . . . , xn is homogeneous of degree
d0 · · · dj−1dj+1 · · · dn in uj,α, where 0 ≤ |α| ≤ dj, and j ∈ [0, n]. This means, for
any λ ∈ K, that Res(F0, . . . , λFj , . . . , Fn) = λd0···dj−1dj+1···dn Res(F0, · · · , Fn).
The total degree of the resultant is

∑n
j=0 d0 · · · dj−1dj+1 · · · dn.

Lemma 2. Let f(x) = T 2anx
n+Tan−1x

n−1+
∑n−2
i=0 aix

i and g(x) = T 2bnx
n+

Tbn−1x
n−1 +

∑n−2
i=0 bix

i. Then the resultant of f and g with respect to x is a
multiple of T 4.

Proof. Let S be the 2n× 2n Sylvester matrix of f, g with respect to x. Their
resultant equals detS. We shall exploit its properties (for a more elaborate
proof, with matrices shown see (Tzoumas, 2009, p. 89)). Denote by Si the new
matrix S after step i: Divide the first two columns by T 2 and T respectively
and get |S| = T 3|S1|. Then, divide rows 2 and n+ 2 by T and rows i and n+ i,
3 ≤ i ≤ n by T 2 and get |S| = T 5T 2(n−2)2|S2|. Now, multiply column 4 by
T and columns 5 to 2n by T 2 to remove denominators, thus obtaining |S| =
T 5T 2(2n−4)T−1T (−2)(2n−4)|S3| ⇐⇒ |S| = T 4|S3|. �

11

It is impossible to compute the resultant of 5 arbitrary polynomials as a de-
terminant, so we apply successive Sylvester determinants, i.e., optimal resultant
formulae for n = 1. This typically produces extraneous factors but, by exploiting
the fact that some polynomials are linear, and that none contains all variables,
we shall provide the complete factorization of the computed polynomial; we fo-
cus on conics for simplicity, but our approach holds for any parametric curve.
We denote by Π(t) the resultant of (2) when eliminating all variables except t:
it is, generally, an irreducible univariate polynomial and vanishes at the values
of t that correspond to the complex tritangent circles. Recall that the curves
are defined by (1).

Theorem 3. If Π(t) is the resultant of (2) as above, then Resxy(R1, R2, N(x, y, t)) =
Π(t)W (t)40(Y (t)W ′(t)−Y ′(t)W (t))36, where, R1 = Resr(Mtr(x, y, t, r), N(x, y, r)),
R2 = Ress(Mts(x, y, t, s), N(x, y, s)) and the degree of Π is 184.

Proof. All polynomials belong to Z[x, y, t, r, s]: we shall eliminate x, y, r, s to
obtain the univariate resultant in Z[t]. Polynomials N(x, y, t), N(x, y, r), and
N(x, y, s) are of total degree 5, linear in x, y and of degree 4 in the parameter.
Polynomials Mtr(x, y, t, r) and Mts(x, y, t, s) are of total degree 9, linear in x and
y and of degree 4 in the parameters. First, we eliminate r from Mtr(x, y, t, r)
and N(x, y, r): R1(x, y, t) = Resr(Mtr(x, y, t, r), N(x, y, r)). It is of total de-
gree 22, of degree 6 in x, in y, and in x, y, and 16 in t. We do the same for
Mts(x, y, t, s), N(x, y, s) and obtain: R2(x, y, t) = Ress(Mts(x, y, t, s), N(x, y, s)),
which follows the same degree pattern. It remains to compute the final polyno-
mial in Z[t]: R3(t) = Resx,y(R1(x, y, t), R2(x, y, t), N(x, y, t)).

Let N(x, y, t) = D(t)y + A(t)x + C(t), where D(t) = W (t)(Y (t)W ′(t) −
Y ′(t)W (t)) of degree 4. To compute R3, we solve N(x, y, t) for y and substitute
in R1, R2. This introduces denominators, eliminated by multiplying by D(t)6.
Then, we take the Sylvester resultant with respect to x (denominator D(t)
vanishes if N(x, y, t) is vertical; in this case, we compute R3 by solving N(x, y, t)
for x and proceed symmetrically with the resultant with respect to y). We apply
prop. 1 as follows:

Resxy(D6R1, D
6R2, y + Ax+C

D) = D36D36Resxy(R1, R2, y + Ax+C
D) =

= D36Resxy(R1, R2, D(y + Ax+C
D)) = D36R3.

(3)

By prop. 1, the degree of the resultant in t is 16(6·1)+16(6·1)+4(6·6) = 336.
The previous discussion implies that (W (t)(Y (t)W ′(t)−Y ′(t)W (t)))36, the lead-
ing coefficient of y in N(x, y, t), appears as an extra factor. After substitution
of y in R1 and R2, we obtain polynomials of the form W (t)2c6x

6 +W (t)c5x
5 +

c4x
4 + c3x

3 + · · ·+ c0. Lemma 2 implies the resultant of two such polynomials
contains W (t)4 as a factor. Therefore, the degree of Π is 336−4 ·36−2 ·4 = 184.
�

This theorem provides an upper bound of 184 complex tritangent circles to
3 conics. Numeric examples show that the bound is tight. This bound was also
obtained in (Emiris et al., 2008) using a different system. Now, we describe the
factorization for arbitrary degree curves based on prop. 1.

12

Corollary 4. We are given R0, R1, R2 ∈ K[x, y], where the total degree of R1

and R2 is n in x, in y, and in x and y together, and R0 = Dy+Ax+C, where
AD 6= 0, then Resx(Resy(R0, R1),Resy(R0, R2)) = Dn2

Resxy(R0, R1, R2).

Corollary 5. The degree of the resultant of (2) for general parametric curves,
as in (1), is bounded by (3d − 2)(5d − 2)(9d − 2), after dividing out the factor

of (W (t)(Y (t)W ′(t)− Y ′(t)W (t)))(5d−2)
2

.

A more careful analysis may exploit term cancellations to yield a tighter bound.
If we solve the resultant of system (2), we obtain one coordinate of the

solution vectors (in isolating interval representation). There are methods to
obtain the other variables, too. For instance, plugging a value of t in the bisector
of Ct and Cr allows us to find r (cf. Sec. 4.2). The resultant allows us to detect
degenerate configurations: 4 sites tangent to the same Voronoi disk. Consider
triplets Ct, Cr, Cs and Ct, Cr, Ch. Let Π1(t),Π2(t) be the resultants of (2)
respectively. If the triplets admit an identical Voronoi circle, then gcd(Π1,Π2) 6=
1. If gcd(Π1,Π2) 6= 1, the triplets may have an identical solution vector, which
is verified by looking at the other coordinates analogously to (Emiris et al.,
2008).

4.2. Choosing the proper solution

We consider the question of choosing, among all solutions of the polynomial
system corresponding to the tangency points (t̂, r̂, ŝ) of a tritangent circle, the
one that corresponds to Voronoi circle Vtrs. To eliminate irrelevant solutions,
consider tangency points pt̂, pr̂, pŝ for a solution triplet t̂, r̂, ŝ. The tangency
points corresponding to Vtrs satisfy CCW(pt̂, pr̂, pŝ) and we disregard the rest
of the solution vectors.

Now we distinguish an external and an internal tritangent circle from the
rest of the tritangent circles. The tangency points define the former iff the
tangent line of the Voronoi circle at each tangency point separates its adjacent
site from the other two tangency points, see Fig. 4 left. Even if the tangent
line intersects the other sites (not shown in the example), the tangency points
are still separated. Checking that the tangency points correspond to an internal
circle is more complex, because an argument symmetric to the external case (i.e.
the internal tritangent circle is such that all three tangency points are on the
same side of the tangent line as the site, and inside the site) does not apply, due
to the fact that the internal tritangent circle may be “locally” inside the curve,
but not “globally”). Determining whether the tangency points correspond to
an internal circle can be performed by applying the following lemma:

Lemma 6 (Emiris et al. (2009)). Given intersecting sites Ct and Cr, con-
sider their bitangent circle Btr at points t̂ and r̂ respectively with t̂, r̂ ∈ Ct∩Cr.
Then Btr is an internal bitangent circle iff Btr has the smallest radius among all
bitangent circles of C(t) and C(r) tangent at t̂, and the radius of Btr is bounded
by the radius of curvature of C(t) at t̂ and the radius of the self-bitangent circle
of C(t) at t̂.

13

(1) ∅ (3) (0, a) (5) (a, b)

(2) (0, 1) (4) (b, 1) (6) (0, a) ∪ (b, 1)

Figure 5: The six cases for the shadow region of site C (shaded site) with respect to the
bisector (gray line) of two other sites. Voronoi circles are shown in dotted line

Finally, an external bitangent circle Btr can be computed as in (Emiris et al.,
2008), by considering the tangent line at t̂, and the boundary of the convex hull
of t̂ ∪ Cr.

In our implementation, the above properties (computing internal and exter-
nal bitangent circles) are used through an improved version of the subdivision
scheme of (Emiris and Tzoumas, 2008) that converges to the tangency point of
the Voronoi circle. We have incorporated Lem. 6 so that we are able to handle
internal Voronoi circles as well. This way, not only are we able to choose the
proper solution of (2), we can also approximate the root before computing the
resultant. Therefore the resultant is computed only when our approximation
cannot guarantee correctness, i.e., when the precision chosen is not enough, or
when we are in a degenerate case (cf. Sec. 5).

4.3. Deciding conflict

Since the Voronoi circle is expressed algebraically, it is not clear how to
decide its relative position with respect to the query site, i.e., how to apply the
method of Sec. 2. There is an interesting geometric property that allows us to
determine a conflict by comparing tangency points on the boundary of one site.
These points have “easy” representation as roots of the resultant of system (2).

Definition 7. The shadow region Str(C) of a site C with respect to the bisector
B(t, r) of two sites Ct and Cr is the locus of points q of B(t, r) that are in
conflict with C.

Alternatively, the shadow region can be seen as the part of the Voronoi diagram
of two sites that will disappear (i.e., the part of the bisector that will be inval-
idated) due to the insertion of a third site. An important property of abstract
Voronoi diagrams is that the bisector of two sites is homeomorphic to the open

14

interval (0,1) and the shadow region has one out of six possible forms: ∅, (0, 1),
(0, a), (b, 1), (a, b) and (0, a) ∪ (b, 1), where a, b ∈ (0, 1) (Karavelas and Yvinec,
2003b; Klein et al., 1993), as shown in Fig. 5.

Only endpoints of the shadow region that are not equal to 0 or 1 correspond
to centers of circles Vtrh and Vthr. Therefore, no Voronoi circles exist in cases
(1) and (2) of Fig. 5. Only Vthr (resp. Vtrh) exists (assuming that Ct, Cr, Ch

correspond to top site, bottom site and the shaded site of Fig. 5) in cases (3)
and (4). Finally, both Voronoi circles exist in cases (5) and (6). Cases (2), (4)
and (6) of Fig. 5 imply that DFB(Ct,Cr,Ch) < 0. This is so, because insertion
of a third site which is in conflict with the CCW bitangent line, invalidates a
part of the bisector that goes to infinity, as shown in the figure.

Table 1 (columns C–H) shows all possible combinations for the shadow
region, and the evaluation of DFB. These combinations imply in turn the form
the Voronoi diagram of three sites, as shown in Fig. 6.

Lemma 8. The possible combinations for the shadow region of three sites are
those presented in Table 1.

Proof. Consider all permutations of 3 sites Ct, Cr, Ch. There are two permu-
tation groups generated by cyclic permutations of (CtCrCh) and (CtChCr).
Due to symmetry, it suffices to consider only one of the two, since the bisector
of two sites is independent of the order in which the sites are considered. How-
ever for the oriented bisector (mapped to (0,1)), points at infinity are reversed.
Therefore we have the following equivalences:
Str(Ch) = ∅ ⇔ Srt(Ch) = ∅, Str(Ch) = (0, 1)⇔ Srt(Ch) = (0, 1),
Str(Ch) = (0, a)⇔ Srt(Ch) = (b, 1), Str(Ch) = (b, 1)⇔ Srt(Ch) = (0, a),
Str(Ch) = (a, b)⇔ Srt(Ch) = (a′, b′),
Str(Ch) = (0, a) ∪ (b, 1)⇔ Srt(Ch) = (0, a′) ∪ (b′, 1).

Next, we show that a form of Str(Ch) implies a form of Srh(Ct) and a form
of Sht(Cr). For each permutation in the cyclic group, consider the shadow re-
gion of the third element with respect to the first two. That is for the cyclic
group (CtCrCh) we consider (Str(Ch), Srh(Ct), Sht(Cr)), cf. columns C,E,G
of Tab. 1. Due to the cyclic symmetry, all cyclic permutations of the shadow re-
gion forms are possible. Therefore, if we prove that (Str(Ch), Srh(Ct), Sht(Cr))
can be (∅, ∅, (0, 1)), then it can also be (∅, (0, 1), ∅) or ((0, 1), ∅, ∅) (cf. rows 1
and 2 of the table).

Rows 1 and 2 of Table 1. Let Str(Ch) = ∅. Then, Srh(Ct) and Sht(Cr) are
equal to either ∅ or (0, 1). If this was not the case, there would exist an endpoint
of some shadow region, not equal to 0 or 1, which would be associated with
a (tritangent) Voronoi circle. Such circles are always associated with points
of the shadow region inside (0,1). This is a contradiction, since Str(Ch) =
∅. Moreover, it has to be that Srh(Ct) 6= Sht(Cr). Because if Srh(Ct) =
Sht(Cr) = ∅, then the Voronoi diagram of the three sites consists of three
non-intersecting infinite edges (bisectors). This subdivides the plane into four
disjoint cells associated with three sites, which forces a Voronoi cell of some
site to consist of two disjoint cells according to the pigeonhole principle. This

15

is a contradiction, because every Voronoi cell is connected in abstract Voronoi
diagrams. Similarly, if Srh(Ct) = Sht(Cr) = (0, 1), then the Voronoi diagram
consists of a single bisector that subdivides the plane in two cells. This is a
contradiction, since each site should be associated with a different Voronoi cell.
Therefore, the only possible cases of the shadow region are those presented in
rows 1 and 2 of Tab. 1.

Rows 3 and 4 of Table 1. Let Str(Ch) = (0, a). Then, the endpoint a is associ-
ated with a Voronoi vertex which is the center of a Voronoi circle. Since there
exists only one Voronoi vertex, the form of Srh(Ct), and Sht(Cr), is either (0, a)
or (b, 1); as it has to contain exactly one endpoint which is not at infinity. It
follows that Srh(Ct) = Sht(Cr) = (0, a), because Str(Ch) = (0, a) ⇒ the part
(0, a) of the oriented bisector of Ct and Cr is destroyed ⇒ part (a, 1) remains
⇔ part (0, a) of the oriented bisector of Cr and Ct remains⇒ part (0, a) of the
oriented bisector of Cr and Ch is destroyed⇒ Srh(Ct) = (0, a). This argument
justifies line 3 of Tab. 1 and by symmetry, line 4.

Rows 5 and 6 of Table 1. Let Str(Ch) = (a, b). Since there exist exactly two
Voronoi vertices, the form of Srh(Ct) and Sht(Cr) is either (a, b) or (0, a)∪(b, 1);
as it has to contain two endpoints not at infinity. If Srh(Ct) = Sht(Cr) = (a, b),
then the Voronoi diagram consists of 3 infinite bisectors of two connected com-
ponents, whose finite endpoints coincide pairwise (If this was not the case, then
we would have more than 2 Voronoi vertices, which a contradiction). This is also
not possible as those 3 infinite bisectors would subdivide the plane into 5 cells,
while the Voronoi diagram of the three sites has only 3 cells. In the same spirit,
if Srh(Ct) 6= Sht(Cr) and Srh(Ct) = (0, a) ∪ (b, 1), then the Voronoi diagram
consists of 2 infinite bisectors of two connected components, the finite endpoints
of which coincide pairwise, and 1 finite bisector connecting the endpoints of the
other two. Such a Voronoi diagram contains 4 cells which is again a contra-
diction. Therefore, Srh(Ct) = Sht(Cr) = (0, a) ∪ (b, 1) that yields a Voronoi
diagram with 3 cells. This justifies lines 5 and 6 of Tab. 1 and concludes the
proof. �

The total number of cases in Tab. 1 is 8. Is suffices to evaluate DFB on the
cyclic permutations of three sites to determine the form of the shadow region,
as well as to compute the number of Voronoi circles (i.e. the number of vertices
of the Voronoi diagram of three sites), cf. columns (A,B) of Tab. 1. Up to this
point, we have silently assumed that all three sites contribute to the Voronoi
diagram (i.e. there are no hidden sites). In Sec. 4.4, we present an approach to
handle hidden sites, as well.

Lemma 9. Vertex conflict can be decided by looking at the ordering of the tan-
gency points of Voronoi circles Vtrs, Vtrh and Vthr on C(t).

Proof. It follows from def. 7 and the fact that Voronoi circles are associated
with the endpoints of the shadow region. �

16

A B C D E F G H
∃Vtrh ∃Vthr Str(Ch) trh Srh(Ct) rht Sht(Cr) htr

1 0 0 ∅ 0 ∅ 0 (0, 1) 1
0 (0, 1) 1 ∅ 0

2 0 0 (0, 1) 1 ∅ 0 ∅ 0

3 0 1 (0, a) 0 (0, a) 0 (0, a) 0

4 1 0 (b, 1) 1 (b, 1) 1 (b, 1) 1

5 1 1 (a, b) 0 (0, a) ∪ (b, 1) 1 (0, a) ∪ (b, 1) 1

6 1 1 (0, a) ∪ (b, 1)
1 (0, a) ∪ (b, 1) 1 (a, b) 0
1 (a, b) 0 (0, a) ∪ (b, 1) 1

Table 1: Shadow region computation. trh stands for DFB(Ct,Cr,Ch) < 0 (resp. rht and
htr)

To conclude, EdgeConflictType determines the type of the conflict-region,
by computing the type of intersection of each edge of the Voronoi diagram (rep-
resented by an interval [a, b]) with the shadow region. This type of intersection
is called edge conflict type. Like shadow region, the edge conflict type may have
one out of six possible forms: ∅, (a′, b′), [a, b′), (a′, b], [α, b′) ∪ (a′, b] and [a, b].

4.4. Existence

At some parts of the algorithm, it is required to know whether the CCW
Voronoi circle Vtrs exists or not, for example to determine the type of shadow
region, in order to decide how to update the diagram upon insertion of a new
site. This is a generalization of the Existence predicate (Emiris and Karavelas,
2006) to pseudo-circles.

There is a straightforward way to determine if Vtrs exists. Solve the algebraic
system and look for Vtrs. If it is not found, then we may conclude that Vtrs does
not exist. However, this is non-practical and we have already shown that we
can decide whether a Voronoi circle exists or not, using only the DFB predicate.
Here we show that we can also determine its type (i.e. external or internal).

Clearly, when sites do not intersect, there cannot exist an internal Voronoi
circle. When sites intersect in pseudo-circles, we first have to determine whether
a site is hidden by one or more other sites. This is performed by a process called
medial axis location, described in (Karavelas and Yvinec, 2003b). We mention
it here for completeness, along with some issues concerning the implementation.
Let M(Ct) denote the medial axis of site Ct. We say that a point p of M(Ct)
is covered by some site Ci if the maximal disk in Ct centered at p is included in
the interior Ci

◦. If all points M(Ct) are covered, we say that site Ct is hidden
and all sites Ci that have been covering points of M(Ct) form a covering set
of Ct. Due to the fact that each point p of M(Ct) is associated with at least
two footpoints on the boundary, C(t), and the fact that the medial axis is a
tree (for simple closed shapes), we can start from a leaf vertex of the medial
axis and represent the covered part by an arc on the C(t). Note that medial
axis location becomes trivial when a site is fully contained in another one, as we
can immediately deduce that it is hidden. Fig. 6 (case 2d) shows an example

17

of three intersecting ellipses where one of them is hidden by the other two and
therefore it does not contribute to the Voronoi diagram.

In the case of ellipses, the medial axis is part of the major axis, more precisely
the segment joining the centers of the circles of maximum curvature (foci of the
ellipse). Due to the pseudo-circles intersection, the covered part of the medial
axis always contains an endpoint (leaf vertex) (Karavelas and Yvinec, 2003a,
Thm. 4), and can therefore be represented by an arc. We use a variation of
system (2) to represent the footpoints of points p that correspond to the covered
part of the medial axis. In the case of ellipses, they are represented as algebraic
numbers of degree 16.

The following lemma combines Tab. 1 and location of medial axis, to cor-
rectly determine the existence and type (internal or external) of Voronoi circles
in the case of hidden sites.

Lemma 10. Given sites Ct, Cr, Cs, let κ be the number of conflicts of DFB,
when evaluated at triplets (Ct, Cr, Cs), (Cr, Cs, Ct) and (Cs, Ct, Cr). Then
(i) If κ < 2 then Vtrs does not exist. (ii) If κ = 2 then: (a) If Ct∩Cr∩Cs = ∅,
then Vtrs exists and is external. (b) Otherwise, Vtrs exists iff there are no hidden
sites and it is internal iff there exists a [t, r, s] sequence of arcs on the boundary
of the intersection (i.e. a CCW sequence of arcs belonging to Ct, Cr and Cs

respectively.) (iii) If κ = 3 then Vtrs exists; it is internal iff Ct ∩Cr ∩Cs 6= ∅.

Proof. (i) κ < 2. From Tab. 1 we see that κ < 2 holds only for cases (1), (2)
and (3), where the shadow region is of the form ∅, (0, 1) or (0, a) respectively.
When the shadow region is ∅ or (0, 1), it is obvious that no Voronoi circle exists.
We see that the remaining case (0, a) is associated with a circle of opposite
orientation (Vtsr). Therefore Vtrs does not exist. See also Fig. 6, case (0),
where sites Ct,Cr,Cs correspond to labels 1,2,3 resp., as well as case (1), where
sites correspond to labels 1,3,2 resp.

(ii) κ = 2. Without loss of generality we may assume that
DFB(Ct,Cr,Cs) ≥ 0 and DFB(Cs,Ct,Cr) < 0 (cf. case (5) of Tab. 1, we
don’t have to consider case (6) since that one is a cyclic permutation of (5)).
(a) Case Ct∩Cr∩Cs = ∅. It is obvious that in this case, Vtrs cannot be internal.
It follows (cf. Fig. 6 case 2a) that Vtrs exists and is external (in fact, the other
Voronoi circle, Vtsr exists as well, since the shadow region is of the form (a, b),
therefore these endpoints have to be associated with a Voronoi circle each.) (b)
Case Ct∩Cr∩Cs 6= ∅. Given the possible cases of the Voronoi diagram of three
sites (Fig. 6 2b, 2c, 2d) we have that if Cs is hidden (figure case 2d) then Vtrs
does not exist; otherwise, if Cs is not hidden, then Vtrs exists, since the shadow
region is of the form (a, b). Vtrs is internal in this case iff there exists a [t, r, s]
sequence of arcs (true for figure case 2b, 2c when sites Ct,Cr,Cs correspond to
labels 1,2,3 resp., but false for figure case 2b, when sites correspond to labels
2,1,3 resp.)

(iii) κ = 3. From Tab. 1 we see that κ = 2 holds only for case (4), where the
shadow region is of the form (b, 1) and Vtrs always exists in this case, since it is
associated with endpoint b of the shadow region. Now if Ct ∩Cr ∩Cs = ∅, Vtrs

18

1

2

3

1

2

3

1

2
3

1

2

3

(0a) (0b) (1a) (1b)

1

2

3

1

2

3

1

2
3

1

2

3

(2a) (2b) (2c) (2d)

Figure 6: Voronoi diagram of 3 ellipses. The vertices of the diagram are centers of internally
or externally tritangent circles. (0) No CCW or CW circle; (1a) Only external CCW circle
(corresponding to order 1-2-3); (1b) Only internal CCW circle; (2a) Both circles exist and are
external; (2b) External CW circle and internal CCW circle; (2c) Both circles exist and are
internal; (2d) No Voronoi circles exist, because ellipse “3” is hidden

should necessarily be external, since it exists. Otherwise, in the case of common
intersection, Vtrs should be internal, because we know that only one Voronoi
circle exists (since it is associated with endpoint b of the shadow region) and
moreover, pairwise bisectors of Ct,Cr and Cr,Cs intersect and their point of
intersection (center of Voronoi circle) lies in the intersection of all three sites
(cf. case (1b) of Fig. 6). �

5. Implementation & experiments

This section describes our efficient, complete, and exact implementation for
ellipses in the plane, possibly intersecting as pseudo-circles (Fig. 1), based on
the algorithms we presented in the previous sections. We exploit the efficiency
of our implementation on various datasets.

Our code is based on the existing cgal Apollonius package for the combina-
torial part of the algorithm. cgal follows the generic programming paradigm
and so the main issue is to implement the predicates for ellipses by generalizing
the ones for circular sites. Some minor modifications in the combinatorial part
of the algorithm are required in order to handle hidden ellipses correctly. A cir-
cle is hidden iff it is contained in some other circle. However, for more general
convex objects, such as ellipses, a site can be hidden without necessarily being
fully contained in another one (cf. Sec. 4.4 and Fig. 6, 2d).

Our implementation requires and extensive set of algebraic and arithmetic
tools, including interval arithmetic, algebraic number representation, multivari-
ate polynomial representation, and multivariate resultant computation. The
most demanding predicate is InCircle and in the sequel we elaborate on the
main design and implementation choices that we incorporate for its realization.

19

To answer quickly non-degenerate cases of InCircle we adopt the subdivision-
based algorithm of (Emiris and Tzoumas, 2008). If a Voronoi circle exists, the
algorithm will converge to it quadratically (although, for arbitrary intersect-
ing smooth curves, when we are interested in an internal Voronoi circle, the
convergence of the subdivision-based algorithm might not be quadratic). We
implement this algorithm using interval arithmetic of multi-precision floating
point numbers that cgal provides through the libraries mpfi and mpfr5. We
no longer rely on alias or mathemagix6 as in Emiris et al. (2009). Using
this subdivision-based algorithm, we avoid solving the underlying polynomial
system exactly using costly algebraic techniques e.g., resultant computations,
and performing the tests of Sec. 4.2. The subdivision step integrates the these
tests and provides a quick and certified evaluation InCircle. At the heart
of the subdivision method we have implemented a univariate interval Newton
solver, that handles polynomials with interval coefficients. This allows us to
solve quickly multivariate equations by plugging in interval approximations for
each variable.

However, when mpfr precision is not sufficient (i.e. when there exists a
degenerate Voronoi circle, tangent to 4 sites), we fall back to the exact alge-
braic method (cf. Thm. 3). Because, even though the subdivision algorithm
can approximate the tangency points that correspond to the Voronoi circle up
to any precision, degenerate cases cannot be decided by merely a subdivision
algorithm (in the case of equal algebraic numbers, the enclosing intervals will
always intersect which makes it impossible to separate the numbers). The resul-
tant provides us the true separation bound (for more details we refer the reader
to (Emiris and Tzoumas, 2008)) and therefore a stopping criterion. This is due
to the fact that the (slower) resultant computation provides a polynomial R(t)
while the subdivision method converges to some root of R without knowledge
of R. In the presence of degeneracies, where equal algebraic numbers are to
be expected, knowledge of the polynomials provides a means to determine such
equality; the subdivision algorithm by itself is insufficient.

Such a combined approach can be seen from a more general perspective.
We perform “difficult” algebraic operations using interval arithmetic as a fil-
ter. When degeneracies or near-degeneracies occur, this leads to uncertain sign
evaluations, that prevent us from deciding the corresponding predicates. In
this case, resultant computations provide us with the necessary information to
decide. They determine the exact number of bits we need to decide the predi-
cate. Almost always, we have to increase the precision by a constant number of
bits, that is orders of magnitudes less than the number of bits predicted by the
theoretical separation bound.

Finally, we have implemented a visualization algorithm for the bisector of
two ellipses. The implicit equation of the bisector has total degree of 28 in the
Cartesian space, that makes it impossible to handle numerically. To overcome

5http://www.mpfr.org/
6http://www.mathemagix.org/

20

this obstacle we trace the equivalent implicit curve in parametric space, where
the degree is 12. This approach works quite well in practice. The bisectors in
Figure 1 were traced and sketched using this visualization routine.

Overall, the design of our software package is generic and distinguishes the
geometric from the algebraic computations. This is an important feature, that
allows us to connect and interact with various algebraic software libraries as
long as certain interface requirements are satisfied. Our final goal is to submit
our implementation as a cgal package, making it an official part of the library
in one of the coming future releases.

5.1. Benchmarks

Predicate evaluation. In this section, we present various experimental results.
All runtimes are obtained on a Core 2 Duo (T7200) 2.0GHz machine with 2GB
of RAM, running Debian GNU/Linux 6.0 (Squeeze). We have measured the
performance of SoB, DFB and InCircle with varying bitsize. Fig. 7 (top)
corresponds to ellipses with randomly perturbed coefficients (axes, rotation and
center of ellipses) by adding/subtracting 10−e, where e varies. This forces the
polynomials computed during each predicate evaluation to have coefficients of
very large bitsize, since these coefficients depend on the input coefficients (axes,
rotation, center) which are now perturbed. All runtimes appear to grow sub-
quadratically (almost linearly in non-degenerate cases) in e. This is expected
since SoB, DFB have constant arithmetic complexity (in terms of the bitsize
of the polynomials that occur in the computations). Looking closely at Fig. 7,
we see that non-degenerate and degenerate cases for SoB and DFB are decided
extremely fast; it takes about 1 sec for input coefficients of 1600 bits (DFB
is decided somewhat faster than the other ones). However, runtimes for near-
degenerate cases scale more rapidly due to the fact that near-degenerate cases
trigger a big number of subdivision steps for comparing algebraic numbers. For
example, we decide in about 20 sec when the coefficients have 1600 bits. We
should point out that our Algebraic Kernel benefits from constant arithmetic
complexity algorithms for computing with algebraic numbers of degree up to 4,
as they are implemented in mathemagix. Unfortunately such algorithms are
yet to be found for higher degree numbers.

The performance of the first two predicates in near-degenerate cases is equiv-
alent to that of InCircle in both non-degenerate and near-degenerate cases.
This comes as no surprise, because the implementation of InCircle always uses
a subdivision-based scheme to quickly approximate the solution of system (2).

We have measured the time needed for the subdivision algorithm to reach a
precision of 2−b, using mpfr floats, in Fig. 8 top (top and right axes). The x axis
shows the number b/1000, i.e., the precision achieved in Kbits. Since the algo-
rithm exhibits quadratic convergence, it computes τ bits in O(log τ) iterations.
Standard floating point precision (53-bits) is achieved in about 30 msec (and
7 iterations, due to the quadratic convergence), and 1 sec suffices for almost
6000 bits of precision (14 iterations), whereas a 50-Kbit approximation takes
about 40 sec (17 iterations). This shows that while one can achieve enormous
precision, the theoretical separation bound of several million bits (Emiris et al.,

21

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000

se
co

nd
s

bitsize

SoB ~ 0
SoB = 0
SoB < 0
DFB ~ 0
DFB = 0
DFB < 0

InCircle ~ 0
InCircle < 0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250

se
co

nd
s

bitsize

SoB ~ 0
SoB = 0
SoB < 0
DFB ~ 0
DFB = 0
DFB < 0

InCircle ~ 0
InCircle < 0

Figure 7: Top: Predicate performance, as bitsize b of the perturbed ellipses’ coefficients grows;
Bottom: Magnified portion of the same graph

2008) cannot be attained efficiently, hence the usefulness and the importance
of resultant-based methods. Therefore, in case of degeneracies, the runtime
of InCircle is dominated by the resultant computation, shown in Fig. 8 top
(bottom and left axes). We observe that the resultant computation, even with
10-bit input coefficients, takes about 4 seconds to compute, i.e., 100 times slower
than the subdivision algorithm using standard floating point precision of 2−53.
However, the algorithm is guaranteed to terminate in the case of degeneracies,
while the subdivision scheme will run forever (trying to achieve the separation
bound of several million bits, computing with numbers of huge precision). In
short, both methods have to be combined for an exact, robust and efficient
implementation.

The overall time for the construction of the Voronoi diagram (and the struc-

22

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70
 0

 5

 10

 15

 20

 25

 30

 35

 40
 0 5 10 15 20 25 30 35 40 45 50

se
co

nd
s

se
co

nd
s

bitsize

precision (Kbits)

Resultant
Subdivision

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180 200

se
co

nd
s

of ellipses

Figure 8: Top: Performance of resultant (bottom-left axes) and subdivision (top-right axes);
Bottom: Benchmarking insertion of up to 200 ellipses

ture representing its dual graph) is shown in Fig. 8 bottom. It takes, for instance,
63 sec to compute the exact Voronoi diagram of 200 non-intersecting ellipses.
More importantly, it is about linear in the number of sites. The runtime for
intersecting ellipses is affected heavily by the number of times that location
of medial axis has to be performed, as a resultant is being computed in that
case. This fact suggests that we could benefit again from a subdivision scheme,
as for InCircle. Fig. 9 shows the Voronoi diagram of 15 intersecting ellipses
with 10-bit coefficients, as computed by our implementation. The runtimes vary
between 1 and 5.5 sec. Fig. 6 was also generated by our implementation and
shows a few more instances of intersecting ellipses, i.e., the possible cases of the
Voronoi diagram of 3 ellipses.

Currently, we are trying to parallelize several parts of the implementation
to take advantage of modern multi-core technologies in order to boost perfor-
mance. We have already adjusted the drawing routine of the bisectors. Since

23

(i) (ii)

(iii) (iv)

Figure 9: Runtimes in seconds with several instances of intersecting ellipses: (i) 1.36, (ii) 5.51,
(iii) 1.87, (iv) 2.46

the Delaunay graph is stored in memory, the drawing routine has to visualize
the bisectors one by one. This is currently performed in a parallel loop using
OpenMP7. Parallelization may require modifications to cgal itself. For exam-
ple, the evaluation step in the resultant computation by interpolation which is
performed by the Algebraic Kernel, can be done in parallel. We also perform
some other optimizations like caching the outcome of expensive predicates, in
case they are reused. For instance, during the construction of the diagram, In-
Circle quickly approximates Voronoi circles (i.e. bisector endpoints). These
are stored and are readily available for the drawing routine as starting points
to begin tracing.

Comparing with point approximations. An alternative way to solve problems
with curved sites is to approximate them by simpler objects such as polygons or
even sets of points. However, a good approximation may require a large number
of input sites. Each ellipse is approximated by a constant number of k points
taken uniformly on its boundary (cf. Fig. 10 left and middle). These points

7http://www.openmp.org/

24

Figure 10: Left: Voronoi diagram of 50 ellipses; Middle: Voronoi diagram of 800 points, when
each ellipse is approximated by 16 points; Right: Voronoi diagram of 50 16-gons approximating
each ellipse (800 segments in total)

have rational coordinates, as they are obtained using (1). Using GNU rational
arithmetic8 (Gmpq in cgal), we compare against 4 variations of the incremental
algorithm of cgal for the Delaunay triangulation: (i) without filtering,9 (ii)
with filtering, (iii) with filtering and improved nearest neighbor location: points
are inserted in CCW order for each ellipse, so the Delaunay face of the lastly
inserted point is given as a hint for the insertion routine, (iv) with filtering and
spacial sorting.

Our own implementation for ellipses uses Gmpq but no filtering, except for
InCircle that uses the subdivision-based method. This means that the whole
implementation could be accelerated further if filtering is implemented in all
predicates.

Fig. 11 left presents results concerning 50 ellipses, with k varying from 120
to 1250. We see that the Delaunay graph computation of 50 ellipses is faster for
variations (i),(ii),(iii),(iv) of the Delaunay triangulation of points for k ≥ 120,
k ≥ 160, k ≥ 320 and k ≥ 1250 respectively. The corresponding Delaunay
triangulation have 600, 800, 1600 and 6250 vertices respectively. There are
Delaunay edges corresponding to pairs of points on the same ellipse (with dual
Voronoi edges in the ellipses’ interior). These should be discarded which induces
an extra overhead not measured. This is also true for all but one Delaunay edge
between neighboring ellipses.

8http://gmplib.org/
9Filtering is a technique where the predicates are answered using double arithmetic, falling

back to slower exact arithmetic only when the filter fails to produce an answer. This implies
that there is some mechanism of determining that the outcome of the filter is correct or not.

25

 0

 50

 100

 150

 200

120 160 320 500 1250

se
co

n
d
s

points per ellipse

50 ellipses

Point approx. (unfiltered)

(filtered)

(filtered+NN)

(filtered+spacial)

 0

 20

 40

 60

 80

 100

 120

16 20 64

se
co

n
d

s

segments per ellipse

50 ellipses

Polygon approx. (unfiltered+NN)

Figure 11: Performance of Voronoi diagram computation of 50 ellipses against: Point approxi-
mations with increasing number of points per ellipse (left), vertical axis clipped for readability
(clipped values from left to right: 1369, 622 and 282.8); 50 polygons with increasing number
of edges (right)

curve d time d(Res) bound

Beans 4 530.00 2632 6120
Conics 2 7.90 184 512
B-splines 3 9.20 404 2275
B-splines 2 0.65 93 512

Table 2: Resultant degree for various curves

Comparing with polygonal approximations. We compare against the cgal pack-
age for the segment Voronoi diagram (more precisely, the segment Delaunay
graph, Karavelas (2004).) The cost of an insertion is roughly O(log2 k), where
k is the number of already inserted sites. We replaced each ellipse by a poly-
gon (cf. Fig. 10 left and right). Care has been taken to perform smartly the
nearest neighbor queries. In particular, since each segment is added in CCW
order around each ellipse, a probable nearest neighbor is the lastly inserted seg-
ment. This is given as a hint to the insertion routine. In these benchmarks, the
segment Delaunay implementation uses Gmpq arithmetic and no filtering.

Fig. 11 right shows the time required to construct the Voronoi diagram of
50 ellipses (white bar) and that of 50 polygons approximating each ellipse with
16, 20 and 64 edges (gray bar). Interestingly, the Delaunay graph of polygons
is slower with > 15 segments per ellipse. As the number of edges per ellipse
increases, the squared-logarithmic cost per insertion becomes non-negligible.

Experiments with general parametric curves. While our c++ implementation
covers only ellipses for now, we have applied the proposed approach for the re-
sultant computation on various types of curves using maple. Some preliminary
results are summarized in Tab. 2. The first column shows the type of curve, the
second its degree, the third the time in sec, the fourth the degree of the resul-
tant and the last column shows the (non-tight) bound of our general formula

26

from Cor. 5. First, we took the bean curve and applied simple affine transfor-
mations yielding very small (5-bit) coefficients. We computed the resultant of
such triplets. The long runtimes indicate that working with high-degree curves
requires very efficient implementations in order to be practical. We additionally
considered the case of 3 random conics with small (10-bit) coefficients. In this
case where d = 2, we have a tight bound of 184, while the general formula
yields 512. We also tested the resultant computation on polynomial branches
of degree 2 and 3 (B-splines), with very small (5-bit) coefficients. The runtime
is less than 1 sec for d = 2 and less than 10 sec when d = 3. These experiments
indicate that an efficient exact implementation may still be possible for larger
bitsizes, and we can benefit from the increased flexibility that piecewise func-
tions offer (with a trade-off between the total number of non-linear objects and
the complexity of the algebraic operations).

6. Future work

Our first priority is to submit this work as a cgal package. In the long
run, we plan to adjust our algorithms for the predicates so as to compute the
Voronoi diagram (or the convex hull) of convex sites with richer parametric rep-
resentation, such as piecewise smooth parametric curves like NURBS or splines.
The main issue is to identify efficiently the curve, or piece, which matters, and
to apply the current predicates. This can be achieved quickly by numerical
certified methods, such as our subdivision algorithm for the case of InCircle.
Moreover, existing algorithms regarding Voronoi diagrams of arbitrary (possibly
non-convex) non-intersecting curves (Hanniel et al. (2005); Seong et al. (2008))
may also benefit from our robust and exact approach, as their main computa-
tion is in fact the computation of a junction point of the Voronoi diagram, that
is a Voronoi vertex, which can be expressed by the solution of eq. (2). Finally,
the closely related problem of medial-axis computation can also be attacked by
our techniques, as bifurcation points of the medial axis correspond (in general)
to solutions of system (2). There are already some preliminary results in this
direction (Tzoumas, 2011).

It would be also interesting to study the similarity of the classical Voronoi
diagram of certain classes of sites (i.e. ellipses) with the anisotropic Voronoi
diagram of points, as the latter could provide an alternative means of approxi-
mation.

Another extension would be to remove the pseudo-circles constraint by ap-
plying the idea of Karavelas and Yvinec (2003b): Given two sites Ct and Cr,
then the Voronoi diagram in free space depends only on the arcs appearing on
the boundary of the union of the sites (Fig. 12). This way we can handle arbi-
trarily intersecting objects by treating them as degenerate pseudo-circles (that
are externally tangent in one point). Note that while the Voronoi diagram is
computed in free space (i.e. the complement of the objects’ union), it is sufficient
for a wide range of applications.

27

Figure 12: Handling arbitrarily intersecting convex sites

7. Acknowledgments

I. Emiris is partially supported by Marie-Curie Network “SAGA”, FP7 con-
tract PITN-GA-2008-214584. E. Tsigaridas is partially supported by the EX-
ACTA grant of the National Science Foundation of China (NSFC 60911130369)
and the French National Research Agency (ANR-09-BLAN-0371-01), GeoLMI
(ANR 2011 BS03 011 06), HPAC (ANR ANR-11-BS02-013) and an FP7 Marie
Curie Career Integration Grant. Most of the work of G. Tzoumas was performed
during his postdoc at INRIA Nancy and a smaller part during his PhD at the
National and Kapodistrian University of Athens.

References

Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Rabl, M.,
2009. Medial axis computation for planar free-form shapes. Computer-Aided
Design 41, 339 – 349. Voronoi Diagrams and their Applications.

Alt, H., Cheong, O., Vigneron, A., 2005. The Voronoi diagram of curved objects.
Discr. and Comput. Geometry 34, 439–453.

Anton, F., 2004. Voronoi diagrams of semi-algebraic sets. Ph.D. thesis. The
University of British Columbia.

CGAL, . CGAL: Computational Geometry Algorithms Library.
http://www.cgal.org.

Cox, D., Little, J., O’Shea, D., 2005. Using Algebraic Geometry. Number 185
in GTM, Springer, New York. 2nd edition.

Elber, G., Kim, M.S., 1998. Bisector curves of planar rational curves. Comput.
Aided Des. 30, 1089–1096.

Elber, G., Kim, M.S., Heo, H.S., 2001. The convex hull of rational plane curves.
Graph. Models 63, 151–162.

Emiris, I., Tsigaridas, E., Tzoumas, G., 2009. Exact Delaunay graph of smooth
convex pseudo-circles: general predicates, and implementation for ellipses,
in: SPM ’09: 2009 SIAM/ACM Joint Conf. on Geom. & Phys. Model., San
Francisco, CA, USA. pp. 211–222.

28

Emiris, I.Z., Karavelas, M.I., 2006. The predicates of the Apollonius diagram:
algorithmic analysis and implementation. Comp. Geom.: Theory & Appl. 33,
18–57. Spec. Issue Robust Geom. Algorithms & Implement.

Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M., 2008. Predicates for the exact
Voronoi diagram of ellipses under the Euclidean metric. Intern. J. Computa-
tional Geometry & Applications 18, 567–597. Spec. Issue on SoCG’06.

Emiris, I.Z., Tzoumas, G.M., 2008. Exact and efficient evaluation of the InCircle
predicate for parametric ellipses and smooth convex objects. Comput. Aided
Des. 40, 691–700.

Habert, L., 2005. Computing bitangents for ellipses, in: Proc. 17th Canad.
Conf. Comp. Geom., pp. 294–297.

Hanniel, I., Muthuganapathy, R., Elber, G., Kim, M.S., 2005. Precise Voronoi
cell extraction of free-form rational planar closed curves, in: Proc. ACM
Symp. Solid Phys. Modeling, Cambridge, MA. pp. 51–59.

Held, M., 2001. Vroni: An engineering approach to the reliable and efficient
computation of Voronoi diagrams of points and line segments. Comput. Geom.
Theory Appl. 18, 95–123.

Held, M., Huber, S., 2009. Topology-oriented incremental computation of
Voronoi diagrams of circular arcs and straight-line segments. Comput. Aided
Des. 41, 327–338.

Karavelas, M.I., 2004. A robust and efficient implementation for the segment
Voronoi diagram, in: Proc. Int. Symp. Voronoi Diagrams, pp. 51–62.

Karavelas, M.I., Yvinec, M., 2003a. The Voronoi Diagram of Convex Objects
in the Plane. Research Report RR-5023. INRIA.

Karavelas, M.I., Yvinec, M., 2003b. Voronoi diagram of convex objects in the
plane, in: Proc. Europ. Symp. Algorithms, Springer. pp. 337–348.

Kim, D.S., Kim, D., Sugihara, K., 2001. Voronoi diagram of a circle set from
Voronoi diagram of a point set: II. Geometry. Comp. Aid. Geom. Des. 18,
563–585.

Klein, R., Mehlhorn, K., Meiser, S., 1993. Randomised incremental construction
of abstract Voronoi diagrams. Comput. Geom.: Theory & Appl. 3, 157–184.

Ogarko, V., Luding, S., 2010. Data structures and algorithms for contact detec-
tion in numerical simulation of discrete particle systems, in: World Congress
Particle Technology 6, Nürnberg Messe GmbH, Nuremberg, Germany. CD-
Proceedings.

Ramamurthy, R., Farouki, R., 1999a. Voronoi diagram and medial axis al-
gorithm for planar domains with curved boundaries - II: detailed algorithm
description. J. Comput. Appl. Math. 102, 253–277.

29

Ramamurthy, R., Farouki, R., 1999b. Voronoi diagram and medial axis algo-
rithm for planar domains with curved boundaries I. theoretical foundations.
J. Comput. Appl. Math. 102, 119–141.

Ramanathan, M., Gurumoorthy, B., 2003. Constructing medial axis transform
of planar domains with curved boundaries. Comp.-Aided Design 35, 619–632.

Seong, J.K., Cohen, E., Elber, G., 2008. Voronoi diagram computations for
planar NURBS curves, in: Proc. ACM Symp. Solid & Phys. modeling, NY.
pp. 67–77.

Tzoumas, G., 2009. Computational geometry for curved objects. Voronoi dia-
grams in the plane. Ph.D. thesis. National Kapodistrian University of Athens.

Tzoumas, G., 2011. Exact medial axis of quadratic NURBS curves, in: 27th
Proc. Europ. Workshop Computat. Geometry, Morschach, Switzerland. pp.
91–94.

30

