
HAL Id: hal-00844514
https://hal.archives-ouvertes.fr/hal-00844514

Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Catalogue of architectural patterns characterized by
constraint components, Version 1.0

Tu Minh Ton That, Chouki Tibermacine, Salah Sadou

To cite this version:
Tu Minh Ton That, Chouki Tibermacine, Salah Sadou. Catalogue of architectural patterns charac-
terized by constraint components, Version 1.0. 2013. �hal-00844514�

https://hal.archives-ouvertes.fr/hal-00844514
https://hal.archives-ouvertes.fr


Catalogue of architectural patterns characterized by 

constraint components, Version 1.0 

Technical Report 
IRISA/ArchWare-2013-TR-01 

 

Minh Tu Ton That1, Chouki Tibermacine
2
 and Salah Sadou1  

 
1 IRISA, University of South Brittany, France 

{minh-tu.ton-that, salah.sadou)@irisa.fr 

 
2 LIRMM, CNRS and Montpellier II University, France 

tibermacin@lirmm.fr 

 

Abstract. This report documents a catalogue of architectural patterns built from 

constraint components. Constraint component is a concept used to represent 

architectural constraints by components. It facilitates the reusability, the 

composability and the customizability of architectural constraints. 

This report revises a list of existing architectural patterns in the literature and 

represents them using constraint components.  

1 Introduction 

This report revises a list of existing architectural patterns in the literature and 

represents them using constraint components. Architectural patterns are described in 

terms of unit constraints that assure their aimed characteristics. These unit constraints 

can be reused to compose different architectural patterns. Thus, for each revised 

pattern, we show its constituent unit constraints and for each constraint, we show the 

patterns in which it is reused.  

This document is organized as follows: Section 2 introduces the CLACS profile in 

which constraints are written, Section 3 describes the list of architectural patterns in 

form of constraints, Section 4 goes through the list of constraint components that are 

used to compose patterns, Section 6 presents the list of patterns using constraint 

components. 

2 CLACS profile 

Component-Based Specification of Architectural Constraints (CLACS) UML Profile 

is dedicated to represent architectural constraints using the notion of component. In 

this section we only focus on a part of CLACS Profile that is used to represent the 

component structure of the architecture. In CLACS, a component is an instance of a 

component descriptor. A component has ports which are interaction points. Bindings 

between ports can be defined using connectors. As in Fig. 1, a Component Descriptor 



extends the meta-class Component. A Component Instance extends the meta-class 

Property. This is due to the fact that in the UML Composite Structure Diagram, the 

internal structure of a composite component contains Properties typed by 

Components. A Port extends the meta-class Port. Finally, a Connector extends the 

meta-class Connector.  

. 

 

Fig. 1. Part of the CLACS profile representing the structural organization of components  

For example, considering the following snippet of architectural constraint in OCL 

(Object Constraint Language): 

context ComponentInstance 

inv: self.base_Component.ownedAttribute -> 

select(oclIsTypeOf(CLACSProfile::ComponentInstance)) -> 

size() >= 1 

This constraint simply checks all internal component instances of a component and 

make sure that there are at least one of them. Notice that throughout this report, all the 

constraint components will be written based on CLACS Profile. 

 

3 Pattern catalogue 

This section will go through a list of architectural patterns in the literature. Each 

pattern will be described using textual architectural constraints. The following points 

should be noticed to be able to understand the list: 

Remark 1. For certain patterns, there exist three different variants. The variant 

called Context Independent contains constraints that are applied to all components in 

the architecture. The variant called Hybrid contains constraints that are applied to 

only a part of architecture (in case that the architecture exposes many different 

patterns and we take care of only one of them). The variant called Group contains 

constraints with group granularity. In other words, instead of imposing constraints on 

components we impose constraints on groups of components. 

Remark 2. Variants of patterns and their constituent constraints are numbered. The 

list of numbered constraints will be presented in Section 4. 



Remark 3. We will not re-explain the structure of architectural patterns but directly 

describe their constituent constraints. For more details, the readers are invited to 

revisit the cited sources where patterns are described. 

3.1 Pipes and Filters ([1][2][3]) 

3.1.1 (1) Variant 1 – Context Independent 

(1) Each filter should be connected 

(10) Pipes between each pair of filters should go into the same direction 

(30) There is no cycle between filters  

3.1.2 (2) Variant 2 – Hybrid 

(2) In selected filters, each filter should be connected 

(11) In selected filters, pipes between each pair of filters should go into the same 

direction 

(31) In selected filters, there is no cycle between filters 

3.1.3 (3) Variant 3 – Group 

(3) Each group of filters should be connected 

(12) Pipes between each pair of groups of filters should go into the same direction 

(32) There is no cycle between groups of filters 

3.2 Layers ([1][2][3]) 

3.2.1 (4) Variant 1 – Context Independent 

(1) Each layer should be connected 

(4) Each layer should be connected to at most 2 other layers 

(7) The number of layers that are connected to only 1 other layer is equal to 2 (top 

and bottom layers)  

3.2.2 (5) Variant 2 – Hybrid 

(2) In selected layers, each layer should be connected 

(5) In selected layers, each layer should be connected to at most 2 other layers 

(8) In selected layers, the number of layers that are connected to only 1 other layer 

is equal to 2 (top and bottom layers)  

3.2.3 (6) Variant 3 – Group 

(3) Each group of layers should be connected 

(6) Each group of layers should be connected to at most 2 other groups of layers 

(9) The number of groups of layers that are connected to only 1 other group of 

layers is equal to 2 (top and bottom group of layers)  



3.3 Layered Pipes And Filters 

3.3.1 (7) Variant 1 – Context Independent 

(1) Each filter should be connected 

(4) Each filter should be connected to at most 2 other filters 

(7) The number of filters that are connected to only 1 other filter is equal to 2 (left-

most and right-most filters) 

(10) Pipes between each pair of filters should go into the same direction 

(13) There is exactly 1 filter having only successors 

(16) There is exactly 1 filter having only predecessors  

3.3.2 (8) Variant 2 – Hybrid 

(2) In selected filters, each filter should be connected 

(5) In selected filters, each filter should be connected to at most 2 other filters 

(8) In selected filters, the number of filters that are connected to only 1 other filter 

is equal to 2 (left-most and right-most filters) 

(11) In selected filters, pipes between each pair of filters should go into the same 

direction 

(14) In selected filters, there is exactly 1 filter having only successors 

(17) In selected filters, there is exactly 1 filter having only predecessors  

3.3.3 (9) Variant 3 – Group 

(3) Each group of filters should be connected 

(6) Each group of filters should be connected to at most 2 other groups of filters 

(9) The number of groups of filters that are connected to only 1 other group of 

filters is equal to 2 (left-most and right-most group of filters) 

(12) Pipes between each pair of groups of filters should go into the same direction 

(15) There is exactly 1 group of filters having only successors 

(18) There is exactly 1 group of filters having only predecessors 

3.4 (10) N-tier 

(3) Each tier should be connected 

(6) Each tier should be connected to at most 2 other tiers 

(9) The number of tiers that are connected to only 1 other tier is equal to 2 (top and 

bottom tier) 

(12) Connectors between each pair of tiers should go into the same direction 

(15) There is exactly 1 tier having only successors 

(18) There is exactly 1 tier having only predecessors 



3.5 MVC (the variant that is equivalent to 3-layer pattern) ([1][2]) 

3.5.1 (11) Variant 1 – Context independent 

(1) Each component should be connected 

(7) The number of components that are connected to only 1 other component is 

equal to 2 (first (M) and last (C) component) 

(59) There are exactly 3 component (M, V, C)  

3.5.2 (12) Variant 2 – Hybrid 

(2) In selected components, each component should be connected 

(8) In selected components, the number of components that are connected to only 1 

other component is equal to 2 (first (M) and last (C) component) 

(60) In selected components, there are exactly 3 component (M, V, C) 

3.5.3 (13) Variant 3 – Group 

(3) Each group of components should be connected 

(9) The number of groups of components that are connected to only 1 other group 

of components is equal to 2 (first (M) and last (C) group of components) 

(19) There are exactly 3 groups of components (M, V, C) 

3.6 (14) PAC ([1]) 

(3) Each layer should be connected 

(6) Each layer should be connected to at most 2 other layers 

(9) The number of layers that are connected to only 1 other layer is equal to 2 (top 

and bottom layers) 

(33) Each component in an agent should be connected 

(34) The number of components in an agent that are connected to only one other 

component is equal to two (first (M) and last (C) component) 

(35) There are exactly 3 components in each agent (M, V, C) 

(36) For every agent, there’s only the Controller connected to the outside  

3.7 Pipeline ([1]) 

3.7.1 (15) Variant 1 – Context Independent 

(1) Each filter should be connected 

(4) Each filter should be connected to at most 2 other filters 

(7) The number of filters that are connected to only 1 other filter is equal to two 

(left-most and right-most filters) 

(13) There is exactly 1 filter having only successors 

(16) There is exactly 1 filter having only predecessors 

(27) There's at most 1 pipe between each pair of filters 



3.7.2 (16) Variant 2 – Hybrid 

(2) In selected filters, each filter should be connected 

(5) In selected filters, each filter should be connected to at most 2 other filters 

(8) In selected filters, the number of filters that are connected to only 1 other filter 

is equal to 2 (left-most and right-most filters) 

(14) In selected filters, there is exactly 1 filter having only successors 

(17) In selected filters, there is exactly 1 filter having only predecessors 

(28) In selected filters, there's at most 1 pipe between each pair of filters 

3.7.3 (17) Variant 3 – Group 

(3) Each group of filters should be connected 

(6) Each group of filters should be connected to at most 2 other group of filters 

(9) The number of groups of filters that are connected to only 1 other group of 

filters is equal to 2 (left-most and right-most group of filters) 

(15) There is exactly 1 group of filters having only successors 

(18) There is exactly 1 group of filters having only predecessors 

(29) There's at most 1 pipe between each pair of group of filters 

 

3.8 (18) Indirection Layer ([1]) 

(3) Each layer should be connected 

(9) The number of layers that are connected to only 1 other layer is equal to 2 (left-

most and right-most layers) 

(12) Connectors between each pair of layers should go into the same direction 

(15) There is exactly 1 layer having only successors 

(18) There is exactly 1 layer having only predecessors 

(19) There are exactly 3 layers 

(20) The sub-system layer (3rd) has only predecessors 

(21) Wrappers (in the 2nd layer) must wrap at least one component 

(26) Wrappers (in the 2nd  layer) do not communicate with each other 

3.9 (19, 20, 21) Star (3 variants: Shared Repository pattern, Active 

Repository pattern, Black Board pattern) ([1]) 

(3) Each layer should be connected 

(12) Connectors between each pair of layers should go into the same direction 

(22) There are exactly 2 layers 

(23) The sever layer (2nd) has only predecessors 

3.10 (22) Façade ([1]) 

(3) Each layer should be connected 



(12) Connectors between each pair of layers should go into the same direction 

(22) There are exactly 2 layers 

(23) The 2nd layer has only predecessors (23) 

(37) All components in the client layer (1st) which want to pass through sub-

system layer (2nd) must pass through the facade component 

(38) All predecessors of facade must be in the client layer (1st) 

(39) All successors of facade must be in the sub system (2nd) 

(40) Facade must wrap at least one component 

3.11 (23) Replicated component 

(3) Each layer should be connected 

(6) Each layer should be connected to at most two other layers 

(9) The number of layers that are connected to only one other layer is equal to 2 

(12) Connectors between each pair of layers should go into the same direction 

(15) There is exactly 1 layer having only successors 

(18) There is exactly 1 layer having only predecessors 

(26) Components in the dispatcher layer (2nd) should not be connected to each 

other 

(41) There are 5 layers 

(42) The 5th layer has only predecessors 

(43) Components in the replicated component layer (3rd) should not be connected 

to each other 

(44) Components in the centralizer layer(4th) should not be connected to each 

other 

(45) There are more than one replicated components in the 3rd layer 

(46) Replicated components (3rd layer) should be connected to dispatchers and 

centralizers 

3.12 Ring 

3.12.1 (24) Variant 1 – Context Independent 

(1) Each component should be connected 

(27) There's at most 1 connector between each pair of components 

(47) Each component should be connected to exactly 2 other components 

(50) There is exactly no component  having only successors 

(53) There is exactly no component having only predecessors 

3.12.2 (25) Variant 2 – Hybrid 

(2) In selected components, each component should be connected 

(28) In selected components, there's at most 1 connector between each pair of 

components 

(48) In selected components, each component should be connected to exactly 2 

other components 



(51) In selected components, there is exactly no component  having only 

successors 

(54) In selected components, there is exactly no component having only 

predecessors 

3.12.3 (26) Variant 3 – Group 

(3) Each group of components should be connected 

(29) There's at most 1 connector between each pair of groups of components 

(49) Each group of components should be connected to exactly 2 other groups of 

components 

(52) There is exactly no group of components having only successors 

(55) There is exactly no group of components having only predecessors 

3.13 (27) Legacy Wrapper ([4]) 

(3) Each layer should be connected 

(9) The number of layers that are connected to only 1 other layer is equal to 2 (left-

most and right-most layers) 

(12) Connectors between each pair of layers should go into the same direction 

(15) There is exactly 1 layer having only successors 

(18) There is exactly 1 layer having only predecessors 

(19) There are exactly 3 layers 

(20) The 3rd layer has only predecessors 

(24) There is exactly one legacy wrapper in the 2nd layer 

3.14 (28) Client-Server ([1][2][3]) 

(3) Each layer should be connected 

(12) Connectors between each pair of layers should go into the same direction 

(22) There are exactly 2 layers 

(23) The sever layer (2nd) has only predecessors 

(25) Components in the client layers (1st layer) should not be connected to each 

other 

3.15 (29) Microkernel ([1]) 

(3) Each layer should be connected 

(6) Each layer should be connected to at most 2 other layers 

(9) The number of layers that are connected to only 1 other layer is equal to 2 (left-

most and right-most layers) 

(12) Connectors between each pair of layers should go into the same direction 

(15) There is exactly 1 layer having only successors 

(18) There is exactly 1 layer having only predecessors 

(56) There are exactly 4 layers 



(57) The microkernel layer (3rd) has exactly 1 component (Microkernel) 

(58) The internal server layer (4th) has only predecessors 

3.16 (30) Client-Server with Broker ([2]) 

(3) Each layer should be connected 

(9) The number of layer that are connected to only 1 other layer is equal to 2 (left-

most and right-most layers) 

(12) Connectors between each pair of layers should go into the same direction 

(15) There is exactly 1 layer having only successors 

(18) There is exactly 1 layer having only predecessors 

(19) There are exactly 3 layers 

(20) The server layer (3rd) has only predecessors 

(24) Brokers (in the 2nd layer) must wrap at least 1 components 

(25) Components in the client layer (1st) should not be connected to each other 

3.17 (31) Bus 

(3) Each layer should be connected 

(9) The number of layer that are connected to only 1 other layer is equal to 2 (left-

most and right-most layers) 

(12) Connectors between each pair of layers should go into the same direction 

(15) There is exactly 1 layer having only successors 

(18) There is exactly 1 layer having only predecessors 

(19) There are exactly 3 layers 

(20) The server layer (3rd) has only predecessors 

(24) There is exactly 1 bus (in the 2nd layer) 

(25) Components in the client layer (1st) should not be connected to each other 

 

4 List of constraint components 

This section will go through a list of constraint components used to compose 

patterns. For each constraint component, “CI” at the beginning means Context 

Independent, “H” means Hybrid and “G” means Group 

4.1 (1) CIConnectedComponentsChecker 

Variant type: Context independent 

Semantics: Each component should be connected. 

Configuration: 



 

4.2 (2) HConnectedComponentsChecker 

Variant type: Hybrid 

Semantics: Each component in the selected components should be connected. 

Configuration: 

 

4.3 (3) GConnectedComponentsChecker 

Variant type: Group 

Semantics: Each group of components in the selected components should be 

connected. 

Configuration: 



 

4.4 (4) CILimitedNeighborsChecker 

Variant type: Context independent 

Semantics: Each component should be connected to at most 2 other components. 

Configuration: 

 

4.5 (5) HLimitedNeighborsChecker 

Variant type: Hybrid 

Semantics: Each component in the selected components should be connected to at 

most 2 other components. 

Configuration: 



 

4.6 (6) GLimitedNeighborsChecker 

Variant type: Group 

Semantics: Each group of components in the selected components should be 

connected to at most 2 other groups. 

Configuration: 

 

4.7 (7) CIFirstAndLastChecker 

Variant type: Context independent 

Semantics: The number of components that are connected to only one other 

component is equal to 2 (first and last components) 

Configuration: 



 

4.8 (8) HFirstAndLastChecker 

Variant type: Hybrid 

Semantics: The number of components in the selected components that are 

connected to only one other component is equal to 2 (first and last components) 

Configuration: 

 

4.9 (9) GFirstAndLastChecker 

Variant type: Group 

Semantics: The number of group of components in the selected components that 

are connected to only one other group is equal to 2 (first and last groups) 

Configuration: 



 

4.10 (10) CISameDirectionConnectorsChecker 

Variant type: Context independent 

Semantics: Connectors between each pair of components should go into the same 

direction 

Configuration: 

 

4.11 (11) HSameDirectionConnectorsChecker 

Variant type: Hybrid 

Semantics: Connectors between each pair of selected components should go into 

the same direction 

Configuration: 



 

4.12 (12) GSameDirectionConnectorsChecker 

Variant type: Group 

Semantics: Connectors between each pair of groups of components should go into 

the same direction. 

Configuration: 

 

4.13 (13) CIRestrictedLeftMostComponentChecker 

Variant type: Context independent 

Semantics: There is exactly 1 component having only successors 

Configuration: 



 

4.14 (14) HRestrictedLeftMostComponentChecker 

Variant type: Hybrid 

Semantics: There is exactly 1 component among selected components that has only 

successors. 

Configuration: 

 

4.15 (15) GRestrictedLeftMostComponentChecker 

Variant type: Group 

Semantics: There is exactly 1 group of components among selected groups that has 

only successors 

Configuration: 



 

4.16 (16) CIRestrictedRightMostComponentChecker 

Variant type: Context independent 

Semantics: There is exactly 1 component having only predecessors. 

Configuration: 

 

4.17 (17) HRestrictedRightMostComponentChecker 

Variant type: Hybrid 

Semantics: There is exactly 1 component among selected components that has only 

predecessors. 

Configuration: 

 



4.18 (18) GRestrictedRightMostComponentChecker 

Variant type: Group 

Semantics: There is exactly 1 group of components among selected groups that has 

only predecessors 

Configuration: 

 

4.19 (19) GRestrictedComponentsCheckerV3 

Variant type: Group 

Semantics: There are exactly 3 components. 

Configuration: 

 

4.20 (20) GRightMostComponentCheckerV3 

Variant type: Group 

Semantics: The 3rd group of components among selected groups has only 

predecessors.  

Configuration: 



 

4.21 (21) GValidWrappersCheckerV2 

Variant type: Group 

Semantics: Every component (wrapper) in the 2nd group of components must have 

successors outside of its group. 

Configuration: 

 

4.22 (22) GRestrictedComponentsCheckerV2 

Variant type: Group 

Semantics: There are exactly 2 groups of components. 

Configuration: 



 

4.23 (23) GRightMostComponentCheckerV2 

Variant type: Group 

Semantics: The 2nd group of components among selected groups has only 

predecessors.  

Configuration: 

 

4.24 (24) GRestrictedComponentsInLayerCheckerV2 

Variant type: Group 

Semantics: The 2nd group of components among selected groups has only one 

component.  

Configuration: 



 

4.25 (25) GDisconnectedComponentsCheckerV1 

Variant type: Group 

Semantics: Every component in the 1st group of components must be disconnected 

to other components in the same group. 

Configuration: 

 

4.26 (26) GDisconnectedComponentsCheckerV2 

Variant type: Group 

Semantics: Every component in the 2nd group of components must be 

disconnected to other components in the same group. 

Configuration: 



 

4.27 (27) CILimitedConnectorsChecker 

Variant type: Context Independent 

Semantics: There are at most 1 connector between each pair of components. 

Configuration: 

 

4.28 (28) HLimitedConnectorsChecker 

Variant type: Hybrid 

Semantics: There is at most 1 connector between each pair of selected components. 

Configuration: 



 

4.29 (29) GLimitedConnectorsChecker 

Variant type: Group 

Semantics: There are at most 1 connector between each pair of group of 

components. 

Configuration: 

 
 

 

 

 

 

 

 

 

 

 



 

 

4.30 (30) in CIPipesAndFilters 

 

4.31 (31) in HPipesAndFilters 

 

4.32 (32) in GPipesAndFilters 

 



4.33 (33, 34, 35, 36) in PAC 

 

4.34 (37, 38, 39, 40) in GFaçade  

 



4.35 (41, 42, 43, 44, 45, 46) in GReplicated Component 

 

4.36 (47, 50, 53) in CIRing 

 



4.37 (48, 51, 54) in HRing 

 

4.38 (49, 52, 55) in GRing 

 

4.39 (56, 57, 58) in Microkernel 

 



4.40 (59) in CIMVC 

 

4.41 (60) in HMVC 

 

5 List of architectural patterns represented by constraint 

components 

This section will represent the pattern catalogue presented in Section 3 but patterns 

are described by composing constraint components. 

5.1 (1) CIPipesAndFiltersChecker 

Variant type: Context Independent 

Semantics: Pipes and Filters pattern 

Configuration: 



 

5.2 (2) HPipesAndFiltersChecker 

Variant type: Hybrid 

Semantics: Pipes and Filters pattern 

Configuration: 



 

5.3 (3) GPipesAndFiltersChecker 

Variant type: Group 

Semantics: Pipes and Filters pattern 

Configuration: 



 

5.4 (4) CILayerChecker 

Variant type: Context Independent 

Semantics: Layer pattern 

Configuration: 



 

5.5 (5) HLayerChecker 

Variant type: Hybrid 

Semantics: Layer pattern 

Configuration: 



 

5.6 (6) GLayerChecker 

Variant type: Group 

Semantics: Layer pattern 

Configuration: 



 

5.7 (7) CILayredPipesAndFiltersChecker 

Variant type: Context Independent 

Semantics: Layered Pipes and Filters pattern 

Configuration: 



 

5.8 (8) HLayredPipesAndFiltersChecker 

Variant type: Hybrid 

Semantics: Layered Pipes and Filters pattern 

Configuration: 



 

5.9 (9, 10) GLayredPipesAndFiltersChecker 

Variant type: Group 

Semantics: Layered Pipes and Filters pattern, N-tier pattern 

Configuration: 



 

5.10 (11) CIMVCChecker 

Variant type: Context Independent 

Semantics: MVC pattern 

Configuration: 



 

5.11 (12) HMVCChecker 

Variant type: Hybrid 

Semantics: MVC pattern 

Configuration: 



 

5.12 (13) GMVCChecker 

Variant type: Group 

Semantics: MVC pattern 

Configuration: 

 



5.13 (14) GPACChecker 

Variant type: Group 

Semantics: PAC pattern 

Configuration: 

 
 

5.14 (15) CIPipelineChecker 

Variant type: Context Independent 

Semantics: Pipeline pattern 

Configuration: 



 

5.15 (16) HPipelineChecker 

Variant type: Hybrid 

Semantics: Pipeline pattern 

Configuration: 



 

5.16 (17) GPipelineChecker 

Variant type: Group 

Semantics: Pipeline pattern 

Configuration: 



 

5.17 (18) GIndirectionLayerChecker 

Variant type: Group 

Semantics: Indirection Layer pattern 

Configuration: 



 

5.18 (19, 20, 21) GStarChecker 

Variant type: Group 

Semantics: Shared Repository pattern, Active Repository pattern, Black Board 

pattern 

Configuration:  



 

5.19 (22) GFacadeChecker 

Variant type: Group 

Semantics: Facade pattern 

Configuration: 

 



5.20 (23) GReplicatedComponentChecker 

- Variant type: Group 

- Semantics: Replicated Component pattern 

- Configuration: 

 

5.21 (24) CIRingChecker 

Variant type: Context Independent 

Semantics: Ring pattern 

Configuration: 



 

5.22 (25) HRingChecker 

Variant type: Hybrid 

Semantics: Ring pattern 

Configuration: 



 

5.23 (26) GRingChecker 

Variant type: Group 

Semantics: Ring pattern 

Configuration: 



 

5.24 (27) GLegacyWrapperChecker 

Variant type: Group 

Semantics: Legacy Wrapper pattern 

Configuration: 



 

5.25 (28) GClientServerChecker 

Variant type: Group 

Semantics: Client Server pattern 

Configuration: 

 

5.26 (29) GMicrokernelChecker 

Variant type: Group 

Semantics: Microkernel pattern 

Configuration: 



 

5.27 (30) GClientServerWithBrokerChecker 

Variant type: Group 

Semantics: Client Server With Broker pattern 

Configuration: 



 
 

 

5.28 (31) GBusChecker 

Variant type: Group 

Semantics: Bus pattern 

Configuration: 

 

 



 

References 

[1] P. Avgeriou and U. Zdun, “Architectural patterns revisited – a pattern language,” in In 10th 

European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, 2005, pp. 

1–39. 

[2] Buschmann, F., Meunier R., Rohnert, H., Sommerlad, P., and Stal, M, Pattern-Oriented 

Software Architecture -   A System Of Patterns. New York: John Wiley & Sons, 1996. 

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo 

Merson, Robert Nord, and Judith Stafford. Documenting Software Architectures: Views 

and Beyond (2nd Edition). Addison-Wesley Professional, 2010. 

[4] Erl, T.: SOA Design Patterns, Prentice Hall, 2009. 


	1 Introduction
	2 CLACS profile
	3 Pattern catalogue
	3.1 Pipes and Filters ([1][2][3])
	3.1.1 (1) Variant 1 – Context Independent
	3.1.2 (2) Variant 2 – Hybrid
	3.1.3 (3) Variant 3 – Group

	3.2 Layers ([1][2][3])
	3.2.1 (4) Variant 1 – Context Independent
	3.2.2 (5) Variant 2 – Hybrid
	3.2.3 (6) Variant 3 – Group

	3.3 Layered Pipes And Filters
	3.3.1 (7) Variant 1 – Context Independent
	3.3.2 (8) Variant 2 – Hybrid
	3.3.3 (9) Variant 3 – Group

	3.4 (10) N-tier
	3.5 MVC (the variant that is equivalent to 3-layer pattern) ([1][2])
	3.5.1 (11) Variant 1 – Context independent
	3.5.2 (12) Variant 2 – Hybrid
	3.5.3 (13) Variant 3 – Group

	3.6 (14) PAC ([1])
	3.7 Pipeline ([1])
	3.7.1 (15) Variant 1 – Context Independent
	3.7.2 (16) Variant 2 – Hybrid
	3.7.3 (17) Variant 3 – Group

	3.8 (18) Indirection Layer ([1])
	3.9 (19, 20, 21) Star (3 variants: Shared Repository pattern, Active Repository pattern, Black Board pattern) ([1])
	3.10 (22) Façade ([1])
	3.11 (23) Replicated component
	3.12 Ring
	3.12.1 (24) Variant 1 – Context Independent
	3.12.2 (25) Variant 2 – Hybrid
	3.12.3 (26) Variant 3 – Group

	3.13 (27) Legacy Wrapper ([4])
	3.14 (28) Client-Server ([1][2][3])
	3.15 (29) Microkernel ([1])
	3.16 (30) Client-Server with Broker ([2])
	3.17 (31) Bus

	4 List of constraint components
	4
	4.1 (1) CIConnectedComponentsChecker
	4.2 (2) HConnectedComponentsChecker
	4.3 (3) GConnectedComponentsChecker
	4.4 (4) CILimitedNeighborsChecker
	4.5 (5) HLimitedNeighborsChecker
	4.6 (6) GLimitedNeighborsChecker
	4.7 (7) CIFirstAndLastChecker
	4.8 (8) HFirstAndLastChecker
	4.9 (9) GFirstAndLastChecker
	4.10 (10) CISameDirectionConnectorsChecker
	4.11 (11) HSameDirectionConnectorsChecker
	4.12 (12) GSameDirectionConnectorsChecker
	4.13 (13) CIRestrictedLeftMostComponentChecker
	4.14 (14) HRestrictedLeftMostComponentChecker
	4.15 (15) GRestrictedLeftMostComponentChecker
	4.16 (16) CIRestrictedRightMostComponentChecker
	4.17 (17) HRestrictedRightMostComponentChecker
	4.18 (18) GRestrictedRightMostComponentChecker
	4.19 (19) GRestrictedComponentsCheckerV3
	4.20 (20) GRightMostComponentCheckerV3
	4.21 (21) GValidWrappersCheckerV2
	4.22 (22) GRestrictedComponentsCheckerV2
	4.23 (23) GRightMostComponentCheckerV2
	4.24 (24) GRestrictedComponentsInLayerCheckerV2
	4.25 (25) GDisconnectedComponentsCheckerV1
	4.26 (26) GDisconnectedComponentsCheckerV2
	4.27 (27) CILimitedConnectorsChecker
	4.28 (28) HLimitedConnectorsChecker
	4.29 (29) GLimitedConnectorsChecker
	4.30 (30) in CIPipesAndFilters
	4.31 (31) in HPipesAndFilters
	4.32 (32) in GPipesAndFilters
	4.33 (33, 34, 35, 36) in PAC
	4.34 (37, 38, 39, 40) in GFaçade
	4.35 (41, 42, 43, 44, 45, 46) in GReplicated Component
	4.36 (47, 50, 53) in CIRing
	4.37 (48, 51, 54) in HRing
	4.38 (49, 52, 55) in GRing
	4.39 (56, 57, 58) in Microkernel
	4.40 (59) in CIMVC
	4.41 (60) in HMVC

	5 List of architectural patterns represented by constraint components
	5
	5.1 (1) CIPipesAndFiltersChecker
	5.2 (2) HPipesAndFiltersChecker
	5.3 (3) GPipesAndFiltersChecker
	5.4 (4) CILayerChecker
	5.5 (5) HLayerChecker
	5.6 (6) GLayerChecker
	5.7 (7) CILayredPipesAndFiltersChecker
	5.8 (8) HLayredPipesAndFiltersChecker
	5.9 (9, 10) GLayredPipesAndFiltersChecker
	5.10 (11) CIMVCChecker
	5.11 (12) HMVCChecker
	5.12 (13) GMVCChecker
	5.13 (14) GPACChecker
	5.14 (15) CIPipelineChecker
	5.15 (16) HPipelineChecker
	5.16 (17) GPipelineChecker
	5.17 (18) GIndirectionLayerChecker
	5.18 (19, 20, 21) GStarChecker
	5.19 (22) GFacadeChecker
	5.20 (23) GReplicatedComponentChecker
	5.21 (24) CIRingChecker
	5.22 (25) HRingChecker
	5.23 (26) GRingChecker
	5.24 (27) GLegacyWrapperChecker
	5.25 (28) GClientServerChecker
	5.26 (29) GMicrokernelChecker
	5.27 (30) GClientServerWithBrokerChecker
	5.28 (31) GBusChecker

	References

