
HAL Id: hal-00804147
https://hal.inria.fr/hal-00804147v2

Submitted on 17 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice Boltzmann Method For Fast Patient-Specific
Simulation of Liver Tumor Ablation from CT Images

Chloé Audigier, Tommaso Mansi, Hervé Delingette, Saikiran Rapaka, Viorel
Mihalef, Puneet Sharma, Ali Kamen, Daniel Carnegie, Emad Boctor, Michael

Choti, et al.

To cite this version:
Chloé Audigier, Tommaso Mansi, Hervé Delingette, Saikiran Rapaka, Viorel Mihalef, et al.. Lattice
Boltzmann Method For Fast Patient-Specific Simulation of Liver Tumor Ablation from CT Images.
MICCAI - Medical Image Computing and Computer Assisted Intervention - 2013, Sep 2013, Nagoya,
Japan. pp.323-330, �10.1007/978-3-642-40760-4_41�. �hal-00804147v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49769034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00804147v2
https://hal.archives-ouvertes.fr


Lattice Boltzmann Method For Fast
Patient-Specific Simulation of Liver Tumor

Ablation from CT Images
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Abstract. Radio-frequency ablation (RFA), the most widely used min-
imally invasive ablative therapy of liver cancer, is challenged by a lack
of patient-specific planning. In particular, the presence of blood vessels
and time-varying thermal diffusivity makes the prediction of the extent
of the ablated tissue difficult. This may result in incomplete treatments
and increased risk of recurrence. We propose a new model of the physi-
cal mechanisms involved in RFA of abdominal tumors based on Lattice
Boltzmann Method to predict the extent of ablation given the probe
location and the biological parameters. Our method relies on patient im-
ages, from which level set representations of liver geometry, tumor shape
and vessels are extracted. Then a computational model of heat diffusion,
cellular necrosis and blood flow through vessels and liver is solved to esti-
mate the extent of ablated tissue. After quantitative verifications against
an analytical solution, we apply our framework to 5 patients datasets
which include pre- and post-operative CT images, yielding promising
correlation between predicted and actual ablation extent (mean point to
mesh errors of 8.7 mm). Implemented on graphics processing units, our
method may enable RFA planning in clinical settings as it leads to near
real-time computation: 1 minute of ablation is simulated in 1.14 minutes,
which is almost 60× faster than standard finite element method.

1 Introduction

In spite of recent advances in cancer therapy, treatment of primary and metastatic
tumors of the abdomen, including the liver, remains a significant challenge. Hep-
atocellular carcinoma (HCC) for example is one of the most common malignan-
cies (more than 1 million cases per year), with increasing frequency in Western
countries [1]. Unfortunately, less than 25% of patients with primary or secondary
liver cancer are candidates for resection or transplantation, which are considered
as the most effective treatments. Consequently, ablative therapies such as radio-
frequency ablation (RFA) has raised increasing interest.
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RFA consists in placing a probe within the target area. Electrodes at the tip
of the probe create heat, which is conducted into the surrounding tissue, caus-
ing coagulative necrosis at temperatures above 50◦C. Success of the procedure
depends on the complete coverage of the tumor by the generated necrosis area,
which relies on optimal probe placements and the extend of heat delivery. How-
ever, the latter is challenged by the hepatic blood vessels that dissipate heat,
thus potentially reducing RFA efficiency and increasing risks of recurrence.

Several studies [2–4] have investigated finite element method (FEM) to com-
pute heat diffusion in liver and predict the optimal placement of the RFA probes.
Heat sink as well as various cellular necrosis models [5] have been studied. How-
ever, to the best of our knowledge, none of these models rely on patient-specific
data. In particular, the vascular system of the liver is neglected or simplified and
blood flow circulation is not computed based on patient-specific clinical infor-
mation. Moreover, FEM is computationally demanding (execution time is in the
range of hours), which is not suitable for clinical purposes.

This paper presents a multi-physics model for efficient patient-specific plan-
ning of RFA based on medical images such as CT or MRI (Sec. 2). In particular,
we rely on the Lattice Boltzmann Method (LBM) to compute heat diffusion in
the liver tissue. The LBM offers high scalability, second order accuracy in space
and the simplicity of implementation on a uniform Cartesian grid [6]. In Sec. 3,
we demonstrate the validity of our algorithm against an analytical solution and
its predictive power is evaluated on patient data. Sec. 4 concludes the paper.

2 Method

Fig. 1 illustrates the different steps of our method. Starting from a preoperative
clinical CT image, we extract the liver geometry and the venous systems. Next,
the bioheat equation is solved using LBM. The liver is highly vascularized and
modeling the impact of all vessels is out of reach. Therefore, only the effect of
large vessels are described explicitly with the Pennes model [7]. Small ones are
represented implicitly in the parenchyma as a porous medium using the Wulff
and Klinger model [8]. The bioheat equation is weakly coupled to a computa-
tional fluid dynamics (CFD) solver to accurately take into account the effect of
blood circulation on the dissipated heat, while the blood flow in the porous tis-
sue is computed by solving the Darcy’s equation [9]. The heat transfer depends
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Fig. 1: Steps of the proposed method (blue: input, green: processes, purple: output).
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on the blood flow, which is not modified as the organ is heated (the effect of
heat on the viscosity of the flow is neglected as well as the coagulation effect).
This assumption allowed us to compute CFD and porous flow only once, at the
beginning of the algorithm, thus speeding up the process. LBM and CFD are
calculated on a Cartesian grid while the porous solver is executed using FEM
on a linear multi-domain tetrahedral mesh for increased accuracy. The resulting
flow is tri-linearly rasterized on the Cartesian grid after computation. Finally, a
cellular necrosis model is employed to compute cell death due to overheating [5].

2.1 Model of Patient Liver Anatomy

Preoperative images are semi-automatically segmented, yielding a detailed anatom-
ical model of patient’s liver, including parenchyma, tumors, hepatic veins, vena
cava, and portal vein (Fig. 2, left panel). For each structure, we define seeds
inside and outside of the area of interest. Then, the random-walker algorithm
is employed [10] to automatically estimate the boundaries of the structure. The
process can be refined interactively. From the segmentation, a level set represen-
tation of the liver, without tumor and vessels is computed. A multi-label mask
image is also created to identify the structures of interest for the simulation.
Finally, a tetrahedral multi-domain mesh is generated based on the resulting
multi-label mesh (www.cgal.org) for computing the porous flow.

2.2 Model of Heat Transfer in Liver Tissue

Computing heat diffusion in biological tissues amounts to solving the coupled
bioheat equations derived from the theory of porous media, where each elemen-
tary volume is assumed to comprise both tissue and blood with a certain fraction.
As current imaging techniques do not allow to estimate the accurate ratio be-
tween blood and liver tissue, two main simplifications of the bioheat equations
have been proposed. The Pennes model [7] assumes constant blood temperature,
which holds close to large vessels, where blood velocity is high. The model writes:

(1− ε)ρtct
∂T

∂t
= (1− ε)Q+ (1− ε)∇· (dt∇T ) +H(Tb0 − T ) (1)

For small vessels, the Wulff-Klinger (WK) model [8] assumes equilibrium
between tissue and blood temperatures, with a blood volume fraction ε� 1:

(1− ε)ρtct
∂T

∂t
= (1− ε)Q+ (1− ε)∇· (dt∇T )− ερbcbv ·∇T (2)

In both equations, T , Q, v and Tb0 stand for temperature, source term, blood
velocity and the mean temperature (assumed constant) of the blood in large
vessels. The other parameters are listed in Table 1. In our framework, we use
either the Pennes model or the WK model according to the spatial location in
the anatomy. Assuming that blood vessels and surrounding tissue are isolated
from each other, we compute the temperature by solving the diffusion equation:

ρtct
∂T

∂t
= Q+∇· (dt∇T ) (3)
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Table 1: Values from literature [9] of the parameters used in the simulation

parameter description value

ρb,ρt blood and tissue densities 1.06 × 103 kg m−3

cb blood heat capacity 4.18 × 103 J(kg K)−1

ct tissue heat capacity 3.6 × 103 J(kg K)−1

ct∗ tissue heat capacity in dead cells 0.67 × 103 J(kg K)−1

db, dt blood and tissue heat conductivities 0.512 × (1 + 0.00161 × (T − 310)) W(m K)−1

H convective transfer coefficient 24.4 × 104 W (m3 K)−1

ε blood volume fraction 0.1

κ permeability 4.0 × 10−11 m2

µ dynamic viscosity of the blood 0.0035Pa s

ϕvcin
vena cava inflow 2.0 L min−1

ϕi flow through the inlets of the hepatic veins 1.6 L min−1

p0 vena cava outlet pressure 3mmHg

k̄f forward rate constant 3.33 × 10−3 s−1

kb backward rate constant 7.77 × 10−3 s−1

Tk parameter of cell state model 40.5◦C

everywhere in the domain, to which we add the cooling term H(Tb0−T )/(1− ε)
when a point belongs to a large vessel (Pennes model) or −ερbcbv · ∇T/(1 − ε)
when it belongs to the parenchyma (WK model).

2.3 Model of the Patient Hepatic Venous Circulation System

Blood velocity v inside the parenchyma is calculated according to Darcy’s law :
v = −κ/(µε2/3)∇p where p is the pressure. This amounts to solving the Laplace
equation : ∇ · (−κ/(µε2/3)∇p) = 0. At the border of the liver, Neumann bound-
ary conditions are employed. Dirichlet boundary conditions are applied at the
tip of the portal and hepatic veins, to define the pressure drop between them.
As we cannot estimate these pressures in-vivo, we rely on a CFD model of the
hepatic venous circulation system (Fig. 2, right panel). We used a full 3D CFD
solver (incompressible Navier-Stokes equations with viscous terms, expressed in
an Eulerian framework which embeds the domain boundary using a level set
representation of the segmented vessels [11]). The blood is modeled as a New-
tonian fluid with pre-specified density ρb and viscosity µ. Let ϕp be the portal
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Fig. 2: Left : A detailed anatomical model of the liver is estimated from a standard
clinical CT image. Right : Model of the hepatic circulatory system. Arrows denote blood
flow. Circles and squares denote portal and hepatic vessel tips. See text for details.
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vein inflow and ϕvc = ϕvcin + ϕp the vena cava outflow (conservation of mass,
the hepatic artery is neglected). We also fix the vena cava outlet pressure in the
range of physiological values of healthy patients. The values are listed in Table 1.
Blood flow and pressure distribution within the vena cava and hepatic
veins: A plug profile velocity field is applied at the inlets (squares in Fig. 2),
computed from the outflow ϕp and each inlet cross-sectional area. The CFD
calculation give the downstream pressures p−i for each inlet of the hepatic vein.
Blood flow and pressure distribution within the portal vein: To estimate
the upstream pressure p+, assumed constant, of the portal vein outlets (circles in
Fig. 2), we solve the Darcy’s law and optimize over p+ such that the computed
perfused flow through the hepatic vein inlets matches the one computed using
3D CFD. Once p+ is estimated, we compute the blood flow using the CFD solver.

2.4 Model of Cellular Necrosis

Tissue necrosis is computed based on the simulated temperatures using a 3-
state model [5]. The model computes the variation of concentration of alive (A),
vulnerable (V) and dead (D) cells over time according to the state equation :

A

kf (T )

−−−−→←−
kb

V
kf (T )
−−−−→ D (4)

where kf (T ) = k̄fe
T/Tk(1−A) and kb are the rates of cell damage and recovery

respectively. This equation results in 3 coupled ODEs solved with a first order
explicit scheme at each vertex of the Cartesian grid, yielding a spatially-varying
cell state field used in the bioheat solver to update the heat capacity during the
computation (Table 1). The initial conditions are chosen as in [5].

2.5 Lattice Boltzmann Formulation of the Bioheat Equations

The bioheat model is solved on an isotropic Cartesian grid using LBM with 7-
connectivity topology and Neumann boundary conditions. For stability reason,
we use a Multiple-Relaxation-Time model. The boundaries are treated accord-
ing to the level set representation using linear interpolation without requiring
advanced meshing techniques. The governing equation at position x = (x, y, z)
for the edge ei is given by (5). f(x) = {fi(x)}i=1..7 is the vector of distribution
function with fi(x), the probability of finding a particle travelling along the edge
ei of the node x at a given time, c = ∆x/∆t, c2s = 1/4, ∆x is the spacing.

f(x + ei∆x, t+∆t) = f(x, t) + A[feq(x, t)− f(x, t)] +ω∆tH(Tb0 − T (x, t)) (5)

feqi (x, t) = ωiT (x, t)[1 + ei.v
cc2
s

] and ω = {ωi}i=1..7 the vector of weighting fac-

tors [6]. The temperature is computed as T (x, t) =
∑7

i=1 fi(x, t) and is updated
at every node of the grid for every timestep. Finally, we model the heat source
term through a Dirichlet boundary condition at the location of the probe.
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3 Experiments and Results

All experiments were executed on a Windows 7 desktop machine (Intel Xeon, 2.80

GHz, 45GB RAM, 24 CPUs) with a Nvidia Quadro 6000 1.7 GB (448 CUDA cores).

3.1 Quantitative Verification Against Analytical Solution

To evaluate our model, we compared its behavior on a regular cuboid domain
with the 3D analytical solution of a source of mass M released at x0 at time t0:

T (x, t) =
M

[4π(t− t0)D]3/2
exp

(
−‖x− x0 − (t− t0)v‖2

4D(t− t0)

)
of the advection-diffusion equation : ∂T

∂t + v · ∇T = ∇ · (D∇T ). Parameters
were chosen to get heat diffusion in physiological range: D = 0.1mm2/s, v =
(2, 0, 0)mm/s, M = 35000 ◦C/mm3, t0 = −50 s, yielding a Gaussian-shape
source term of 70◦C at the center at time t = 0. In our LBM solver, we initial-
ized the temperature values at each point with the analytical solution at time
t = 0. The temperature at several points of the domain was reported. Our im-
plementation was qualitatively close to the analytical solution (Fig. 3). For a
given resolution, an upper and lower bound for the time-step were provided by
the simulated physics and the Courant-Friedrichs-Lewy conditions. As expected,
the smaller the spatial resolution, the more accurate the solution. A time-step
of 75ms and a resolution of 1 − 2mm appeared to be a good compromise be-
tween accuracy and computational cost. From a computational point of view,
experiments showed a speed-up of 11 with parallel optimization (OpenMP) and
45 with graphical processing units (GPU) implemented on CUDA with respect
to a single-core implementation of LBM. After a quantitative verification of the
FEM simulation against the analytical solution, experiments showed that a 60×
speed-up was obtained with respect to FEM for a similar accuracy.

Fig. 3: Left : Spatial convergence analysis for a fixed time-step of 0.01 s. Right : Time
convergence analysis for a resolution of 1 mm compared to the analytical solution. As
one can see, the proposed framework quickly converges to the right solution.
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3.2 Evaluation on Patient Data

We evaluated our model on 5 patients, with 7 ablations (patient 5 had 3 tu-
mors ablated) for whom pre- and post-operative CT images were available. For
all patients, nominal tissue parameters were employed. Clinical RFA protocol
requires that the probe is deployed within the tumor with a diameter defined
pre-operatively according to the size of the tumor, and then maintained for 7
minutes after the target temperature of 105◦C was reached, as measured by the
probe thermisters. For large tumors, the process was iterated with sequentially
increasing diameters. After anatomical model extraction, we emulated the RFA
protocol by placing the virtual probe at the center of the tumor. Cells around the
probe tip within the probe diameter sphere were heated at 105◦C during 7 min-
utes or 2 times 7 minutes. The simulation continued for 3 more minutes without
the probe so that each cell reach a steady state. Qualitatively, computed ablation
followed closely the boundaries of the vessels, due to the heat sink effects of the
blood. The shape of the ablated area also depended on the heat advection due to
the small arteries (Fig. 4). Cell death area computed using the model compared
qualitatively well with the observed postoperative necrosis zone (Fig. 4, the le-
sion was manually segmented by an expert and rigidly registered to preoperative
image). Quantitatively, average point-to-mesh errors (Table 2) were within clin-
ical variability as they were lower than the different size configurations of the
probes. More importantly, the simulation predicted that the selected protocols
covered the entire lesion, which is the clinical criterion for ablation planning.
One minute is computed in 1.14 minutes, in comparison, using FEM it takes
1.14 hours. To the best of our knowledge, this is the first time that near real-
time simulations of RFA ablation could be achieved. All cases presented a larger
necrosis area compared to the ground truth, the diffusion coefficient used from
the literature was too high to get a perfect match.

4 Discussion and Conclusion

We have presented a first patient-specific model of liver tumor ablation allowing
near real-time computation. As we rely on LBM, our framework does not require
advanced meshing techniques to solve bioheat equations and the level set repre-
sentations of the structures are directly computed from images. We focused on

Fig. 4: Predicted necrosis compared quali-
tatively well with ground truth (patient 2).

patient point-to-mesh error probe diameter

1 9.5 ± 5.9 mm 4 cm then 5 cm
2 4.6 ± 3.3 mm 3 cm
3 10.4 ± 6.5 mm 4 cm then 5 cm
4 11.7 ± 6.3 mm 4 cm then 5 cm

5-1 7.3 ± 5.1 mm 4 cm then 5 cm
5-2 8.2 ± 6.2 mm 4 cm then 5 cm
5-3 9.0 ± 5.5 mm 4 cm then 5 cm

Table 2: Evaluation on Patient Data
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modeling heat propagation and cell death based on a patient image taking into
account the heat sink effect of blood vessels and porous circulation in the liver.
Despite possible biases in establishing correspondences between the post- to the
pre-operative images, and the use of nominal biological parameters, which are
not patient-specific, our model provided promising results, opening new oppor-
tunities in the RFA planning and guidance, even if the target is to go beyond
real-time, as we need 1-2 minutes of computation for clinical use. We have not
considered the effects of the arterial flow, but it would be straightforward to
include it for improved accuracy, provided the hepatic artery is visible in the
image. It is worth noting that the veins account for more than 70 % of the blood
flow [12]. Future works include validation on larger cohorts of patient, and a full
coupling of blood flow and heat transfer models for more accurate predictions.
Acknowledgments. We thank Marta Mesa Gonzalez for segmenting all the cases.
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