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Abstract. Anatomical changes like brain atrophy or growth are usu-
ally not homogeneous in space and across spatial scales, since they map
di�erently depending on the anatomical structures. Thus, the accurate
analysis of volume changes from medical images requires to reliably lo-
calize and distinguish the spatial changes occurring at di�erent scales,
from voxel to regional level. We propose here a framework for the sparse
probabilistic scale-space analysis of volume changes encoded by deforma-
tions. Our framework is based on the Helmoltz decomposition of vector
�elds. By scale-space analysis of the scalar pressure map associated to
the irrotational component of the deformation, we robustly identify the
areas of maximal volume changes, and we de�ne a consistent sparse de-
composition of the irrotational component. We show the e�ectiveness of
our framework in the challenging problem of detecting the progression of
tumor growth, and in the group-wise analysis of the longitudinal atrophy
in Alzheimer's disease.

1 Introduction

Modeling the structural changes of organs and tissues is an important goal of
medical image analysis. Anatomical changes like brain atrophy or growth are
usually not homogeneous in space and across spatial scales, since they di�er
for di�erent anatomical structures. For instance, Alzheimer's disease leads to
cortical thinning, which is local and detectable at millimiter scale on the gray
matter ribbon, as well as regional or global matter loss, which involves entire
anatomical regions like hippocampi or brain ventricles. Thus, the accurate anal-
ysis of anatomical changes requires to reliably localize and distinguish the spatial
support of changes occurring at di�erent scales, from voxel to regional level.

⋆ Data used in preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the
investigators within the ADNI contributed to the implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report.

⋆⋆ This work was partially funded by the European Research Council (ERC advanced
Grant MedYMA)
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Scale-space analysis of image data is a classical topic in computer vision, and
di�erent applications have been proposed in the �eld of medical imaging. The
main issue when working with medical images concerns the statistical assessment

of spatial areas of meaningful signal. For instance, in [10] Gaussian �eld theory
was used to de�ne a sparse set of statistically signi�cant regions of activation
across spatial scales in PET images.

Anatomical changes can be detected by non-linear registration, which models
the di�erences between pairs of images as dense deformation �elds in the image
space. Analysis of dense deformation �elds is usually challenging due to the high
dimensionality of the data. For this reason, methods have been proposed for
estimating deformations by considering di�erent spatial scales [7], by enforcing
spatial sparsity [1], or by combining the approaches to provide sparse scale-space
registration [8]. Even though these approaches provide a richer description of
the deformations, the interpretation of the results is still challenging. In fact,
registration does not provide a statistical measure for assessing the signi�cant
locations of the estimated anatomical changes, and might thus lack robustness.

A di�erent approach for the study of deformations consists in analyzing the
encoded spatial changes posterior to the registration, for instance by voxel-by-
voxel statistical analysis of associated Jacobian determinant. Jacobian analysis
is however local, not very robust, and prone to multiple comparison problems.

Helmoltz decomposition parameterizes a given deformation as the sum of
irrotational and divergence-free components [2]. The irrotational component is
a dense vector �eld which encodes the local volume changes associated to the
deformation, and therefore which completely describes the estimated atrophy
and growth processes. The irrotational component is the gradient of a scalar

apparent pressure map, whose topological analysis enables the identi�cation of
areas of local volume changes. This idea was used in [4] to localize the areas of
relevant brain atrophy in Alzheimer's disease (AD) from a set of extremal pres-
sure points. In this case the extremal points were manually selected according to
prior knowledge of the typical AD atrophy pattern. This is normally not possi-
ble when studying other biological processes, like the evolution of brain tumors,
where regions of potential volume change are usually unknown. Moreover, the
approach proposed in [4] is not very robust, since the identi�cation of local ex-
tremal pressure points is very sensitive to the image noise, and critically depends
on the considered spatial scale.

1.1 Contributions and paper's structure

In this work we propose a fully automatic probabilistic framework for the sparse
scale-space analysis of the volume changes encoded by deformations.

Since we focus on the study of volume changes, our framework is based on
the irrotational �eld obtained by the Helmoltz decomposition. The irrotational
�eld is the gradient of a scalar pressure �eld. Our contributions are as follows:

� Scale-space analysis of extremal pressure point. We introduce a probabilistic
framework for the scale-space identi�cation of local extremal pressure points.
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These points are the local sources and sinks of the volume changes associated
to the deformation. This contribution provides the robust identi�cation of
locations of maximal volume change, and is detailed in Section 3.1.

� Critical Regions Associated to Probabilistic Extremal Pressure Points. Given
the probabilistic extremal points we identify the areas of maximal volume
changes (critical regions) associated to the deformation. This step, detailed
in Section 3.2, enables to robustly estimate the critical regions consistently
with respect to the irrotational component.

� Sparse Description of the Velocity from the Critical Regions. We use the
critical areas to �nally decompose the irrotational �eld in a sparse set of
components (Section 3.3). This last contribution enables a fully consistent
and simple sparse decomposition of the volume changes encoded by the de-
formation.

� Application: modeling tumor evolution and group-wise atrophy in Alzheimer's

disease. In Section 4 we prove the e�ectiveness of our framework in the chal-
lenging problem of detecting and localizing progressing tumor growth in
the brain, and in the group-wise modeling of the longitudinal atrophy in
Alzheimer's disease.

2 Topology of Pressure Fields and Volume Changes in

Deformations

Our framework is based on non-linear transformations parameterized by sta-
tionary velocity �elds, provided for instance by the LCC-logDemons registration
algorithm [5]. Consider a deformation exp(u). Following [4] we can decompose
the stationary velocity �eld u according to the Helmoltz decomposition as the
sum of an irrotational and of a divergence-free component u = ∇P +∇×A. The
divergence-free component describes the rotational part of the velocity which
is not associated to volume changes. The irrotational velocity �eld v = ∇P is
the gradient of an apparent scalar pressure �eld P , which encodes the volume
changes associated to u. In fact, local volume changes are associated to local
variations of the pressure P .

Scale-Space Analysis of Extremal Pressure Points Critical points of lo-
cal maxima and minima of the pressure �eld are respectively local attractors
and generators of the irrotational velocity �eld, and therefore characterize area
of contraction and expansion. Each local extremum de�nes an area of maximal
volume change, called critical region, which is a peak or a basin for the pressure
�eld, and which is characterized by respectively maximum inwards or outwards
�ux of the irrotational �eld across its boundaries (Figure 1). From the divergence
theorem we know that the integral over basins and peaks of the divergence of
the irrotational velocity �eld is respectively negative or positive.
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Fig. 1: Topology of pressure �elds. Black ar-
rows indicate the irrotational component.
The pressure �eld summarizes the observed
contraction/expansion processes.

The spatial location of critical
regions is related to the local pres-
sure variation. Critical regions
can be contained in larger zones
of pressure extrema. In fact, the
global irrotational �eld is the con-
tribution of several components
acting di�erently across scales,
and which are associated to crit-
ical regions mapping to di�erent
spatial locations. It is therefore
of interest to analyze the topol-
ogy of pressure �elds at di�erent
spatial scales in order to disentan-
gle and separately analyze its dif-
ferent components. In the follow-
ing section we propose a robust
framework for the reliable scale-space identi�cation of critical regions associated
to irrotational �elds of anatomical deformations.

3 Scale-Space Identi�cation of Critical Areas

Let v = ∇P be an irrotational velocity �eld, and let the pressure P be zero
outside the image boundaries. We consider a set of increasing local Gaussian
neighborhoods Gσk

. Let G0 ∗ P = P and limn→∞Gσk
∗ P = 0, and consider the

following partition of P through convolutions P =
∑

k(Gσk
−Gσk+1

)∗P =
∑

k Pk.
The Pk obtained by the di�erence of Gaussians (DoG) operator are the band-
pass �ltering of P at scale σk−σk+1. DoG is used in classical scale-space analysis
as enhancement operator for blob detection, which are de�ned by identifying the
maximal points in scale-space q = argmax(k,x)(Pk(x))[6] .

In the present study we want to robustly detect the scale-space extremal
points (maxima and minima) in the presence of potentially noisy data. For this
purpose we propose a probabilistic framework for assessing the uncertainty of
the position of such local extrema.

3.1 Probabilistic Scale-Space Detection of Extremal Pressure

Points

We de�ne here a probabilistic framework for the reliable de�nition of scale-
space extremal pressure points. Let (Pn(x)) be the 4D scale-space associated to
a pressure �eld P at the set of scales σ = {σk−σk+1}. Let Ck be the probabilistic
region at the scale level k for the location of the maximal point µk. We set:

P(Ck|σ) = P(Ck|µk)P(µk|σ)
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This way, Ck depends on the proximity to the maximal point µk P(Ck|µk),
conditioned by the probability of µk to be maximal across scales P(µk|σ). We
compute P(µk|σ) as the cumulative probability of the value of µk in a 4D neigh-
borhood of (Pn(x)) centered in µk. The term P(Ck|µk) is instead computed from
the Bayes formula as

P(Ck|µk) ≈ P(µk|Ck)P(Ck),

where P(Ck) is assumed uniform and constant across scales, and P(µk|Ck) is
the probability of µk to be maximum given the neighborhood Ck. We express it
as:

P(µk|Ck) =

∑
x

1
2 (1+ < ∇Pk(x), d(x) >) exp(−‖d(x)‖2

2(σ2
k
)

)
∑

x exp(−‖d(x)‖2

2(σ2
k
)

)
, (1)

with d(x) = µk −x, and < a, b >= a
‖a‖2

b
‖b‖2 . Equation (1) states that the region

Ck is composed of points close to maximal points µk, and oriented along the
�ow lines of Pk generated by µk.

3.2 Critical Regions Associated to Probabilistic Extremal Pressure

Points

Now that we have robustly identi�ed the signi�cant locations of extremal pres-
sure points across scales, we are interested in detecting the critical regions gener-
ated by such points. In particular, since extremal points are sources (resp. sinks)
of the irrotational �eld, the critical regions are pressure basins (resp. peaks)
characterized by maximum �ux of the irrotational �eld across their boundaries.

Let consider the area Ck such that P(Ck|σ) > 0.6, i.e. the signi�cant area
at the scale k for the critical point µk. Let vk = ∇Pk be the irrotational �eld
associated to the scale level k4, and let Mµk be the region containing Ck for
which the �ux of vk is maximum. In [9] it was shown that Mµk is the limit of

the evolution of the surface ∂Ck according to d(∂Ck)
dt

= (∇·vk) ·n, where n is the
normal to ∂Ck. The region Mµk can be therefore obtained from Ck by iterating
the above formula to convergence through a classical gradient descent approach.

3.3 Sparse Description of the Velocity from the Critical Regions

Given a scale level k, the critical regions Mµi

k are the signi�cant spatial support
of the spatially dense component vk. The set of regions M = ∪i,kMµi

k represents
the loci of signi�cant volume changes of the deformation in scale-space, thus the
signi�cant sparse spatial support of the irrotational �eld v =

∑
k vk.

The set M therefore decomposes the irrotational velocity in space 1) robustly
through the probabilistic scale-space analysis of critical regions, and 2) consis-
tently with its �ow properties, in order to preserve only the most representative
volume changes.

4 We note that v = ∇P = ∇(
P

k
Pk) =

P

k
∇Pk =

P

k
vk
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Fig. 2: Group-wise scale-space analysis for the 1-year brain atrophy in 30 AD patients.
A) Group-wise irrotational �eld B) Group-wise scale-space critical regions (red: expan-
sion, blue: contraction). The Z-axis represents the scale of detection of critical regions
(�ner to coarser). The most persistent atrophy (taller blobs) is localized in the ventri-
cles and in the hippocampi. Cortical atrophy is instead detectable at smaller scales. C)
C) Decomposition of the irrotational �eld in expanding (red), and contracting (blue)
components. The decomposition is obtained by masking the velocity �eld in A) by the
areas of B). D) Cumulative percentage volume changes across scales associated to the
critical regions.

4 Application

We provide two very di�erent applications of the proposed framework. First, we
apply it to the modeling of the group-wise longitudinal atrophy in Alzheimer's
disease (AD). The aim is to localize the key anatomical regions of AD atrophy at
di�erent scales, from local (cortical thinning) to regional level, for instance for the
hippocampal atrophy. Second, we use our framework for detecting and localizing
tumor growth that occurs after the patient has been treated. In this case, scale-
space analysis enables to separate those changes which are more persistent and
directly related to the tumor process, from those more subtle ones which are
indirectly related to the tumor or induced by the treatment, like local atrophy
or swelling of ventricles/sulci.

The following results were obtained by considering σ0 = 0mm, and σk =
σk−1 + 0.5mm, k = 1, . . . , 16.

Modeling Group-Wise Atrophy in AD. We selected 30 patients a�ected by
AD from the ADNI dataset. For each subject the baseline brain 3D T1 structural
image was registered to the one-year follow-up with the log-Demons algorithm.
Subject speci�c irrotational �elds were transported in a common reference space
by using a method proposed elsewhere [3], and the corresponding pressure com-
ponents were analyzed with the proposed framework.

Figure 2A shows the group-wise average of the transported irrotational �elds.
In Figure 2B we show the scale-space group-wise average critical areas obtained
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Fig. 3: Scale-space analysis for longitudinal brain tumor evolution. Top: 3 months
follow-up time series. Bottom: A) Irrotational �eld estimated by the longitudinal reg-
istration. B) Scale-space analysis of the critical areas associated to the irrotational
�eld (blue: contraction, red: expansion). Persistent volume changes are visible in the
tumor core and in the ventricles (taller blobs). We capture the shift of the midline
axes towards the right hemisphere, and we �nd also very localized atrophy at the
brain boundaries/sulci (green arrows). C) Decomposition of the irrotational �eld in ex-
panding (red), and contracting (blue) components. The decomposition is obtained by
masking the velocity �eld in A) by the areas of B). D) Cumulative percentage volume
changes across scales associated to the critical regions.

with our framework. We note that the most persistent atrophy is localized in
the ventricles and in the hippocampi. Cortical atrophy is instead detectable at
smaller scales. When masking the average irrotational component by this sparse
set of regions (Figure 2C) we preserve the signi�cant atrophy pattern while
discarding the more local and less relevant deformation patterns.

Modeling Brain Tumor Evolution. We chose 3D T1 MRI from a patient
treated with Avastin. The time di�erence between the images is 3 months.
Avastin suppresses characteristic intensity changes in T1 and T2 MRI, which
limits the usefulness of traditional change detection methods that rely on the
detection of advancing edema or tumor core boundaries.

Scale space analysis of the tumor evolution is shown in Figure 3, indicat-
ing and localizing signi�cant volume changes. We �nd more persistent volume
changes corresponding to shrinkage in the tumor core area (blue), and to decom-
pression of tissue surrounding the tumor following the successful therapy (red)
(Figure 3B). Moreover, the present analysis is able to capture the shift of the
midline axes towards the right hemisphere, which is detectable at smaller scales,
as well as the local atrophy at the brain boundaries/sulci (green arrows). In the
given case we do not �nd indications of recurring growth, but only indications
of �stable disease�.
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5 Conclusions and Perspectives

Scale-space analysis of the irrotational velocity �eld provides a new and interest-
ing instrument for the analysis of atrophy processes, for instance to distinguish
critical regions which are characteristic of a given scale from those which remain
persistent across scales. Our experimental results showed how this framework
can be already successfully applied to clinical problems for robustly di�erentiate
volume changes across spatial scales. The proposed robust analysis of critical re-
gions de�nes the relevant areas of action of the irrotational velocity, and provide
thus a topologically consistent and sparse description of the deformation.

The present study is a step towards the consistent topological analysis of
deformations. For example, one can de�ne a tree-like structure of the pressure
�eld, where each level of the tree is a given spatial scale, and the branches
connect critical regions which are nested across scales. This way, topology of
deformations can be studied with Morse-Smale or graph theory.

Finally, the presented work can be extended to the analysis of sequences
of deformations, for instance for detecting anatomical changes in time series
of several images. For this purpose, the consistent extension of the presented
framework to 5-dimensional data (space+scale+time) is required.
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