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Splay States in Finite Pulse-Coupled Networks of Excitable Neurons∗

M. Dipoppa† ‡ §, M. Krupa† ¶, A. Torcini‖ ∗∗, and B. S. Gutkin† ‡ ∗∗

Abstract. The emergence and stability of splay states is studied in fully coupled finite networks of N excitable
quadratic integrate-and-fire neurons, connected via synapses modeled as pulses of finite amplitude
and duration. For such synapses, by introducing two distinct types of synaptic events (pulse emission
and termination), we were able to write down an exact event-driven map for the system and to
evaluate the splay state solutions. For M overlapping postsynaptic potentials, the linear stability
analysis of the splay state should also take in account, besides the actual values of the membrane
potentials, the firing times associated with the M previous pulse emissions. As a matter of fact, it
was possible, by introducing M complementary variables, to rephrase the evolution of the network
as an event-driven map and to derive an analytic expression for the Floquet spectrum. We find that,
independently of M , the splay state is marginally stable with N−2 neutral directions. Furthermore,
we have identified a family of periodic solutions surrounding the splay state and sharing the same
neutral stability directions. In the limit of δ-pulses, it is still possible to derive an event-driven
formulation for the dynamics; however, the number of neutrally stable directions associated with
the splay state becomes N . Finally, we prove a link between the results for our system and a previous
theory [S. Watanabe and S. H. Strogatz, Phys. D, 74 (1994), pp. 197–253] developed for networks
of phase oscillators with sinusoidal coupling.
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1. Introduction. The dynamics of networks made up of many elements with a high degree
of connectivity is often studied in the infinite size limit. This allows using analytical machinery
borrowed from statistical physics to study the network dynamics. In particular, for globally
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SPLAY STATES IN NETWORKS OF EXCITABLE NEURONS 865

coupled neural networks this amounts to finding the distribution of the membrane potentials
satisfying a Fokker–Planck equation with specific boundary conditions corresponding to the
spike emission and reset of the neurons [3, 1]. In contrast, general techniques for dealing with
the dynamics of finite size ensembles are not yet fully developed, not even for the analysis of
the linear stability of periodic solutions.

In this paper we investigate the stability of splay states (also known as antiphase states
or “ponies on a merry-go-round”) [20, 4]. In a splay state all the N elements follow the
same periodic dynamics x(t) (x(t + N · T ) = x(t)) but with different time shifts evenly
distributed at regular intervals ΔT = kT , with k = 1, . . . , N . Experimental observations of
splay states have been reported in multimode laser systems [38] and electronic circuits [5].
Numerical and theoretical analyses have been devoted to splay states in Josephson junction
arrays [20, 29, 33, 4], globally coupled Ginzburg–Landau equations [21], globally coupled laser
models [30], traffic models [31], and pulse-coupled neuronal networks [1]. In the last context,
splay states have usually been investigated for leaky integrate-and-fire (LIF) neurons and in
general for neuronal models which can be assimilated to phase oscillators (rotators) [1, 35, 41].
The first detailed stability analysis of LIF neuron oscillators was performed by developing a
mean-field approach in the infinite network limit [1, 35]. Stability analysis for finite size pulse
coupled networks with neurons in the oscillatory regime have recently been developed based
on the spike response method [10] and on the linearization of suitable event-driven maps
[7, 41, 9]. Furthermore, the stability of splay states has been also investigated for piecewise
linear neuronal models with gap junctions [12] and for LIF networks with plastic synapses [6].
As shown in [10], near splay states can be stable even by including weak heterogeneities in
the driving currents applied to each neuron.

The model analyzed in this paper is a fully coupled network of excitable neurons, governed
by the quadratic integrate-and-fire (QIF) equation. The QIF equation is the canonical model
for type I neuronal excitability, as it is the quadratic normal form for the saddle-node invari-
ant cycle (SNIC) bifurcation [14]. The neurons are coupled with positive pulses, modeling
excitatory synapses. We focus our analysis on the persistent activity of the network that is
induced by the recurrent excitation and that co-exists with an inactive ground state.

Analyzing this type of activity is of significant relevance to neuroscience. Persistently
sustained elevated neuronal activity has been recorded during the delay period of the prevalent
reduced behavioral model for working memory: the delayed response tasks [15, 16]. In such
tasks the animal must remember key attributes of the sample stimulus and based on these
attributes (e.g., color, shape, location) generate the appropriate response. For example, in
the delayed match-to-sample task, a target “sample” stimulus is transiently presented and
the subject is cued to remember it. Subsequently, probe stimuli are shown one after another.
Here the memory “trace” of the sample stimulus identity must be retained until the stimulus
matching this initial “sample” appears and the response must be made indicating the match.
Electrophysiological studies found persistent neuronal activity encoding this memory trace.
This persistent neuronal activity was finely tuned for the stimulus to be remembered, appeared
rapidly upon the stimulus presentation, and rapidly dropped to the baseline at the time of
the response, when the memory was no longer necessary. Such rapid on and off transitions
suggest that this persistent activity co-exists with a baseline spontaneous state. This has led
to a prevalent theoretical framework for working memory based on a bistability between theD
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self-sustained elevated activity encoding the memory and the ground state [13]. Furthermore,
so-called cortical up-states, observed during anesthesia and during sleep, are also considered
to be generated by the intrinsic excitatory synaptic connectivity with the constituent neurons
being excitable (as opposed to intrinsic oscillators).

There are also indications that these sustained up-states are largely asynchronous. In fact,
theoretical studies have suggested that asynchrony is a requirement for stable maintenance of
synaptically sustained neural activity [26].

Furthermore, previous computational work proposed that perturbing the asynchronous
structure of the sustained activity leads to its destabilization [19]. It is thus important to
determine specifically the stability and the structure of the asynchronous sustained activity.
This item has been addressed in the infinite size limit within the mean-field approximation
[23, 22], and the role of asynchrony and synchrony in sustained neural activity has been studied
for a pair of neurons [19]. However, sustained cortical activity appears to be generated by
local circuits in the cortex, i.e., networks with a limited number of neurons. Hence in our
work we seek to understand the stability of asynchronous activity self-sustained by a finite
size network.

In this paper, as already mentioned, we analyze the splay states, which are highly sym-
metric states. These states represent a proto-state for the asynchronous activity sustained
by recurrent excitation: it corresponds to the limiting situation termed asynchronous regular
activity, as opposed to the asynchronous irregular dynamics, both observed in sparsely con-
nected networks [8]. In fact there is recent experimental evidence showing that some cortical
areas of primates have neural activity that is more regular than Poissonian, for example, in
the parietal cortex during motor and memory tasks, across various firing rates [28], and in
the inferotemporal cortex during evoked response to visual stimuli [2]. Indeed it would be
interesting to understand how our analysis could be extended to the asynchronous irregular
regime usually characterized by Poisson firing statistics.

We perform an analytical linear stability analysis of the splay states for finite size networks
of excitable neurons when the postsynaptic potentials (PSPs) are modeled as square pulses
of finite amplitude and duration. We focus on fast excitatory synaptic coupling as a basic
mechanism for generating the reverberative self-sustained activity. This corresponds to AMPA
receptor-mediated glutamatergic synapses that have a typical decay-time constant of about 5
msecs [32]. Traditionally such synapses are modeled as a double exponential function (or an α-
function) with a finite rise time and a decay time governed by the synaptic time constant [17].

Here we use a simpler version of this model: we keep the idea of the characteristic synaptic
time scale while leaving aside the dynamics by modeling the synaptic currents as square pulse
steps. The advantage of such a minimal model is that it makes the network dynamics tractable
for our analysis, while giving us control over the synaptic duration.

In order to study the finite size network, we derive an event-driven map for the evolution of
the membrane potentials of the neurons by introducing two kinds of synaptic events: synaptic
pulse emission and termination. This approach allows us to derive an analytic, but implicit,
expression for the splay state for two kinds of synaptic models: step pulses and δ-pulses.
Furthermore, the linear stability analysis requires the investigation of the linearized dynamics
of the model. It should be mentioned that memory effects should be taken in account whenever
the duration of the PSPs lasts sufficiently to lead to overlaps among the emitted pulses. ForD
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SPLAY STATES IN NETWORKS OF EXCITABLE NEURONS 867

M overlapping pulses, the linearized dynamics can be rewritten as an event-driven map by
includingM additional variables. This is different from the usual approach, where the memory
effect due to the linear superposition of α- or exponential pulses emitted in the past is taken in
account by a self-consistent field [1, 41, 9]. Finally, by employing the event-driven formulation
we have analytically obtained the Floquet spectra associated with the splay state for step
pulses and δ-pulses.

The paper is organized as follows. In section 2 the model and the possible dynamical
regimes are introduced. The event-driven map for step pulses and δ-pulses is derived in
section 3, while the linear stability analysis of splay states is performed in section 4 for step
pulses and in section 5 for δ-pulses. Section 6 is devoted to the description of other periodic
states observable in the present model. Finally, in section 7 the results are summarized and
discussed. Analytical expressions for the firing rates of the splay states in small networks are
reported in Appendix A. Furthermore, in Appendix B we report an analytical expression for
the splay state membrane potentials derived in the continuum limit. Appendix C contains a
formal proof for our model, in the case of nonoverlapping pulses, that the Floquet spectrum
associated with the splay states contains N − 2 marginally stable directions.

2. Model and dynamical regimes. In this section, we will introduce our model and the
specific state which is the main subject of investigation of our analysis, namely the splay state.
In particular, we consider a pulse-coupled fully connected excitatory network made of QIF
neurons, whose dynamics is governed by the following equation:

(2.1) τ
dvi
dt

= v2i − 1 + I(t), i = 1, . . . , N,

where the nth spike is emitted at time tn, once the neuron reaches the threshold value vi(t
−
n ) =

∞; afterwards it is immediately reset to the value vi(t
+
n ) = −∞. For a constant synaptic

current I < 1, the neuron has a stable fixed point at vrest = −√
1− I and an unstable one

at vu = +
√
1− I . The dynamics is excitable with vu representing the threshold to overcome

to observe an “excursion” towards infinity (a spike) before relaxing to the rest state at vrest
[14]. This amounts to saying that if the initial value vi(t = 0) < vrest also at all the successive
times, the membrane potential will remain smaller than vrest, while if vrest < vi(t = 0) < vu,
the membrane potential will tend asymptotically to vrest. Furthermore, for I > 1 the neuron
fires periodically with frequency ν =

√
I − 1/(πτ).

Since the network is fully connected, with equal synaptic weights, all neurons receive the
same synaptic current I(t) that is the linear superposition of all the pulses emitted in the
network up to the time t. In particular, as schema for the PSPs we consider step functions of
finite duration Ts and amplitude J ≡ G/(NTs), and therefore the current reads as

(2.2) I(t) = J
∑
{tn}

[Θ(t− tn)−Θ(Ts + tn − t)] ,

where Θ(x) is the Heaviside function, the sum runs over all the spike times tn < t, and the
coupling is normalized by the number of neurons N to ensure that the total synaptic input
will remain finite in the limit N → ∞. We consider pulses of the form (2.2) as the simplest
example of PSPs allowing us to take in account spatial and temporal summation of stimuli,
due to their finite duration and amplitude.D
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In the limit Ts → 0, the PSPs will become δ-pulses, and in this case the synaptic current
can be rewritten as follows:

(2.3) I(t) =
G

N

∑
{tn}

δ(t− tn).

By following [23], we can derive the average firing rate ν in the infinite size network; in
this case the spiking frequency of the single neuron is simply given by

(2.4) ν =

√
Gν − 1

πτ
,

where Gν is the total synaptic current received by each single neuron, and this result is valid
both for the step PSPs (2.2) as well as for the δ-pulses. By solving the implicit equation
above, one gets

(2.5) ν1,2 =
G±√

G2 − 4τ2π2

2τ2π2
;

therefore there are two branches of solutions, and we will re-examine this point later. Let us
just mention that these solutions have been associated with the asynchronous persistent states
emerging in networks composed of inhibitory and excitatory QIF populations [23].

A peculiar example of an asynchronous regular state [8] emerging in globally coupled
networks is the so-called splay state [35, 41]. This regime is characterized by a sequential
firing of all the neurons with a constant network interspike interval (NISI) T , while the
dynamics of each neuron is periodic with period N ·T . Stable splay states have been found in
finite pulse coupled excitatory networks for LIF models [7, 41], as well as for general neuronal
models [10, 9] with exponentially rising/decaying pulses, and in inhibitory networks with
δ-pulses [1, 40].

3. Event-driven map. As previously done in [24, 41] for LIF neuronal models, we would
like to derive an event-driven map for the setup considered in the present paper. The event-
driven map gives the exact evolution of the system, described by the set of N ODEs (2.1) plus
the variable describing the synaptic current, from an event to the successive one. Therefore
the continuous time evolution is substituted by a map with discrete time.

Let us first consider PSPs that are step pulses of duration Ts as reported in (2.2). In the
last part of the section we will also derive the event-driven map in the δ-pulse limiting case.

3.1. Step pulses. In the case of step pulses, two types of events should be distinguished:
pulse emission (PE) and pulse termination (PT). Both events induce an instantaneous change
of the synaptic current by a constant value: the current will increase (resp., decrease) by a
quantity J for PE (resp., PT). In order to integrate the system, it is not sufficient to know
the value of the membrane potentials and of the synaptic current at a certain time t. The
system evolution will also depend on the termination times of the previous pulses received by
the neuron that are “active” (still contributing to the synaptic current) at time t. Therefore
one needs to know the ordered list of the future PT times {Sj(t)}, with j = 1, . . . ,K, where
t < S1(t) < S2(t) < · · · < SK(t). The number K(t) of these events is in general not constant,D
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and it represents the number of overlapping pulses at time t, which amounts to a synaptic
current I(t) = K(t)J . Let us now discuss separately how the PE and PT events influence the
neural dynamics in order to derive an event-driven map.

Pulse emission. Suppose that at time tn the neuron q emits a spike and that at time t−n
there were K overlapping pulses. One can obtain the value of the membrane potential for the
neuron i at the next event, occurring at tn +Δt, by integrating (2.1) with I(t) = (K + 1)J :

(3.1)

∫ vi(tn+Δt)

vi(t
+
n )

dX

X2 + (K + 1)J − 1
=

∫ tn+Δt

t+n

dt

τ
.

How to determine the time interval Δt will be explained in the following. Due to the simple
form of the PSP we can integrate (3.1) analytically, obtaining

(3.2) vi(tn +Δt) =

⎧⎨
⎩

H(vi(t
+
n ),K + 1,Δt), i �= q,

H∗(K + 1,Δt), i = q,

with

(3.3) H(x,K, t) = [KJ−1]βK(t)+x
1−βK(t)x , H∗(K, t) = −1/βK(t),

and with the function βK defined as follows:1

(3.4) βK(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KJ < 1,
tanh(

√
1−KJt/τ)√
1−KJ ,

KJ > 1,
tan(

√
KJ−1t/τ)√
KJ−1

.

Furthermore, the list of the future PT times should be updated by adding SK+1(tn) = tn+Ts.
Pulse termination. Let us now consider a PT occurring at time tPT when there were K ≥ 1

overlapping pulses present in the network. The membrane potential of the ith neuron at the
next event, occurring at tPT +Δt, can be obtained by solving the following integral:

(3.5)

∫ vi(tPT+Δt)

vi(t
+
PT )

dX

X2 + (K − 1)J − 1
=

∫ tPT+Δt

t+PT

dt

τ
,

which gives

(3.6) vi(tPT +Δt) = H(vi(t
+
PT ),K − 1,Δt).

At each PT the list of the PT times {Sj(tPT )} should be updated by throwing away the small-
est time S1 and by relabeling the other times as Sj(t

+
PT ) = Sj+1(t

−
PT ), with j = 1, . . . ,K − 1.

1Notice that in the excitable case (KJ < 1) one gets a single-valued function from the integral (3.1) due to
the fact that, depending on the initial value of the membrane potential, the dynamics remains segregated in
one of the three intervals vi(t) < vrest, vrest < vi(t) < vu, or vi(t) > vu.D
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Determination of the integration time lapse. After each event PE or PT at time t∗, one
should determine the time interval Δt until the next event. In particular, one should under-
stand whether the next event will be a PE or a PT. In order to resolve this dilemma, the
next presumed firing time E(t∗) occurring in the network has to first be determined on the
basis of the values of the membrane potentials and of the synaptic current at time t∗. In the
absence of any intermediate event, since we are considering a fully coupled system, the neuron
p with highest membrane potential value vp(t

∗) is going to fire at time E(t∗). This time can
be determined by imposing that H(vp(t

∗),K,E(t∗)− t∗) = ∞, with H given by (3.3), namely,

(3.7) E(t∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KJ < 1, t∗ + τ√
1−KJ

[
tanh−1

(√
1−KJ
vp(t

+
n )

)]
,

KJ > 1, t∗ + τ√
KJ−1

[
π
2 − tan−1

(
vp(t

+
n )√

KJ−1

)]
,

where K is the number of overlapping pulses immediately after the event at t∗. In order to
understand the type of the next event, E(t∗) should be compared with S1(t

∗) to determine
which is the smaller one. If K = 0, then Δt = E(t∗)− t∗ automatically; otherwise

(3.8) Δt = min {E(t∗), S1(t∗)} − t∗.

The event-driven map will therefore be a combination of the two above described integration
steps. After each event the potential will be given by (3.2) or (3.6), depending on whether
the event is a PE or a PT.

Co-moving frame. A further simplification to the above scheme can be obtained by ex-
ploiting the fact that for globally coupled networks the neuron firing order is preserved. Since
the firing order is directly related to the membrane potential value, we can order sequen-
tially the membrane potentials, i.e., v1(t) > v2(t) > · · · > vN (t), and introduce a co-moving
frame. This amounts to relabeling the neuron closest to threshold as 1 and, when it fires
at time tn, to resetting the potential value as v1(t

−
n ) → vN (t

+
n ) = −∞ and to shifting the

indexes of all the others i → (i − 1) for i ≥ 2. Furthermore, due to the reference frame
transformation, (3.2) has to be modified: namely, the evolution map should be rewritten as
vi(tn +Δt) = H(vi+1(t

+
n ),K + 1,Δt) for i = 1, . . . , N − 1 and vN (tn +Δt) = H∗(K + 1,Δt).

3.1.1. Splay state. For the splay state regime, the event-driven map outlined above sim-
plifies noticeably and, furthermore, it can be explicitly written. The splay state is character-
ized by a constant NISI: T . Furthermore, due to the regular spike emission the PT times can
all be written in a function of S1(t) as Sj(t) = S1(t) + (j − 1) · T . In general, it is useful to
rewrite Ts as a function of T as follows:

(3.9) Ts =MT + T0,

where K =M is the number of overlapping PSPs just before the spike emission and T0 < T .
Let us define T1 = T −T0. Notice that for a splay state K can assume only two values, namely
M and M + 1, as shown in Figure 1. In the case of nonoverlapping pulses, M = 0, Ts ≡ T0,
and T1 ≡ T − Ts. This case is illustrated in Figure 1(a).D
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I

2J

J

tn+1 tn+2tntn-1

M = 1
I

J

tn tn+1

T0

tn+2

M = 0
(a) (b)

(n)
T0

(n+1)

T1
(n) T1

(n+1)

T1
(n) T1

(n+1)

T0
(n+1)T0

(n)

S1(tn) S1(tn) S1(tn)

M = 2
(c)

S1(tn) S2(tn) S3(tn)tn

2J

3J

J

tn-1tn-2 tn+1
tn+2

T0
(n) T0

(n+1)

T1
(n) T1

(n+1)

I

Figure 1. PSPs in a splay state can overlap M times. (a) PSPs overlapping M = 0 times (no overlaps);
(b) PSPs overlapping M = 1 time; (c) PSPs overlapping M = 2 times. Independently of the value of M the
synaptic current can take only two values in the time interval between two spikes, namely during I(tn < t <

tn + T
(n)
0 ) = (M + 1)J and I(tn + T

(n)
0 < t < tn+1) = MJ.

In order to determine the value of the coupling GM required to have exactlyM overlapping
pulses, let us employ, as a first approximation, the mean field equation (2.5) with the condition
ν1 =M/(NTs), which is equivalent to assuming that Ts ≡MT , where

(3.10)
M

NTs
=
GM +

√
G2
M − 4τ2π2

2τ2π2
;

then we can invert the above equation and obtain the critical coupling

(3.11) JM =
GM
NTs

=
1

M
+
τ2π2M

(NTs)2
.

If J < J1, there is no overlap between two successive emitted PSPs. When JM < J < JM+1,D
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M pulses overlap. The synaptic current can take only the following two values:

(3.12) I(t) =

⎧⎨
⎩

(M + 1)J, tn < t < tn + T0,

MJ, tn + T0 < t < tn+1,

as clearly illustrated in Figure 1. In particular, if T0 = 0, we will always have exactly M
overlapping pulses since each PE will coincide with a PT, and I =MJ .

For the splay state we can rewrite the dynamics of each neuron i between two successive
spikes occurring at tn and tn+1 as an exact map made of the following three steps:

1. The first step starts with a PE at time tn; one can easily estimate the evolution of
the membrane potential from time t+n to T1 when a PT will occur. Let us first define

x
(n)
i = vi(t

+
n ) and y

(n)
i = vi(t

+
n + T0) and order the membrane potentials as follows:

(3.13) x
(n)
1 > x

(n)
2 > · · · > x

(n)
N = −∞;

the last equivalence stems from the fact that a neuron has just fired and it has been
reset. By employing the expression (3.2) one gets the following map:

(3.14) y
(n)
i =

⎧⎨
⎩

F1(x
(n)
i , T0) = H(x

(n)
i ,M + 1, T0), i �= N,

F ∗
1 (T0) = H∗(M + 1, T0), i = N,

with H and H∗ defined in (3.3).
2. The second step corresponds to the integration of the equation of motion from the

PT occurring at tn + T0 and the time t−n+1 immediately preceding the (n+ 1)st spike

emission. By defining z
(n)
i = vi(t

−
n+1) and by employing (3.6) one gets

(3.15) z
(n)
i = H(y

(n)
i ,M, T1),

with H defined in (3.3). Due to the previous ordering, the next firing neuron will have

the label 1, and therefore z
(n)
1 = ∞, and thus the denominator of the right-hand side

equation (3.15) should be zero:

(3.16) 1− βM (T1)y
(n)
1 = 0.

By inserting (3.16) into (3.15) one gets

(3.17) z
(n)
i = F2(y

(n)
1 , y

(n)
i ) =

(MJ − 1) + y
(n)
1 y

(n)
i

y
(n)
1 − y

(n)
i

.

3. The last step amounts simply to calculating the membrane potential change in going
from t−n+1 to t

+
n+1 and introducing a co-moving frame to also maintain the order among

the membrane potentials after each firing event. This amounts to writing

(3.18) x
(n+1)
i = F3(z

(n)
i+1) = z

(n)
i+1 for 1 ≤ i ≤ N − 1

and setting x
(n+1)
N = −∞. Since the event-driven map approach corresponds to a

suitable Poincaré section, we are left with N − 1 variables, dropping the variable
i = N .D
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We can compute the complete event-driven map from spike time tn to spike time tn+1 by
combining the three above equations (3.14), (3.15), and (3.18):

(3.19) x
(n+1)
i = F (x

(n)
i+1) =

a0 + a1x
(n)
i+1

a2 + a3x
(n)
i+1

for 1 ≤ i ≤ N − 1,

where the coefficients entering in (3.19) read as

(3.20)

a0 = (MJ − 1)βM (T1) + [(M + 1)J − 1]βM+1(T0),
a1 = 1− (MJ − 1)βM+1(T0)βM (T1),
a2 = 1− [(M + 1)J − 1]βM+1(T0)βM (T1),
a3 = −βM+1(T0)− βM (T1).

Exact firing rate value. In order to obtain the membrane potential values associated with
the splay state, one should impose that the splay state represent a fixed point for the event-
driven map in the comoving frame, namely,

(3.21) x
(n)
i = x

(n+1)
i = x̃i.

Furthermore, once G, N , and Ts are fixed, one can determine the NISI T by solving itera-
tively (3.7) together with the set of equations for the membrane potential (3.19), with the
requirement that x∗ = FN (x̃N = −∞) = +∞. Numerically, as a first guess for T we usually
employ the mean-field result 1/ν1, given by the larger solution of (2.5). Then we evaluate the
splay state by employing a bisection method to find the exact NISI. We stop the procedure
whenever x∗ > 108, with the constraint that the order (3.13) be maintained.

For a given set of parameters G, Ts, and N we found at maximum two co-existing splay
states (in agreement with the mean-field results). Beyond a minimal value of J , there is always
one marginally stable splay state. When there are two splay states we found that the other
one is unstable, as illustrated in the following in Figure 6. Let us stress that unstable branches
of solutions exist only for nonoverlapping pulses (i.e., M = 0), as shown in Figure 2. These
numerical results will be confirmed by analytical analysis in Appendix A for N = 2, 3, 4 and
J < J1 (M = 0).

Notice that for N = 2 only the marginally stable branch exists and the minimal firing rate
reaches the value ν = 0. Instead for N > 2 the minimal firing rate of the marginally stable
branch is ν �= 0. The firing rate associated with the unstable branch, for finite N , always
reaches the value ν = 0 for some finite pulse amplitude J = J∗. Finally, for N → ∞ we have
that J∗(ν = 0) → ∞.

3.2. δ-pulses. In the case of δ-pulses, the formulation of the event-driven map is extremely
simplified since now there are only PE events. At the arrival of a δ-pulse, we can integrate
(2.1) with the current given by (2.3) between time t−n and t+n , obtaining

(3.22) y
(n)
i = x

(n)
i + Jδ for 1 ≤ i ≤ N − 1,

where Jδ = G/(Nτ). The evolution of the membrane potential in the time interval t+n and
t−n+1 can be easily obtained since it corresponds to (3.6) with M = 0 and T1 = t−n+1− t+n = T ,D
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ν 
(H

z)

J

N=2
N=3
N=4
N=∞

M = 0

M =1

M = 2
M = 3

Figure 2. Frequencies of the splay states as a function of the synaptic strength J and for pulse duration
TsN = 12 ms with τ = 20 ms. Red line: N = 2, magenta line: N = 3, blue line: N = 4, green line: N = ∞.
Black dotted lines separate regions with different numbers M of overlapping PSPs. Solid lines refer to the upper
stable branches of the splay state. Dashed lines refers to the lower unstable branches of the splay state. For
N = 2 the lower branch does not exist.

namely,

(3.23) z
(n)
i = H(y

(n)
i , 0, T )

for i = 1, . . . , N − 1. Then we can combine (3.22) and (3.23) with the change of reference
frame (3.18) to obtain the corresponding event-driven map. The resulting map is identical to
that found for the step function (3.19), apart from the value of the coefficients (3.20), which
now become

(3.24)

a0 = −β0(T ) + Jδ,
a1 = 1,
a2 = 1− β0(T )Jδ ,
a3 = −β0(T ).

Once Jδ and N and Ts are fixed, similarly to the case of step pulses, one can determine
T together with the membrane potential values associated with the splay state by solvingD
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iteratively (3.7) and by applying iteratively the map (3.19) with coefficients (3.24) starting
from x̃N = −∞. The solution is numerically achieved whenever x∗ = FN (x̃N = −∞) = +∞
(namely, x∗ > 108) and the condition (3.13) is satisfied.

We want to conclude this section by mentioning the fact that in the limit N → ∞ we were
able to derive an explicit analytic expression for the membrane potentials corresponding to a
splay state. The detailed calculations are reported in Appendix B.

4. Linear stability analysis for step pulses. We are interested in the linear stability of
the splay state in the case of step pulses for finite system size N . It is therefore useful to
introduce the following vector notation for the membrane potentials at spike time tn:

(4.1) x(n) =
{
x
(n)
1 , x

(n)
2 , . . . , x

(n)
N

}
.

Furthermore, if we have more than one overlapping pulse, i.e., if M > 0, the actual state
of the network will depend not only on the membrane potential values but also on the past
M spike times {tk}, with k = n − M,n − M + 1, . . . , n − 1. However, the formulation of
the tangent space dynamics can be made simpler by introducing the related time intervals

τ
(n)
j ≡ tn − tn−j:

(4.2) τ (n) =
{
τ
(n)
1 , τ

(n)
2 , . . . , τ

(n)
M

}
.

In this notation the splay state is a fixed point of the network dynamics satisfying the
following relationships:

(4.3) x̃ = F3(z̃) = F3(F2(ỹ)) = F3(F2(F1(x̃)))

and

(4.4) τ̃j = j · T, j = 1, . . . ,M.

4.1. Linearized Poincaré map. In order to derive the equations of evolution in the tangent
space, for our case it is convenient to consider separately the three steps in (4.3); notice that

now T
(n)
0 and T

(n)
1 depend on the spike sequence index n since, for the perturbed dynamics,

these quantities are no longer constant.
Let us start by perturbing (3.14):

(4.5)

⎧⎪⎨
⎪⎩

δy
(n)
i=1,...,N−1 = diδx

(n)
i + siδT

(n)
0 ,

δy
(n)
N = sNδT

(n)
0 ,D
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with δT
(n)
0 = 0 if M = 0, where the coefficients are

di =
∂F1(x

(n)
i , T

(n)
0 )

∂x
(n)
i

∣∣∣∣∣
x̃i,T̃0

=
1 + [(M + 1)J − 1]β2M+1(T̃0)

(1− βM+1(T̃0)x̃i)2
,(4.6)

si =
∂F1(x

(n)
i , T

(n)
0 )

∂T
(n)
0

∣∣∣∣∣
x̃i,T̃0

=
(M + 1)J − 1 + x̃2i
(1 − βM+1(T̃0)x̃i)2

1

cos2
(√

(m+ 1)g − 1T̃0/τ
) 1

τ
,(4.7)

sN =
dF ∗

1 (T
(n)
0 )

dT
(n)
0

∣∣∣∣∣
T̃0

=
1

β2M+1(T̃0)

1

cos2
(√

(M + 1)J − 1T̃0/τ
) 1

τ
.(4.8)

As a second step we perturb F2 given by (3.17), obtaining

(4.9) δz
(n)
i = hiδy

(n)
1 + kiδy

(n)
i , i = 1, . . . , N ;

remember that if M = 0, then δy
(n)
N = 0. The coefficients hi and ki are defined as

hi =
∂F2(y

(n)
1 , y

(n)
i )

∂y
(n)
1

∣∣∣∣∣
ỹ1,ỹi

= −MJ − 1 + ỹ2i
(ỹ1 − ỹi)2

,(4.10)

ki =
∂F2(y

(n)
1 , y

(n)
i )

∂y
(n)
i

∣∣∣∣∣
ỹ1,ỹi

=
MJ − 1 + ỹ21
(ỹ1 − ỹi)2

.(4.11)

Finally, the linearized equations associated with the reference frame change can be ob-
tained by perturbing (3.18):

(4.12) δx
(n+1)
i = δz

(n)
i+1, i = 1, . . . , N − 1;

notice that δx
(n)
N ≡ 0 due to the fact that in the co-moving frame x

(n)
N ≡ −∞, and therefore

the evolution in the tangent space should deal with only N − 1 perturbations associated with
the membrane potentials.

Then we need to compute how the time interval T
(n)
0 is modified by the perturbations

when M > 0. The key point here is that T
(n)
0 depends on the previous spike times as follows:

(4.13) T
(n)
0 = Ts − (tn − tn−M) = Ts − τ

(n)
M ;

apparently one could be led to think that we need only an extra variable: τ
(n)
M . However, τ

(n)
M

depends on all the M previous spike times, and therefore we also need to take in account the

perturbations of the other M − 1 variables, namely τ
(n)
j=1,...,M−1.

To obtain the evolution equations for these auxiliary M variables, let us consider the
following relations:

(4.14) τ
(n+1)
1 = T

(n)
0 + T

(n)
1D
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and

(4.15) τ
(n+1)
j = τ

(n+1)
1 + τ

(n)
j−1 = T

(n)
0 + T

(n)
1 + τ

(n)
j−1.

From (4.13) we obtain the relation δτ
(n)
M = −δT (n)

0 . From this relation and from (4.14) and
(4.15) (for positive M) we can easily obtain the evolution maps for the perturbed quantities:

(4.16)

⎧⎪⎨
⎪⎩

δτ
(n+1)
1 = δT

(n)
1 − δτ

(n)
M ,

δτ
(n+1)
j=2,...,M = δT

(n)
1 + δτ

(n)
j−1 − δτ

(n)
M .

We are left just with the determination of δT
(n)
1 ; this can be derived by remembering

that the time from the last PT until the next PE can be calculated by employing (3.7) with

K =M , vp(t
+ − n), and E(t∗)− t∗ = T

(n)
1 :

(4.17) T
(n)
1 = G(y

(n)
1 ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MJ < 1, τ√
MJ−1

tanh−1

(√
MJ−1

y
(n)
1

)
,

MJ > 1, τ√
MJ−1

tan−1

(√
MJ−1

y
(n)
1

)

and

(4.18) w =
dG

dy
(n)
1

∣∣∣∣∣
ỹ1

= − τ

ỹ21 + |MJ − 1| ;

and we can obtain

(4.19) δT
(n)
1 = wδy

(n)
1 .

By combining (4.5), (4.9), (4.12), (4.16), and (4.19), the complete map evolution in the
tangent space can finally be written as follows:

(4.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δx
(n+1)
i=1,...,N−2 = pi+1δx

(n)
1 + qi+1δx

(n)
i+1 + ui+1δτ

(n)
M ,

δx
(n+1)
N−1 = pNδx

(n)
1 + uNδτ

(n)
M ,

δτ
(n+1)
1 = r1δx

(n)
1 + r2δτ

(n)
M ,

δτ
(n+1)
j=2,...,M = r1δx

(n)
1 + δτ

(n)
j−1 + r2δτ

(n)
M ,

where we have set pi = hid1, qi = kidi, ui = −(his1 + kisi), r1 = wd1, and r2 = −(1 + ws1).D
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In order to determine the stability of the splay state, we should compute the Floquet
spectrum by setting

(4.21)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δx
(n+1)
1

. . .

δx
(n+1)
N−1

δτ
(n+1)
1
...

δτ
(n+1)
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δx
(n)
1

. . .

δx
(n)
N−1

δτ
(n)
1
...

δτ
(n)
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where μl = eλl+iωl (l = 1, . . . , N+M−1) are the so-called (complex) Floquet multipliers, while
λl (resp., ωl) are real numbers termed Floquet exponents (resp., frequencies). If ||μl|| < 1 ∀l
(resp., ||μk|| > 1 for at least one k), the splay state is stable (resp., unstable). Whenever the
largest modulus of the Floquet multipliers is exactly one, the system is marginally stable.

The Floquet spectrum can be obtained by solving the following characteristic polynomial,
obtained from (4.20):

(4.22)

(
μN−1
l − p2μ

N−2
l −∑N

k=3 pk

(∏k−1
j=2 qj

)
μN−k
l

)(
μMl − r2

∑M−1
k=0 μkl

)

+
(
u2μ

N−2
l +

∑N
k=3 uk

(∏k−1
j=2 qj

)
μN−k
l

)(
−r1

∑M−1
k=0 μkl

)
= 0,

which admits N +M − 1 solutions.

4.2. Floquet multipliers. As stated by Watanabe and Strogatz [37] for a network on N
fully coupled phase oscillators with sinusoidal coupling, the system has, in general, N − 3
marginally stable directions; furthermore, for a splay state, which is a periodic solution,
these directions reduce to N − 2. Therefore, since our model also, as detailed in Appendix
C, satisfies the hypothesis for which the Watanabe–Strogatz results apply, and since in the
event-driven map formulation one degree of freedom is lost, we expect that for the splay states
at least N − 3 Floquet multipliers will lie on the unit circle, as shown in Figure 3 for M = 0.
Furthermore, in the presence of overlaps, i.e., for M > 0, the Floquet exponents associated
with the auxiliary variables τ (n) do not influence the stability of the splay state since these
additional M exponents are located within the unit circle and are therefore associated with
stable directions, as shown in Figures 4 and 5.

It is interesting to notice how the additional exponents associated with the auxiliary
variables emerge by increasing the number of overlaps. In particular, the number of overlaps
can be increased from M to M + 1 by varying the coupling J from below to above the
threshold JM+1. At the threshold JM+1 a new variable τM+1 is added to the event-driven
map describing the system. Therefore the Floquet spectrum associated with the corresponding
splay state solution has one additional eigenvalue. This new direction emerges as superstable
at J = JM+1, being associated with a zero Floquet multiplier, as shown in Figure 5. By further
increasing J the new eigenvalue increases its modulus, which, however, always remains smaller
than one.D
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Re(μ)Re(μ)Re(μ)

Im
(μ

)

Im
(μ

)

Im
(μ

)

(a) (b) (c)

Figure 3. Floquet multipliers {μl} for the case with no overlap, i.e., M = 0: (a) N = 3, 0 marginally
stable eigenvalues; (b) N = 4, 1 marginally stable eigenvalue; (c) N = 8, 5 marginally stable eigenvalues. In
this case we fixed J = 15 and NTs = 16 ms, and we varied the network size.

Re(μ)Re(μ)Re(μ)

Im
(μ

)

Im
(μ

)

Im
(μ

)

(a) (b) (c)

Figure 4. Floquet multipliers {μl} for overlapping pulses, i.e., M > 0: (a) J = 15, M = 0, 2 neutrally
stable eigenvalues; (b) J = 25, M = 1, 2 neutrally stable eigenvalues; (c) J = 100, M = 6, 2 neutrally stable
eigenvalues. We have considered N = 5 and Ts = 3.2 ms.

Re(μ)

Im
(μ

)

Figure 5. Floquet spectrum of the splay state in the complex plane for TsN = 16 ms, N = 5; in this case
J1 = 16.42. Blue stars correspond to M = 0 when J = 10.42 < J1 (blue) and J = 14.42 < J1 (red); and to
M = 1 when J = 18.42 > J1 (cyan) and J = 22.42 > J1 (magenta).
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)

Re(μ)

Im
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Re(μ)
Im

(μ
)

(a) (b) (c)

Figure 6. Floquet spectrum of the splay state in the complex plane for the unstable branch, TsN = 16 ms,
N = 10: (a) J = 8, (b) J = 10, (c) J = 12.

In Figure 6 we report the Floquet multipliers associated with the unstable branch of
splay state solutions, which co-exist with the marginally stable branch for N > 2, as already
mentioned in section 3.1.

5. Linear stability for δ-pulses. In the case of δ-pulses the stability of the splay state
can be inferred by theoretical arguments based on the symmetry of the considered model
and of the specific pulse coupling. It is evident that the QIF model (2.1) for time symmetric
pulses has a time reversal symmetry. This can be appreciated as follows. Given a solution
v(t) = {v1(t), . . . , vN (t)} we define w(t) = {w1(t), . . . , wN (t)} = −{vN (−t), . . . , v1(−t)}. It
is clear from the time reversal property of (2.1) that w(t) is a solution in between two spike
emissions. Let us analyze whether the symmetry is also maintained during spike emission:
in the usual case v1 will reach ∞; then it will be reset to −∞ and a constant value Jδ will
be added to all the other membrane potentials. The membrane potential w1(t) reaching ∞
is equivalent to vN (−t) reaching −∞. Backwards in time the reset and coupling consists of
setting vN to ∞ and subtracting Jδ from the other variables. Due to the minus sign in the
definition of w(t), this means that w1 is reset from +∞ to −∞ and the other variables are
incremented by Jδ. Hence w(t) is a solution and (2.1) has time reversal symmetry.

We also show that the splay state is transformed into itself by the time reversal. A splay
state is a solution v(t) characterized by the following properties:

(5.1) vj(t+ T ) = vj+1(t), vj(t+NT ) = vj(t), j = 1, . . . , N.

Note that if w(t) is the time reversal of v(t), then wj(t) = −vN−j+1(−t), j = 1, . . . , N . We
now make the following computation:

wj(t+ T ) = −vN−j+1(−t− T )

= −vN−j(−t− T + T )

= −vN−(j+1)−1(−t) = wj+1(t).

(5.2)

It follows thatw(t) is also a splay state. Moreover, by choosing the phase, we can set v1(0) = 0,D
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which implies that v1(0) = wN (0), or v1(0) = w1((N − 1)T ). Therefore w(t) must be a phase
shifted version of v(t).

We now use the following well-known result [27].
Theorem 1. Let

(5.3) ẋ = F (x), x ∈ RN ,

be an ODE and R be a matrix. Suppose that (5.3) has a time reversal symmetry defined as
follows: if x(t) is a solution of (5.3), then y(t) = −Rx(−t) is also a solution. Suppose also
that (5.3) has a periodic solution x0(t) such that −Rx0(−t) = x0(t + T ) for some T . Then
all the Floquet multipliers of x0(t) are on the unit circle.

It follows from Theorem 1 that the splay phase solution has all its Floquet multipliers
on the unit circle (as shown in Figure 7). In particular, in Figure 7 we report the Floquet
multipliers for two different shapes of PSPs, but we maintain the same coupling weight G,
and we observe that the multipliers which were inside the unit circle attain modulus one by
passing continuously from step pulses to δ-pulses.

Re(μ)

Im
(μ

)

Figure 7. Floquet multipliers for splay states with different PSPs: namely, blue stars refer to step functions
with J = 10, and red circles to δ-functions. The coupling weight is the same in the two cases, G = 180 ms.

6. Continuous family of periodic solutions. We want to show that the N−3 directions of
neutral stability for the splay state are not only local but also global. We have verified this issue
numerically by perturbing randomly the splay state x̃ and by following the system dynamics,
with the aid of the general event-driven map discussed in section 3.1, until its convergence
to some stationary state. In particular, the initial conditions for these simulations have been
generated as follows:

(6.1) x = x̃+ σN ,

where x̃ identifies the splay state, N is an N -dimensional random vector whose components
are δ-correlated with zero average and Gaussian distributed with unitary standard deviation,
and the noise amplitude is σ = 0.1. By following the time evolution for a sufficiently long time
span (typically, of the order of 100 ·N spikes), we always observe that these initial conditions
converge to periodic orbits or to the quiescent state x = {−1, . . . ,−1}. This has been verifiedD
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X 1 X 1

X 1 X 1

(a) (b)

(c) (d)
spike index spike index

spike indexspike index

Figure 8. Examples of trajectories (red lines) emerging from the perturbation of the splay state (black
lines) or of a periodic state (blue lines). Only the voltage variable x1 is reported here as a function of the
spike index, corresponding to the number of successive spike emissions of the network from an arbitrary initial
spike emission. Perturbation of the splay state: (a) along the directions of stability, the system converges to
the splay state; (b) along the directions of neutral stability, the system is set in a periodic state. Perturbation
of a periodic state: (c) along the directions of stability, the system converges to the periodic orbit; (d) along
the directions of neutral stability, the system is set in a new periodic orbit. The system parameters are N = 5,
J = 15, Ts = 3 ms, and σ = 0.2.

for system size up to N = 1, 000 and by considering up to 10, 000 different initial conditions
for each N .

Furthermore, we observe that the final state is an orbit with periodicity χ = N if N > 4
and periodicity χ = 2 if N = 4 (Figure 8), while for N = 3 the final state is always the splay
state. Notice that, in the event-driven map context, the splay state amounts to a fixed point
of the dynamics. Furthermore, these periodic solutions are characterized by neurons firing
periodically with the same period, but where the relative phases among the neurons are not
equal, as for the splay state, as shown in Figure 9(b). This implies that the time intervals
among successive firings in the network (the so-called NISI) are also not constant, as shown
in Figure 9(a).

All the periodic orbits we found lie on the (N − 3)-manifold associated with the neutrally
stable directions of the splay state in the event-driven map formulation, which can be obtainedD
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N
IS

I (
m

s)

cos(θ*)

si
n(
θ*

)

(b)(a)

spike index

Figure 9. (a) NISIs for a periodic state in a function of the spike index. (b) Rose diagram for a splay
state (blue lines) and a periodic state (red lines). The angle θ∗ represents the phase of each neuron within one
period of the dynamics [39]. The system parameters are N = 20, J = 15, and TsN = 12 ms.

by (4.20). We can affirm this since, on the one hand, we have verified that by perturbing the
splay state along the stable directions we end up in the splay state itself (as shown in Figure
8(a)), while by perturbing along the neutrally stable directions we always end up in one of
these many periodic orbits (as shown in Figure 8(b)). On the other hand, by perturbing one
of these orbits along the stable directions of the splay state the perturbed system converges
to the same orbit (see Figure 8(c)), while by perturbing along the neutrally stable directions
the system ends up in a different periodic orbit (see Figure 8(d)). Therefore these periodic
orbits are also neutrally stable and share the same neutrally stable manifold of the splay state.
These results do not seem to depend on the system size N ; we have verified that the same
also holds for networks as large as N = 50.

The existence of this manifold made of a continuous family of periodic solutions has been
previously reported for Josephson arrays [34, 18], and Watanabe and Strogatz discussed the
generality of this issue, reporting a “heuristic” argument to support the existence of this
manifold for generic fully coupled oscillator networks with sinusoidal coupling [37].

As a last point we have evaluated for the splay state and several periodic orbits (namely,
Nt = 10, 000) the single neuron firing rate ν. The distribution of these rates is reported
in Figure 10, revealing that the splay state is characterized by the minimal firing rate with
respect to those found for the associated family of periodic orbits.

7. Conclusions. In this paper we showed analytically that finite size all-to-all pulse-
coupled excitatory networks of excitable neurons admit marginally stable persistent splay
states. We obtained analytical information about the stable firing rates of these sustained
activities. Since the firing rate of persistent states is an electrophysiologically measurable
quantity in working memory tasks, these results can provide insights for working memory
models. We further obtained results on the splay state stability that can help in choosing theD
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ν (Hz)

ρ(
ν)

Figure 10. Probability distribution of the single neuron firing rate ν for the periodic solutions and the splay
state (vertical black line). The Nt initial conditions are generated by randomly perturbing the splay state along
the directions of neutral stability, and the perturbations are Gaussian distributed with zero average. The model
parameters are the same as in the previous figure, and Nt = 10, 000.

correct parameters required for biologically relevant working memory models. We developed
event-driven map methods for analyzing the network dynamics and found an analytical ex-
pression for the Floquet spectra associated with the splay state for step pulses and δ-pulses.
In the case of M overlapping synaptic step pulses our analysis has revealed that for a correct
treatment of the linear stability analysis, the evolution of M additional variables, correspond-
ing to the last M firing events, should be taken in account.

Our analysis, extending previous results for systems with sinusoidal coupling [37], revealed
that the splay state is marginally stable for finite size networks with N − 2 neutral directions,
which reduce to N−3 in the event-driven map formulation. We also reported a rigorous proof
for nonoverlapping step pulses. We further identified a continuous family of periodic solutions
surrounding the splay state. Their peculiarity is that these periodic states have exactly the
same neutral stability directions as the splay state.

Many works have been devoted to the stability analysis of dynamical states in networks of
nonlinear neural oscillators and in particular to partially synchronized cluster states. For ex-
ample, Wang and Buszáki [36] considered the appearance of synchronized clusters in networks
of globally coupled inhibitory neurons. More recently, Kilpatrick and Ermentrout [25] studied
the emergence of splay states and clusters in networks of inhibitory coupled QIF oscillators
with adaptation in the presence of noise. They showed that the number of clusters depends onD

ow
nl

oa
de

d 
09

/0
7/

12
 to

 1
28

.9
3.

18
9.

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPLAY STATES IN NETWORKS OF EXCITABLE NEURONS 885

the parameters of the adaptation and the strength of the background noise. Again we would
like to point out that these analyses differ from the present manuscript since they consider
oscillators instead of excitable neurons. In our hands, numerical simulations give indications
that synchronous solutions are likely to be unstable for networks of excitable neurons with fast
recurrent excitatory synaptic coupling, while clusters of exactly synchronized neurons appear
to be marginally stable (simulations not shown).

Our results leave several open questions; in particular, we need to prove that at least one
of the splay states is Lyapunov stable, when they exist. It would be also of interest to extend
the rigorous results reported in Appendix C to overlapping PSPs. Furthermore, since the
stable persistently active solutions of our network have a specific spiking structure, splay or
families of periodic solutions, it would be interesting to identify the structure of the unstable
states that form the separatrices between this sustained activity and the ground state. Finally
we should explain why all the marginally stable states are periodic.

Appendix A. Explicit solution of the splay state firing rate for small network sizes. In
this appendix we will show how it is possible to obtain explicitly the firing rate ν of the splay
state for N = 2, 3, 4 and for M = 0 (namely for J < J1).

A.1. Step pulses. Equation (3.15) can be rewritten in the following way:

(A.1) z
(n)
i =

−(1− γ) + (1 + γ)y
(n)
i

(1 + γ)− (1− γ)y
(n)
i

,

where we have made use of the variable

(A.2) γ = exp(−2T1/τ).

Since in the present case 0 < Ts < T , the values of γ are bounded between 0 and 1.
By employing (3.14), (A.1), and (3.18), the coefficients of the event-driven map (3.19) can

be rewritten as

(A.3)

a0 = −(1− γ) + (1 + γ)(J − 1)β1(Ts),
a1 = (1 + γ) + (1− γ)β1(Ts),
a2 = (1 + γ)− (1− γ)(J − 1)β1(Ts),
a3 = −(1− γ)− (1 + γ)β1(Ts).

The firing rate can be obtained in an explicit form by inverting (A.2), namely,

(A.4) ν =
1

NT
=

1

N

1

Ts − τ
2 ln (γ(N,J, Ts))

.

Once we have fixed the network parameters, an admissible solution for γ ∈ [0; 1] amounts to
finding a splay state solution with a frequency given by (A.4).

Given an admissible γ value, the membrane potentials corresponding to the splay state
can be found by iterating the map (3.19) starting from the boundary condition x̃(N) = −∞D
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corresponding to the reset value, namely,

(A.5)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x̃N−1

x̃N−2
...
x̃2
x̃1
x̃0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1/a3
(a0a3 + a21)/(a3(a1 + a2))

...
−(a0a3 + a22)/(a3(a1 + a2))

−a2/a3
∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We can finally determine ν analytically for N = 2, 3, 4:
• In the case of a couple of neurons, N = 2, we should impose x̃1 = x̃N−1, and thus we

have a1 + a2 = 0. Solving this equation for γ we obtain

(A.6) γ =
(J − 2)β1(Ts)− 2

(J − 2)β1(Ts) + 2
;

in this case we have a unique stable branch of solutions, as shown in Figure 2. Fur-
thermore, the minimal reachable frequency is zero, and it is achieved for γ = 0 when
J and Ts satisfy the equation (J − 2)β1(Ts) = 2.

• For N = 3 we have x̃1 = x̃N−1; using the values in (A.5) we obtain

(A.7) a0a3 + a21 + a22 + a1a2 = 0,

and then we can reorder this equation as a second order equation for γ:

(A.8) [(J − 2)β1(Ts)+ 2]2γ2 − 2[(J2 − 2J +2)β21(Ts)− 2]γ + [(J − 2)β1(Ts)− 2]2 = 0.

This equation admits the following two solutions:

(A.9)

γ1,2 = {[(J2 − 2J + 2)β21 (Ts)− 2]

±
√

[(J2 − 2J + 2)β21 (Ts)− 2]2 − [(J − 2)2β21(Ts)− 4]2}

· {[(J − 2)β21(Ts) + 2]2}−1.

γ1 (resp., γ2) is associated with the upper stable (resp., lower unstable) branch reported
in Figure 2. In this case the upper branch is bounded away from the zero frequency,
and the minimal frequency is attained for γ1 = γ2 when J and Ts satisfy (J2 − 3J +
3)β21(Ts) = 3. The zero frequency is instead reachable on the lower branch for γ = 0,
as shown in Figure 2.

• If N = 4, then x̃2 = x̃N−2 and the coefficients should satisfy the following equation:

(A.10) 2a0a3 + a21 + a22 = 0.

Similarly to the case N = 3 we obtain a quadratic equation for the parameter γ,
namely,

(A.11) [(J − 2)β21 (Ts) + 2]2γ2 − 2[J2β21(Ts)]γ + [(J − 2)β1(Ts)− 2]2 = 0.D
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Also, in this case we have two branches of solutions for the splay state frequencies
parametrized by γ1 and γ2:

(A.12) γ1,2 =
J2β21(Ts)±

√
[J2β21(Ts)]

2 − [(J − 2)2β21(Ts)− 4]2

[(J − 2)β21(Ts) + 2]2
.

Also, in this case the zero frequency is attainable on the unstable branch for γ = 0, and
the merging of stable and unstable branches occurs at a finite frequency corresponding
to a value of J which is a solution of (J2 − 2J + 2)β21(Ts) = 2.

A.2. δ-pulses. We can rewrite the coefficients (3.24) of the map (3.19) for the case of
δ-pulses combining (3.22), (A.1), and (3.18) as follows:

(A.13)

a0 = −(1− γ) + (1 + γ)Jδ ,
a1 = (1 + γ),
a2 = (1 + γ)− (1− γ)Jδ,
a3 = −(1− γ),

where γ is given by the expression (A.2) with T1 = T . The firing rate for the splay state can
be obtained from the following expression:

(A.14) ν = − 1
Nτ
2 ln (γ(N,G, τ))

.

Let us now discuss of the existence of the splay state for N = 2, 3, 4:
• In the case of a couple of neurons, N = 2, solving this equation for γ one obtains

(A.15) γ =
Jδ − 2

Jδ + 2
;

like in the step pulse case one has only one branch, and the splay state exists for Jδ > 2
and the period diverges to infinity at Jδ = 2.

• If N = 3,

(A.16) γ1,2 =
J2
δ − 2± 2

√
J2
δ − 3

(Jδ + 2)2
;

now two branches are present, and similarly to the step pulses the upper branch
(corresponding to γ1) is stable while the other one is unstable. The branches exist for
Jδ >

√
3, and they merge exactly for this coupling value.

• For N = 4

(A.17) γ1,2 =
J2
δ ± 2

√
2J2

δ − 4

(Jδ + 2)2
;

also, in this case the two branches are present above a certain critical coupling given
by Jδ =

√
2.D
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Appendix B. Analytic expression for the splay state in the infinite size limit. In the
limit of N → ∞ it is possible to derive an analytic expression for the membrane potentials
associated with the splay state both for step pulses and δ-pulses. In such a limit the mean
input current I can be assumed to be constant, and it can be easily obtained from (2.4), giving
I = π2τ2ν2 + 1. Thus we can rewrite (2.1) as follows:

(B.1) τ
dv

dt
= v2 + π2τ2ν2.

We can then integrate (B.1) between the reset value v = −∞ and a generic time ti:

(B.2)

∫ v(ti)

−∞

dv

v2 + π2τ2ν2
=

∫ ti

0

dt

τ
.

The integration gives

(B.3) v(ti) = −πτν tan
(π
2
− π

NT
ti

)
,

where for the splay state ν = 1/(NT ). If we identify ti with the spike time of neuron i
in the network, we will have that the splay state solution for the membrane potential of
neuron i is x̃i = −v(ti); notice that potentials x̃i are ordered from the largest to the smallest.
Furthermore, since the spike times are equally spaced for the splay solution as ti = iT ,
i = 0, 1, . . . , N , we can rewrite (B.3) as

(B.4) x̃i = −v(ti) = πτν

tan(π i
N )

N→∞−−−−→ x̃(ξ) =
πτν

tan(πξ)
,

where 0 ≤ ξ ≤ 1 is a continuous spatial variable. As shown in Figure 11, the expression
obtained in the continuous limit compares reasonably well with the numerically estimated
finite size solutions already for N = 16.

Appendix C. Marginally stable directions of the splay states. In this appendix, we will
analyze the stability of a splay state in the case of nonoverlapping step pulses. To perform
this analysis, let us rewrite the QIF model (2.1) as follows:

(C.1) τ
dθi
dt

= I(t) + (I(t) − 2) cos θi, i = 1, . . . , N,

where we have performed the transformation of variable θi = 2 tan−1(vi). Therefore, the
membrane potential is now represented by a phase variable θi ∈ [−π;π], the spike is emitted
(and transmitted instantaneously to all the neurons in the network) whenever θi reaches the
threshold π, and then π is reset to −π. The model in the formulation (C.1) is termed θ-neuron,
and we will apply the approach of Watanabe and Strogatz [37] to this model to derive the
Floquet spectrum for the splay state solution.

In order to stress the peculiar PSPs we are considering, we rewrite (C.1) as follows:

(C.2)
dθj
dt

= (Jφ(θ)− 2) cos(θj) + Jφ(θ), j = 1, . . . , N,
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ξ

x

Figure 11. Membrane potential values as a function of ξ = i/N for a splay state. The symbols refer to
N = 16, while the solid line refers to the continuous limit approximation. The data have been obtained for
J = 15, Ts = 1 ms, and τ = 20 ms.

with φ(θ) being the characteristic function of the interval [−π, θOFF ]. The emission of a
spikes occurs whenever the neuron min{θi} = −π; this amounts to an increase by one in the
value of the function φ(θ). Furthermore, when the pulse expires after a time Ts the value of
φ(θ) will be decreased by one. By assuming that no neuron will fire while the synapse is on
(no overlapping PSPs), the PT will occur for a specific value of the phase variable, namely
min{θi} = θOFF , for a value θOFF , which can be determined as outlined in section 3.1.

Let us now recall the approach devised by Watanabe and Strogatz [37] to show that
each trajectory representing the dynamics of a system of N identical phase oscillators, whose
evolution is ruled by ODEs of the form

(C.3)
dθj
dt

= f(θ) + g(θ) cos(θj) + h(θ) sin(θj), j = 1, . . . , N,

is confined to a three-dimensional subspace. The only requirement is that the functions f , g,
and h do not depend on the index j of the considered oscillator. In other words, f , g, and h
are collective variables determined by the network state. Clearly (C.2) satisfies this condition.

Watanabe and Strogatz [37] introduce a transformation Qx : RN → RN+3 from variables
{θj} to variables X ≡ (Γ,Θ,Ψ, {ψj}) defined implicitly by the set of equations

(C.4) F (θj ,Γ,Θ,Ψ, ψj) = 0, j = 1, . . . , N,D
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where

(C.5) F = tan

(
1

2
(θj −Θ)

)
−
√

1 + Γ

1− Γ
tan

(
1

2
(ψj −Ψ)

)
.

Furthermore, they prove that an arbitrary solution of (C.3) can be generated by the transfor-
mation Qx from a set of parameters {ψj}, which remain constant in time, whenever the three
collective variables Γ,Θ,Ψ satisfy the following equations:

Γ̇ = −(1− Γ2)(g sinΘ− h cosΘ),

ΓΘ̇ = Γf − g cosΘ− h sinΘ,

ΓΨ̇ =
√

1− Γ2(g cosΘ + h sinΘ),

(C.6)

and obviously the other variables satisfy

(C.7) ψ̇j = 0 ∀j = 1, . . . , N.

We prove the following proposition.
Proposition C.1. Let us assume that (C.2) admits a splay state solution and that this so-

lution is Lyapunov stable. Then at least N − 2 Floquet multipliers will lie on the unit circle.
Let us now recall the definition of the Floquet multipliers [11] for a generic ODE of the

form

(C.8) θ̇ = Fx(θ), θ ∈ RN ,

admitting a periodic solution θs(t) with period Tp.
The associated variational linear equation in the tangent space has the form

(C.9) δθ̇ = DFx(θ
s(t))δθ, δθ ∈ RN .

Equation (C.9) has (possibly complex) eigensolutions Φ(t) = e(λ+iω)tη(t), with η(t) periodic of
period Tp, termed Floquet vectors. The complex numbers μ(Tp) = e(λ+iω)Tp are the Floquet
multipliers. They determine the stability of the periodic solution.

Proof of Proposition C.1. We will prove that there exists an (N−2)-dimensional subspace
of solutions of the variational equation associated with (C.2) consisting of solutions that do
not converge to the 0 vector as t→ ∞ (except for the 0 solution itself). This, combined with
Lyapunov stability, implies that there must be N − 2 Floquet multipliers on the unit circle.

Let θs0 = {θs0,1, . . . , θs0,N} be a choice of initial conditions corresponding to a splay state of
period Tp. For simplicity and without loss of generality, we can assume that the phases are
ordered, i.e., θs0,1 > θs0,2 > · · · > θs0,N , and that θs0,1 is close to π; i.e., the first neuron is just
about to fire.

Let us consider a solution Xs(t) of (C.6) and (C.7) with initial condition

(C.10) Xs
0 =

{
0,
π

2
,
π

2
, θs0,1, . . . , θ

s
0,N

}
,
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where it is evident that θs(t) = Tx(X
s(t)) since Tx(X

s(0)) = θs(0). Furthermore, we perturb
the initial condition with a perturbation of the form

(C.11) Δψ = (Δψ1, . . . ,ΔψN−2, 0, 0)

in the following way:

(C.12) Xs
Δψ(0) = Xs

0 +Δψ =
{
0,
π

2
,
π

2
, θs0,1 +Δψ1, . . . , θ

s
0,N−2 +ΔψN−2, θ

s
0,N−1, θ

s
0,N

}
,

and we obtain the perturbed solutions Xs
Δψ(t) at time t by integrating (C.6) and (C.7), while

the corresponding solution of (C.3) is given by θsΔψ(t) = Tx(X
s
Δψ(t)).

Let us denote the value of the perturbed orbit at integer multiples k of the period Tp as
follows:

(C.13) Xs
Δψ,k = (Γ(kTp),Θ(kTp), ψ(kTp), θ

s
1 +Δψ1, . . . , θ

s
N−2 +ΔψN−2, θ

s
N−1, θ

s
N ),

and θsΔψ,k = Tx(X
s
Δψ,k).

We will show that there exists a real positive constant L such that, for every value of k,

(C.14) ‖θsΔψ,k − θs0‖ ≥ L‖Δψ‖.
By assuming that the perturbation is sufficiently small, i.e., ||Xs

Δψ,k −Xs
0|| � 1, we can

approximate the evolution of the perturbed orbit in proximity of the unperturbed one, with
the corresponding linearized dynamics, namely,

(C.15) Tx(X
s
Δψ,k)− Tx(X

s
0) ≈ DTx(X

s
0)(X

s
Δψ,k −Xs

0).

In order to write the Jacobian DTx(X
s
0), we need to estimate the following derivatives, which

can be obtained by implicit differentiation of (C.4):

(C.16)
∂θj
∂Θ

= 1,
∂θj
∂Ψ

= −1,
∂θj
∂γ

= − cos θsj ,
∂θj
∂ψk

= δjk,

where δjk is the Kronecker delta.
Let V0 ∈ RN be a vector with a unitary norm spanning an (N −2)-dimensional subspace,

and let us assume that Δψ = σV0, with 0 < σ ≤ 1. We will prove that

(C.17)

∥∥∥∥ 1σDTx(Xs
0)(X

s
Δψ,k −Xs

0)

∥∥∥∥ ≥ L > 0

for some real constant L independent of σ and k.
By employing (C.16) the following expression can be derived:

(C.18)
1

σ
DTx(X

s
0)(X

s
Δψ,k −Xs

0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z1(k)/σ + V 0
1

Z2(k)/σ + V 0
2

·
·
·

ZN−2(k)/σ + V 0
N−2

ZN−1(k)/σ
ZN (k)/σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

D
ow

nl
oa

de
d 

09
/0

7/
12

 to
 1

28
.9

3.
18

9.
95

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

892 M. DIPOPPA, M. KRUPA, A. TORCINI, AND B. S. GUTKIN

where for brevity and clarity we set Zj(k) = vk − zk − cos θsjvk once vk = Γ(kTp), wk =
Θ(kTp) − π

2 , and zk = Ψ(kTp) − π
2 are redefined. It is clear, due to their definition, that the

components of the vector Z(k) = {Zj(k)} are not linearly independent and in particular that
they span a two-dimensional subspace.

As a first step, the validity of the following inequality, ∀k and for any sufficiently small σ,
is discussed:

(C.19) |Zj(k)|/σ = |(wk − zk − cos θsjvk)|/σ ≥ L for j = N or j = N − 1.

We consider two possible cases. In the first case, the inequality (C.19) holds, and therefore
(C.17) is satisfied since the length of any vector is bigger than the absolute value of one of its
components, thus implying that the modulus of the left-hand side of (C.18) would be greater
than L for any k value.

In the second case, we assume that (C.19) does not hold uniformly in k for j = N , and
j = N − 1; in other words, the components |ZN−1(k)|/σ and |ZN (k)|/σ should converge to 0
for k → ∞ and σ → ∞. Furthermore, since, for N > 3, cos θsN �= cos θsN−1, each component
Zj, with j = 1, . . . , N − 2, can be written as a linear combination of ZN−1 and ZN . This
implies that each element |ZN−1(k)|/σ remains arbitrarily small ∀j even for arbitrarily large
(resp., small) k (resp., σ). Now each component in the right-hand side of (C.18) will have
the form Zj/σ + V 0

j for j = 1, . . . , N − 2, where the first quantity is arbitrarily small, but by

construction the vector V0 has an unitary modulus, and thus also in this second case (C.17)
is satisfied for any k.

From the previous results it follows that the vector function

(C.20) V(t) =
d

dσ
θΔΨ(t)|σ=0

is a solution of the variational equation (C.9) which does not converge to 0 as t → ∞. Since
(C.9) is a system of linear equations, a vector space of initial conditions gives rise to a vector
space of solutions. Since V0 spans an (N − 2)-dimensional vector space, which we denote by
LV , our construction gives an (N − 2)-dimensional vector space of solutions of (C.9), which
we denote by LV.

As mentioned above, the Floquet vectors are solutions of (C.9) of the form μ(t)η(t), with
η(t) periodic of period Tp and μ(Tp) the corresponding Floquet multipliers. Since we assumed
that the examined periodic orbit (i.e., the splay state) is Lyapunov stable, the multipliers
μ(Tp) must be either on the unit circle or inside the unit circle. Without loss of generality,
let us assume that at least two multipliers are inside the unit circle; otherwise the theorem
would be automatically true.

Let us denote by LW the vector space spanned by the initial conditions of the two Floquet
eigenvectors associated with the two multipliers which lie inside the unit circle, and let LW
be the corresponding vector subspace of solutions (spanned by the two Floquet eigenvectors).
Since all nonzero solutions in LW converge to 0 as t → ∞, it follows that the intersection
of LW and LV consists of the zero vector. Therefore, we can formally decompose any of
the remaining N − 2 Floquet vectors at initial time t = 0 in two vectors, namely η(0) =
W1(0) + V1(0), where W1(0) ∈ LW and V1(0) ∈ LV . By linearity, if W1(t) and V1(t)D
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are the solutions of (C.9) with initial conditions W1(0) and V1(0), it follows that η(t) =
W1(t)+V1(t). If V1(0) �= 0, then η(t) �∈ LW; moreover, η(t) does not converge to 0 as t→ ∞
since W1(t) does, while V1(t) does not. Therefore the corresponding Floquet multiplier can
be only on the unit circle, due to our previous assumptions. Finally we have demonstrated
that N − 2 Floquet multipliers are on the unit circle and two are inside the unit circle.

Acknowledgment. We thank Adrien Wohrer for constructive suggestions.
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