
HAL Id: hal-00847482
https://hal.archives-ouvertes.fr/hal-00847482

Submitted on 23 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Thread Pinning for Phase-Based OpenMP
Programs

Abdelhafid Mazouz, Sid Touati, Denis Barthou

To cite this version:
Abdelhafid Mazouz, Sid Touati, Denis Barthou. Dynamic Thread Pinning for Phase-Based OpenMP
Programs. The Euro-Par 2013 conference, Aug 2013, Aachen, Germany. pp.53-64, �10.1007/978-3-
642-40047-6_8�. �hal-00847482�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49767298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00847482
https://hal.archives-ouvertes.fr

Dynamic Thread Pinning for Phase-Based OpenMP
Programs

Abdelhafid MAZOUZ1, Sid-Ahmed-Ali TOUATI2, and Denis BARTHOU3

1 University of Versailles Saint-Quentin-en-Yvelines, France
2 University of Nice Sophia Antipolis, France

3 University of Bordeaux, France

Abstract. Thread affinity has appeared as an important technique to improve the
overall program performance and for better performance stability. However, if we
consider a program with multiple phases, it is unlikely that a single thread affinity
produces the best program performance for all these phases. If we consider the
case of OpenMP, applications may have multiple parallel regions, each with a dis-
tinct inter-thread data sharing pattern. In this paper, we propose an approach that
allows to change thread affinity dynamically (thread migrations) between parallel
regions at runtime to account for these distinct inter-thread data sharing patterns.
We demonstrate that as far as cache sharing is concerned for SPEC OMP01, not
all the tested OpenMP applications exhibit a distinct phase behavior. However,
we show that while fixing thread affinity for the whole execution may improve
performance by up to 30%, allowing dynamic thread pinning may improve per-
formance by up to 40%. Furthermore, we provide an analysis about the required
conditions to improve the effectiveness of the approach.

Keywords: OpenMP, thread level parallelism, thread affinity, multicores.

1 Introduction

Multicore architectures are nowadays the state of the art in the industry of processor
design for desktop and high performance computing. With this design, multiple threads
can run simultaneously exploiting thread level parallelism and consequently, improve
overall program performance of the system. Unfortunately, the growing gap between
processor performance and memory performance has led manufacturers to propose
highly hierarchical machines to alleviate this problem. The common architectural de-
sign consists of two or more cores sharing some levels of memory caches, memory
buses, prefetchers or memory nodes. As the memory hierarchy of these machines is
becoming increasingly complex, achieving better program performance of parallel ap-
plications on these modern architectures is more challenging.

A hierarchy of memory caches allows to exploit data sharing between threads run-
ning on such platforms. Of course, to exploit that, a multi-threaded application has to
meet two conditions. First, threads have to access common data. Second, the reuse dis-
tance has to be short enough to effectively exploit these shared data across multiple
threads. In this context, thread affinity has appeared as an important technique to ex-
ploit data sharing and to accelerate program execution times [15, 12, 6, 18, 9]. Another
advantage of fixing thread affinity is for better performance stability [9].

Using thread affinity enhances inter-thread data locality. If two threads make exten-
sive accesses to common data in memory, it is better to place them on cores sharing
the same L2/L3 cache, or the same NUMA node. Doing so, we decrease the number
of cache misses. Indeed, if one thread brings a data element to some cache level, the
second thread accessing the same data element will avoid unnecessary cache misses.
Furthermore, binding threads to cores by considering the machine architecture may
help hardware prefetching of frequently accessed shared regions.

In this paper, we focus on cache sharing, and study the impact of a phase-based
or dynamic thread pinning. It it based on the control flow graph (CFG) of a parallel
execution in a given program. A node in this CFG can be defined using different granu-
larities: a sequence of some instructions, a function call, etc. Since OpenMP programs
may implement multiple parallel regions which are called multiple times iteratively, we
consider the CFG as a graph representing a sequence of calls to distinct parallel regions
in an OpenMP program. This also means that we define an OpenMP phase as the exe-
cution of a parallel OpenMP region. In this study, we consider that the parallel region
represents a good trade-off between a better sharing patterns identification accuracy and
a low overhead incurred by a smaller number of thread migrations.

A previous research study [9] has showed that fixing thread affinity during the whole
execution provides better performance improvements on NUMA machines than on
SMP ones. Nevertheless, we think that it is possible to further enhance the performance
gain using thread affinity by exploiting phase-based behavior in OpenMP programs. We
made an extensive performance evaluation of multiple thread pinning strategies on four
distinct machines. Among them, four strategies are application dependent: they rely on
the characteristics (data sharing) of the application, and they set a distinct thread place-
ment for each parallel region. Three strategies are application independent: they apply
the same thread affinity for the whole execution and for each application. We show that
dynamic thread pinning can improve performance by up to 40% compared to the Linux
OS scheduler. Furthermore, we show the amount of inter-thread data sharing and the
granularity of the parallel regions are main factors influencing most the effectiveness of
dynamic thread pinning.

This article is composed as follows. Section 2 a synthetic example aiming to show
the effectiveness of using per-parallel regions thread affinity within OpenMP programs.
Section 3 presents the method we use to compute a distinct thread affinity for each paral-
lel region. Section 4 describes our experimental setup and methodology (test machines,
running methodology, statistical significance analysis). Section 5 shows our experimen-
tal results and analysis. Related work is presented in Sect. 6, then we conclude.

2 Motivation and Problem Description

We define an OpenMP phase as a unique and distinct OpenMP parallel region. In
OpenMP, each structured code started by the construct #pragma omp parallel
in C/C++ or !$omp parallel in Fortran is a new parallel region. That is, each
OpenMP parallel region translates into distinct OpenMP phases.

To illustrate the benefit of changing thread pinning between consecutive OpenMP
parallel regions, we use a synthetic micro-benchmark. This benchmark implements two
OpenMP parallel regions, each with a distinct sharing pattern. The benchmark uses a

single large rectangular (the width is much greater than the height) matrix which is sub-
divided into equal parts among all the intervening threads. The benchmark is designed
so that in parallel region 1, data sharing is between (T1, T5), (T2, T6), (T3, T7) and
(T4, T 8) thread pairs. Similarly, in parallel region 2, data sharing is between (T1, T2),
(T3, T4), (T5, T6) and (T7, T8) thread pairs. Cache lines sharing between threads is im-
plemented by allowing for each pair of threads to access common cells from the portion
of the array that has been assigned to them. For each assigned portion from the array,
each thread performs simple computations like additions and multiplications.

Each thread accesses to the same amount of data. Moreover, the amount of shared
data blocks is equal between each pair of threads, of course with different sharing pat-
terns across the two parallel regions. To analyze how the amount of inter-thread data
sharing can influence the effectiveness of allowing thread migrations across parallel re-
gions, we fix the same inter-thread data sharing in the first parallel region, and vary the
amount of data sharing in the second. We consider in these experiments the 0%, 25%,
75% and 100% amounts of data sharing cases in the second parallel region.

100% data sharing 75% data sharing 25% data sharing 0% data sharing

Two patterns stream benchmark, 8 threads
 Working set size: 112M

NUMA Nehalem machine (8 cores / 16 HWT)
Amount of inter−thread data sharing in parallel region 2

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

1
1.

2
1.

3
1.

4

ICC Compact ICC Scatter Two phases affinity

100% data sharing 75% data sharing 25% data sharing 0% data sharing

Two patterns stream benchmark, 8 threads
 Working set size: 224M

NUMA Nehalem machine (8 cores / 16 HWT)
Amount of inter−thread data sharing in parallel region 2

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

1
1.

2
1.

3
1.

4

ICC Compact ICC Scatter Two phases affinity

Fig. 1: Speedup of the median of the tested thread affinities for the synthetic benchmark using
multiple matrix sizes and running with 8 threads on the Nehalem machine.

We run the micro-benchmark multiple times and using multiple thread pinnings on
top of an 8 cores Intel Nehalem machine4. Figure 1 shows the obtained speedups. We
consider the no affinity strategy as the base comparison configuration. Speedups
are reported according to the amount of data sharing in the second parallel region (four
configurations) and the tested thread affinities. Reading from left to right, the first group
represents the case of 100% data sharing, the second represents the case of 75% data
sharing, the third represents the case of 25% data sharing and the last group represents
the case of 0% data sharing.

First, it is clear that using a per parallel region thread affinity helps to improve per-
formance compared to application-wide thread pinning strategies. Second, we observe
that as the amount of data sharing in the second parallel region is reduced, the perfor-
mance of the icc scatter and the per parallel region thread affinity strategies are
close. This is due to two reasons: 1) since these two strategies are able to exploit the data
sharing of the first parallel region, the obtained performance for that parallel region is
similar, and 2) when there is no sharing at the second parallel region, the precise thread
pinning is not important, so we obtain these observed program performance. From this

4 More details about the machine can be found in Sect. 4

simple experiment, we can conclude that changing the affinity between OpenMP paral-
lel phases is beneficial and can lead to non negligible performance improvement over a
fixed affinity for the whole program or a no affinity strategy.

3 Parallel OpenMP Phases Extraction and Thread Pinning

We focus on data sharing to compute effective thread pinnings. Instead of computing an
application-wide thread affinity (apply the same affinity for the whole execution), we
compute a thread pinning for each distinct parallel region in the OpenMP program. We
use a profile guided method which consists of multiples steps that we detail below.

In OpenMP programs, computing a thread affinity for each parallel region requires
to detect the entry and exit events of that region. For this purpose, we use the OPARI
[10] instrumentation tool. The objective of OPARI is to provide a performance and
measurement interface for OpenMP. It is a source-to-source translation tool which au-
tomatically adds function calls to a POMP runtime measurement library. This library is
used to collect runtime performance data for OpenMP applications. OPARI supports
C/C++ and Fortran programming languages. The idea behind the concept is to detect
each OpenMP pragma/directive and add function calls to the POMP library. This method
allows us to be compiler and runtime independent. In our approach, we do not use the
POMP library for performance measurement. Instead, we have made changes in order
to achieve dynamic thread pinning for each parallel region.

After the OPARI instrumentation, we make a memory tracing of OpenMP applica-
tions using the PIN [8] binary instrumentation framework. We fix a number of threads
per application, and we collect for every thread and for each distinct parallel region (PR)
all the accesses to all memory addresses (which are transformed to accesses to memory
cache lines). In addition, we are able to deduce the parallel regions control flow graph
PRCFG. It is a directed valued graph where the vertices represent the distinct PRs of the
program and the edges represent the predecessor and the successor relationship between
them. As reported before, an edge between a PRi and PRj is valued by the number of
times the execution of the PRi is followed by the execution of PRj .

The collected memory trace profile is used to build an affinity graph for each parallel
region in the program. Each affinity graph in the application is an undirected valued
graph Gp = (T , E , α) ∀p ∈ P . T is the set of application threads, E = T × T ,
α : E 7→ N is a gain function applied to every pair of threads and P is the set of parallel
regions implemented in the application.

The gain function α(Ti, Tj) models the attraction factor between two threads. Since
we rely on data sharing between threads to compute an affinity graph, the gain function
represents the number of common accesses to common memory caches lines accessed
by both the Ti and Tj threads for a given parallel region. Let us precisely define α for
an application with a fixed number of threads n = ‖T ‖ and for a given parallel region
p ∈ P . The collected memory trace profile contains the information Ap(Ti, b) which is
the number of accesses of thread Ti to data block b at parallel region p. If we consider
Bp

i,j as the set of all data blocks accessed by the pair of threads (Ti, Tj) at parallel
region p, then we can compute α(Ti, Tj) using Equation 1. We call this method the
simple model or SM.

αp(Ti, Tj) =
∑

b∈Bp
i,j

min (Ap(Ti, b), Ap(Tj , b)) (1)

We define another method to compute α. We call it the read/write model or RWM.
We added this method because we consider that from the performance perspective, it is
important to separate read and write accesses. The reason for that is that we consider
a shared region of data wherein accesses are dominated by reads will have less impact
on performance than a shared region of data wherein the read and write accesses are
balanced. In fact, when the shared data are accessed only in a read mode, duplicating
these data on multiple caches may not harm the performance in a great extent. Since we
distinguish between reads and writes, then we exactly haveRDp(Ti, b) andWRp(Ti, b)
which is the number of reads and writes respectively performed by thread Ti to data
block b and where Ap(Ti, b) = RDp(Ti, b) + WRp(Ti, b). Given these constraints,
Equation 2 defines the function α(Ti, Tj) for the read/write model.

αp(Ti, Tj) =
∑

b∈B
p
i,j

(
min (RDp(Ti, b),WRp(Tj , b)) +

min (WRp(Ti, b), RDp(Tj , b)) + min (WRp(Ti, b),WRp(Tj , b))
) (2)

Once all the affinity graphs are constructed for an application and for a given number
of threads, we can use them to investigate multiple thread pinning strategies. The idea is
based on graph partitioning methods [5]. The affinity graphs must be decomposed into
disjoint subsets, named a partition. A partition V = {V1, V2, · · · , Vk} has the property
that

⋃
1≤l≤k Vl = T and Vl ∩ Vm = ∅, where l 6= m and l,m ∈ [1, k]. Every subset

Vl ∈ V contains a set of nodes representing threads that have to be placed on adjacent
cores sharing the same cache level (L2 or L3, depending on the target machine). If we
have k shared caches on the system, then we compute a partition with k subsets [5].
The global objective function is to maximize

∑
(Ti,Tj)∈Vl×Vl

α(Ti, Tj) the sum of the
gains between threads belonging to the same partition. This optimization problem is a
classical NP-complete problem, so we have to use heuristics such as in [5]. Fortunately,
we have a special polynomial case. Indeed, if we are given a machine architecture where
a cache level is shared between two adjacent cores, then the problem becomes to seek
for partitions with a size equal to 2 (‖V ‖ = 2). It is easy to see that in the case of seeking
partitions of size 2 the problem is equivalent to computing a set of thread pairs sharing
a common cache while maximizing a global gain. In this special case, the optimization
problem can be solved with a simpler maximum-weight matching in general graphs
[2]. Precisely, it can be polynomially and optimally solved thanks to the algorithm of
Edmonds in O(‖T ‖2.‖E‖) [2].

On a parallel machine with a memory hierarchy, the graph partitioning problem can
be applied to reflect data reuse at each level of shared caches. We define two application
dependent thread pinning strategies, corresponding to the application of heuristics for
solving the graph k-partitioning problems:

1. LPGP strategy. After an initial step of optimal computation of thread pairs, we
proceed by a graph k-partitioning [5]. It is a hierarchical strategy, where threads are

first paired and pinned on shared L2 or L3 cache then thread pairs are partitioned
and placed on the different sockets according to their affinity.

2. GPLP strategy. It is a hierarchical strategy. It starts by an initial graph k-partitioning
to fix threads on sockets, then perform an optimal polynomial algorithm to compute
thread pairs sharing L2 or L3 cache levels.

In addition to the application dependent strategies presented above, we consider in
our evaluation, the following application independent strategies:

1. No affinity. This strategy lets the OS decide about thread placement. This
strategy allows thread migration between cores during application execution.

2. icc compact. This strategy assigns successive OpenMP threads to cores as
close as possible in the topology map of the platform.

3. icc scatter. This strategy distributes OpenMP threads as evenly as possible
across the entire sockets (one thread per socket if possible).

4 Experimental Setup and Methodology

Our experiments have been conducted using all SPEC OMP01 [14]. We used the ref
data input with SPEC OMP015 whether for memory tracing or for performance eval-
uation. We tested multiple numbers of threads for every application according to the
available number of cores. We tested various thread placement strategies for every ap-
plication, thread number, input data set. For statistical significance, each measure was
repeated 31 times and special care has been taken to limit any external interference on
performance measures. The benchmarks have been compiled using Intel compiler (icc
11.1) with flag -O3 -openmp. To set a per parallel region thread affinity, we focus
only on hot parallel regions which dominate the total execution time. This methodol-
ogy helps to avoid setting a thread affinity for infrequently called or too short parallel
regions, thus lowering the number of unnecessary thread migrations. No more than one
application was executed at a time. The execution of each benchmark was repeated 31
times for each software configuration and machine. This high number of runs allows us
to report statistics with a high confidence level [11, 17]. The dynamic voltage scaling
was disabled to avoid core frequency variation. Depending on the test machine, we run
each benchmark with 8, 16 or 32 threads. When we plot speedups, only statistically
significant ones are reported.

We conducted all our experiments on four platforms:
1. The Nehalem (8 cores) machine. It is an Intel NUMA machine with 2 processors.

Each processor (Nehalem micro-architecture) has 4 cores (2 hardware threads per
core) sharing an inclusive L3 cache of 8 MB. The core frequency is 2.93 GHz.

2. The Nehalem-EX (32 cores) machine. It is an Intel NUMA machine with 4 proces-
sors. Each processor (Nehalem micro-architecture) has 8 cores sharing an inclu-
sive L3 cache of 18 MB. The core frequency is 2.0 GHz.

3. The Shanghai (8 cores) machine. It is an AMD NUMA machine with 2 Opteron
processors. Each processor (K10 micro-architecture) has 4 cores sharing an exclu-
sive L3 cache of 6 MB. The core frequency is 2.4 GHz.

5 We also tested NAS Parallel Benchmarks (NPB) [3]. For lack of space, we limit our analysis
to OMP01.

4. The Barcelona (16 cores) machine. It is an AMD NUMAmachine with 4 Opteron
processors. Each processor (K10 micro-architecture) has 4 cores sharing an exclu-
sive L3 cache of 2 MB. The core frequency is 1.9 GHz.

5 Experimental Evaluation of Phase-Based Thread Pinning

This section presents a performance evaluation and analysis about the effectiveness of
the per parallel region thread affinity strategy for SPEC OMP01 benchmarks. We used
four NUMA machines: Nehalem, Nehalem-Ex, Shanghai and Barcelona. Each
benchmark has been executed with 8, 16 and 32 threads with respect to the maximal
number of physical cores. We report the obtained speedups using the icc compact,
icc scatter, LPGP(RWM), GPLP(RWM), LPGP(SM) and GPLP(SM) strategies
compared to the default no affinity. Figures 2 and 3 show the overall sample
speedups of every tested thread pinning strategy on the Nehalem, Nehalem-EX,
Shanghai and BarcelonaNUMA machines using bar plots. We report the speedups
of the average and median execution times of all SPEC OMP01 applications running
with 8, 16 and 32 threads.

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
8 threads, ref data input

Nehalem NUMA machine (8 cores / 16 HWT)

O
ve

ra
ll

S
pe

ed
up

0.
95

1.
03

1.
11

1.
19

1.
27

1.
35

mean sample speedup median sample speedup

1.28
1.262

1.281 1.281

1.258 1.2591.26
1.242

1.26 1.26

1.238 1.238

(a)

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
32 threads, ref data input

Nehalem−EX NUMA machine (32 cores)

O
ve

ra
ll

S
pe

ed
up

0.
95

1
1.

05
1.

1
1.

15
1.

2

mean sample speedup median sample speedup

1.143

1.034

1.161 1.161

1.121
1.13

1.144

1.03

1.16 1.161

1.121
1.129

(b)

Fig. 2: Overall sample speedups of the tested thread affinities with SPEC OMP01 benchmarks
running on the Intel Nehalem and Nehalem-EX NUMA machines.

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
8 threads, ref data input

AMD Shanghai NUMA machine (8 cores)

O
ve

ra
ll

S
pe

ed
up

0.
95

0.
97

0.
99

1.
01

1.
03

1.
05

mean sample speedup median sample speedup
1.036

1.027

1.037 1.037

1.026 1.027

1.033

1.024

1.033 1.033

1.022 1.023

(a)

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
16 threads, ref data input

AMD Barcelona NUMA machine (16 cores)

O
ve

ra
ll

S
pe

ed
up

0.
95

0.
99

1.
03

1.
07

1.
11

1.
15

mean sample speedup median sample speedup

1.112

1.059

1.117 1.116

0.991 0.988

1.093

1.046

1.098 1.097

0.975 0.972

(b)

Fig. 3: Overall sample speedups of the tested thread affinities with SPEC OMP2001 benchmarks
running on the AMD Shanghai and Barcelona NUMA machines.

On the Barcelona and Nehalem-EX machines, running OMP01 with 16 and
32 threads respectively with thread affinity enabled leads to non-negligible speedups
and slowdowns (Barcelona). On the Shanghai machine, fixing thread affinity for
OMP01 running with 8 threads leads to marginal speedups. On Nehalem, when run-
ning OMP01 with 8 threads, we observe non-negligible speedups for all the tested
strategies. On Nehalem, the experiments were performed with HT enabled. This op-
tion increases the number of OS scheduling possibilities. Moreover, the number of in-
voluntary thread migrations is increased which lead to the observed poor performance.

Even if the difference in terms of speedups is not significant, we observe that
the LPGP(SM) and the GPLP(SM) perform slightly worse than LPGP(RWM) and
GPLP(RWM) strategies. As a reminder, the SM strategies are computed from affinity
graphs that do not consider the read/write model. Regarding the test machines, we do
not observe any important difference, in terms of speedups, between the tested thread
affinity strategies. This situation may suggest that there in no benefit of enabling a per
parallel region thread affinity. Moreover, it is possible to conclude that this approach is
not effective for SPEC OMP01 benchmarks.

As noticed earlier, from our experiments, we made two main observations which
are highly related. First, the relative poor performance of strategies computed upon a
model which does not consider the RWM. The observed overall sample speedup of the
median for that strategies is in the range [0.972 − 1.23]. On the other hand, strategies
that do consider the RWM have an overall sample speedup of the median in the range
[1.033− 1.28]. Second, the non clear benefit of using per parallel region thread affinity.
If we compare the best overall sample speedup of the median obtained by application
independent and application dependent strategies for each tested configuration (tested
machine, number of threads), we observe that while application independent strate-
gies have speedups in the range [1.033 − 1.26], application dependent strategies have
speedups in the range [1.022−1.261]. Indeed, regarding these speedups, it is possible to
conclude that per parallel region affinity is not effective compared to application-wide
(application independent) strategies.

To understand the presented experimental results, we first show in Table 1 the to-
tal number of times for which the computed per parallel region thread affinity (the
LPGP and GPLP strategies computed using whether an aware or an unaware read/write
model) consists of an application-wide thread affinity. This means, that the computed
thread affinity is exactly the same for all the parallel regions in the program (Tables 2
reports the number of parallel regions in all the tested benchmarks), or at least for
the detected most time consuming parallel regions. From Table 1, we can observe that
using LPGP(RWM) and GPLP(RWM) strategies, at least 80% (on the Nehalem-EX,
apsi and equake benchmarks run with a per parallel region thread affinity) of the
benchmarks were executed with a single (application-wide) thread affinity. Moreover,
the computed single application-wide strategies are similar to icc compact. On the
other hand, the LPGP(SM) and GPLP(SM) strategies do not seem to reflect the same
behavior. Indeed, for the SM strategies, we can observe that almost all the computed
per parallel region thread affinity strategies have a thread affinity computed for at least
two parallel regions.

In the light of the previous observations, we can say as a first conclusion, that thread
affinity strategies computed from affinity graphs that do consider the RWM better cap-

#Threads Machine LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)
8 Nehalem 10/10 10/10 3/10 3/10
8 Shanghai 10/10 10/10 3/10 3/10

16 Barcelona 10/10 10/10 4/10 5/10
32 Nehalem-EX 8/10 9/10 4/10 4/10

Table 1: Number of benchmarks where the
computed per-parallel region thread affinity
consists of setting a single-global-wide thread
affinity. Each benchmark is executed using
8 16 and 32 threads on the Nehalem,
Nehalem-EX, Shanghai and Barcelona
machines.

Benchmarks #Parallel regions #Iterations
wupwise 10 402

swim 8 1198
mgrid 12 18250
applu 22 50
galgel 32 117
equake 11 3334

apsi 24 50
fma3d 30 522

art 4 1
ammp 10 202

Table 2: Number of parallel regions in SPEC
OMP01 benchmarks running with the ref data
input. For each benchmark, the number of iter-
ations of the first hot parallel region is reported.

Median execution time (seconds)
Parallel region icc compact icc scatter LPGP (SM) GPLP (SM)

PR 1 0.074634 0.074699 0.074282 0.07463
PR 2 0.069234 0.068776 0.068575 0.068885
PR 3 0.103967 0.103331 0.103097 0.103642
PR 4 18.08301 18.08452 19.33687 18.59277
PR 5 20.71075 20.72176 20.7149 23.32227
PR 6 4.972871 4.984532 4.974599 4.972682
PR 7 0.019681 0.019674 0.019683 0.030159
PR 8 23.53141 23.52575 43.52616 34.09414

Remote memory accesses ratio 3% 3% 55% 68%

Table 3: Observed median execution times at
each parallel region of the swim benchmark on
the Nehalem-EX machine.

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
32 threads, ref data input

NUMA Nehalem−EX machine (32 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6

ICC Compact
ICC Scatter
LPGP(RWM)
GPLP(RWM)
LPGP(SM)
GPLP(SM)

Fig. 4: The observed median speedups on the
Nehalem-EX machine. Only statistically sig-
nificant speedups are reported.

ture the sharing behavior of threads at the parallel region level than strategies that do
not consider the RWM. Consequently, thread pinnings computed with the later strate-
gies are likely to compute misleading thread affinity strategies which may hurt overall
performance. Moreover, since almost all the per parallel region thread affinity strategies
computed with a RWM tend to be application-wide strategies, explains why we observe
that the performance of the RWM strategies is close to the performance of strategies
like icc compact or icc scatter. Consequently, this observation suggests that
SPEC OMP01 applications do not exhibit distinct phase behavior.

Unlike all the majority of the tested benchmarks, the apsi application does exhibit
distinct inter-thread sharing patterns across parallel regions (more than 30% of data
sharing (ammp has also more than 40% of shared accesses, but in a single region.). Fig-
ure 4 reports the statistically observed median speedups on the Nehalem-EX machine
for OMP01 running with 32 threads. We can observe for the apsi benchmark that
while application-wide strategies achieve up to 30% performance improvement com-
pared to the Linux no affinity strategy, per parallel region thread affinity strategies
achieve up to 45% performance improvement.

Now, we have to understand why strategies that exhibit distinct thread pinnings for
distinct parallel regions are less effective compared to application-wide strategies for
the tested applications. There are mainly two reasons for this performance behavior.
First, the poor inter-thread data sharing exhibited by the distinct parallel regions for
the tested benchmarks. Thus, applying a dynamic thread affinity technique on OMP01

benchmarks is not effective. Unfortunately, this is true because of: 1) the uniform distri-
bution of the working set between running threads and 2) the presence of non-uniform
data sharing patterns is rare. Second, the ratio between the number of times each parallel
region is called, and the elapsed execution time in a single iteration of a given parallel
region is very low (as noticed before in Tables 2). This means that threads are frequently
migrated across too short parallel regions. Consequently, the small granularity of the se-
lected hot parallel regions leads to lower the benefit from that migrations. Moreover, the
small amount of inter-thread data sharing can exacerbate in a non-negligible extent the
performance degradation due to NUMA effects: unnecessary remote memory accesses.

To illustrate the influence of poor inter-thread data sharing and unnecessary thread
migrations on the overall performance, we report in Table 3 the observed execution
times at each parallel region of the swim benchmark running with 32 threads on the
Nehalem-EX machine (we do not report execution times for the LPGP(RWM) and
GPLP(RWM)) because these strategies compute a thread pinning
similar to icc compact. Even if the LPGP(SM) and GPLP(SM) compute a
phase-based thread pinning strategy (for parallel regions 4,5 and 8), we observe that
they behave poorly compared to icc compact or icc scatter. Moreover, while
the later strategies exhibit at most 3% of remote memory accesses, the former exhibit
more than 50% of remote memory accesses. If we run swim with an application-wide
strategy by considering only parallel region 8 or 5, then we observed that the obtained
performance is similar to icc compact. In fact, this benchmark does not exhibit an
important amount of inter-thread data sharing (less than 1%), an exact thread affinity
is not important. Consequently, applying a phase-based technique on this benchmark
leads to frequent thread migrations impacting negatively the locality of data (NUMA
accesses), thus the observed poor program performance.

6 Related Work and Discussion

Most of the thread affinity studies on multicores focus on data locality and cache sharing
in parallel applications. Zhang et al. [18] conducted a measurement analysis to study the
influence of CMP cache sharing on multi-threaded performance applications using the
PARSEC [1] benchmarks. Through measurement they suggest that cache sharing has
very limited influence on the performance of the PARSEC applications. However, they
do not conclude that cache sharing has no potential to be explored for multi-threaded
programs. Tam et al. [15] proposed threads clustering to schedule threads based on data
sharing patterns detected on-line using hardware performance monitoring units. The
mechanism relies on cross-chip communication performance impact.

Klug et al. [6] proposed autopin, a framework to automatically determine at run-
time the thread pinning best suited for an application based on hardware performance
counters information. The work is achieved by evaluating the performance of a set of
different scheduling affinities and select the best one. The tool requires that the user
provides an initial set of good thread placements. Terboven et al. [16] examined the
programming possibilities to improve memory pages and thread affinity in OpenMP
applications running on ccNUMA architectures. They provided a performance analysis
of some HPC codes which may suffer from ccNUMA architectures effects.

Song et al. [13] proposed an affinity approach to compute application-wide thread
affinity strategies. It relies upon binary instrumentation and memory trace analysis to
find memory sharing relationships between user-level threads. Like us, they build an
affinity graph to model the data locality relationship. Then, they use hierarchical graph
partitioning to compute optimized thread placements. While their affinity graph is based
on the number of addresses shared among threads, our affinity graphs are built upon the
number of accesses to common cache lines reflecting real cache activity.

Some studies have addressed the data cache sharing at the compiler level. They
focused on improving the data locality in multicores based on the architecture topology.
Lee et al. [7] proposed a framework to automatically adjust the number of threads in
an application to optimize system efficiency. The work assumes a uniform distribution
of the data between threads. Kandemir et al. [4] discussed a compiler directed code
restructuring scheme for enhancing locality of shared data in multicores. The scheme
distributes the iterations of a loop to be executed in parallel across the cores of an on-
chip cache hierarchy target.

Our work differs from the last efforts in two main points. First, we focus on the study
of the impact on performance of dynamic thread pinning to exploit the inter-thread data
sharing. Moreover, unlike other studies, we perform a statistical performance evaluation
(running multiple times, we fix the experimental setup, data analysis through a rigorous
statistical protocol [17]), we experiment multiple thread placement strategies and mul-
tiple machine architectures. Second, when it comes to compute a scheduling affinity,
we rely on a profile-guided method. Using dynamic binary instrumentation, we fully
analyze optimized binaries regardless of the compiler. Furthermore, we believe, that
extracting all data dependencies and data sharing at compile time may not be sufficient,
because these information depend on the working set which is known only at runtime.

7 Conclusion

We have presented an approach to exploit phase-based behavior in OpenMP programs
using thread affinity. The presented technique relies on the control flow graph of the
parallel OpenMP regions. The control flow graph gives for each parallel region its pre-
decessor and successor in the execution flow. In other words, it is the graph represent-
ing the execution flow of distinct parallel regions. We have extended an existing tool
to instrument the OpenMP constructs. Using a binary instrumentation tool, we build an
affinity graph for each parallel region in the program. After that, we compute multiple
thread pinning strategies for each parallel region.

References
1. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Characterization and

architectural implications. In: Proc. of the International Conference on Parallel Architectures
and Compilation Techniques. PACT ’08 (October 2008)

2. Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. Journal Res. Nat.
69-B(1-22), 125–130 (1965)

3. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Tech. rep., NASA Ames Research Center (Oct 1999),
http://www.nas.nasa.gov/Resources/Software/npb.html

4. Kandemir, M., Yemliha, T., Muralidhara, S., Srikantaiah, S., Irwin, M.J., Zhnag, Y.: Cache
topology aware computation mapping for multicores. SIGPLAN Not. 45(6), 74–85 (2010)

5. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing 48, 96–129 (January 1998),
http://dx.doi.org/10.1006/jpdc.1997.1404

6. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin — automated optimization of thread-
to-core pinning on multicore systems. Transactions on High-Performance Embedded Archi-
tectures and Compilers (2008)

7. Lee, J., Wu, H., Ravichandran, M., Clark, N.: Thread tailor: dynamically weaving threads
together for efficient, adaptive parallel applications. In: Proc. of the annual international
symposium on Computer architecture. pp. 270–279. ISCA ’10, ACM, New York, NY, USA
(2010)

8. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J., Hazelwood, K.: Pin: building customized program analysis tools with dynamic in-
strumentation. In: Proc. of the ACM SIGPLAN conference on Programming language de-
sign and implementation. pp. 190–200. PLDI ’05, ACM, New York, NY, USA (2005),
http://doi.acm.org/10.1145/1065010.1065034

9. Mazouz, A., Touati, S.A.A., Barthou, D.: Performance evaluation and analysis of thread
pinning strategies on multi-core platforms: Case study of spec omp applications on intel
architectures. In: Proc. of IEEE International Conference on High Performance Computing
& Simulation. pp. 273–279. HPCS ’11, IEEE, Istanbul, Turkey (jul 4-8 2011)

10. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a performance
tool interface for openmp. The Journal of Supercomputing 23, 105–128 (August 2002),
http://portal.acm.org/citation.cfm?id=603339.603347

11. Raj Jain: The Art of Computer Systems Performance Analysis : Techniques for Experimental
Design, Measurement, Simulation, and Modelling. John Wiley and Sons (1991)

12. Song, F., Moore, S., Dongarra, J.: Feedback-directed thread scheduling with mem-
ory considerations. In: Proc. of the international symposium on High performance
distributed computing. pp. 97–106. HPDC ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1272366.1272380

13. Song, F., Moore, S., Dongarra, J.: Analytical modeling and optimization for affinity based
thread scheduling on multicore systems. In: Proc. of the IEEE International Conference on
Cluster Computing, August 31 - September 4, 2009, New Orleans, Louisiana, USA. IEEE
(2009)

14. Standard Performance Evaluation Corporation: SPEC CPU (2006), http://www.spec.org/
15. Tam, D., Azimi, R., Stumm, M.: Thread clustering: sharing-aware scheduling on SMP-

CMP-SMT multiprocessors. In: Proc. of theACM SIGOPS/EuroSys European Conference
on Computer Systems 2007. pp. 47–58. EuroSys ’07, ACM, New York, NY, USA (2007)

16. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and thread affinity in
OpenMP programs. In: Proc. of the workshop on Memory access on future processors. pp.
377–384. MAW ’08, ACM, New York, NY, USA (2008)

17. Touati, S.A.A., Worms, J., Briais, S.: The Speedup-Test: A Statistical Methodology for Pro-
gram Speedup Analysis and Computation. To appear in the Journal of Concurrency and
Computation: Practice and Experience (2012), http://hal.inria.fr/hal-00764454

18. Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern CMP matter to the perfor-
mance of contemporary multithreaded programs? In: Proc. of the ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming. pp. 203–212. PPoPP ’10, ACM,
New York, NY, USA (2010)

