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Higher-Order Tensors in Diffusion Imaging

Thomas Schultz, Andrea Fuster∗, Aurobrata Ghosh∗, Rachid Deriche, Luc Florack,

Lek-Heng Lim

Abstract Diffusion imaging is a noninvasive tool for probing the microstructure of

fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathemat-

ical language to model and analyze the large and complex data that is generated by

its modern variants such as High Angular Resolution Diffusion Imaging (HARDI)

or Diffusional Kurtosis Imaging. This survey gives a careful introduction to the

foundations of higher-order tensor algebra, and explains how some concepts from

linear algebra generalize to the higher-order case. From the application side, it re-

views a variety of distinct higher-order tensor models that arise in the context of

diffusion imaging, such as higher-order diffusion tensors, q-ball or fiber Orientation

Distribution Functions (ODFs), and fourth-order covariance and kurtosis tensors.

By bridging the gap between mathematical foundations and application, it provides

an introduction that is suitable for practitioners and applied mathematicians alike,

and propels the field by stimulating further exchange between the two.

1 Introduction

In biological tissues such as nerve fiber bundles and muscles, the spontaneous heat

motion of water molecules is restricted by obstacles in the fibrous microstructure.
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Diffusion Imaging [70] uses the principles of Magnetic Resonance Imaging (MRI)

to non-invasively measure properties of this motion, which is also known as self-

diffusion. When applied to the human brain, this provides unique insights about

brain connectivity, which makes diffusion MRI one of the key technologies in an

ongoing large-scale scientific effort to map the human brain connectome [33]. Con-

sequently, it is a timely and important topic of research to create mathematical mod-

els that infer biologically meaningful parameters from such data.

Higher-order tensors have been used in applications ranging from psychometrics

[64] and chemometrics [104] to signal processing [103], computer vision [111], and

neuroscience [85]. They also provide adequate models for a number of quantities

that occur in the context of diffusion imaging. Many practitioners view higher-order

tensors as a generalization of matrices to multi-way arrays. However, tensors can

also be studied in an invariant, coordinate-free notation. Tensor decompositions are

an active and challenging topic in applied mathematics, since fundamental concepts

from linear algebra, such as the singular value decomposition, do not have unique

generalization to higher order, and most generalizations are hard to compute.

It is a goal of our survey to stimulate an active exchange between mathematicians,

who are studying tensor decompositions and the geometry of tensors, and computer

scientists and MR physicists, who are interested in using tensors as mathematical

tools in the context of diffusion MRI. Therefore, unlike previous surveys [90, 39],

Section 2 provides a broad overview of all physical quantities that have been mod-

eled with higher-order tensors in the context of diffusion MRI. On the other hand,

our introduction to the higher-order tensor formalism in Section 3 differs from exist-

ing discussions [66, 73] by focusing on aspects relevant to this specific application.

Relevant literature is spread over journals in applied mathematics, MR physics,

neuroimaging, and computer science. Drawing on all these fields, Section 4 presents

the current state of the art on fitting higher-order tensor models to the measured

data, and Section 5 discusses operations performed on the tensors for further anal-

ysis. Among others, this includes computation of scalar invariants (Section 5.1),

maximum detection (Section 5.3), and tensor decompositions (Section 5.4).

2 Overview of Higher-Order Tensor Models in dMRI

Different physical quantities that can be measured by or inferred from diffusion MRI

have been modeled with higher-order tensors. The resulting tensors not only differ

in their interpretation, but also in dimension, order, and symmetry.

Diffusion imaging inserts magnetic field gradients into the MR sequence which

sensitize the measurement to molecular motion along the gradient direction [70].

Compared to an image without diffusion weighting, this leads to an attenuation of

signal strength. The standard diffusion tensor model [18] assumes that the diffusion-

weighted MR signal in direction u is given by a monoexponential attenuation of the

unweighted signal S0, depending on the diffusion weighting b and a directionally

dependent apparent diffusion coefficient, modeled by a diffusion tensor D:
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S(u) = S0e−buTDu (1)

Estimating the six unique coefficients of D requires measurements in at least six

different gradient directions. Typical parameter values are b ∈ [700,1000]mm2/s,

and a spatial resolution of around 2× 2× 2mm3. When studying the human brain,

this corresponds to a subdivision into around 105 volume elements (voxels); a sep-

arate diffusion tensor D is computed for each of them.

Since nerve fibers are on the micrometer scale and therefore far below image

resolution, their complex organization often leads to apparent diffusivities D(u) that

are poorly approximated by a quadratic function. For these cases, Eq. (1) has been

generalized to use higher-order polynomials. As it will be explained in Section 3.3,

this corresponds to a higher-order diffusion tensor D [86]:

S(u) = S0e−bD(u) with D(u) = D ·k u (2)

Such High Angular Resolution Diffusion Imaging (HARDI) models require a

larger number of 30–100 gradient directions, and larger b ∈ [1000,3000]mm2/s.

One goal in diffusion imaging is to estimate the dominant nerve fiber directions

within each voxel. When there is only one such direction, the principal eigenvector

of the diffusion tensor D is aligned with it. However, a mixture of multiple fiber

directions is not easily resolved with the higher-order diffusion tensor D . For this

purpose, it is easier to consider the diffusion propagator P(x), the probability density

of a molecular displacement along vector x within the diffusion time. Under certain

assumptions, P(x) can be computed from D ; this will be the topic of Section 5.2.

Writing the diffusion propagator P(x) in spherical coordinates and integrating

over the radius results in the diffusion orientation distribution function ψ(u), whose

maxima approximate the main nerve fiber directions. The q-ball model has been

introduced as an approximative way of computing ψ(u) [110]. Even though its ex-

act interpretation has been disputed [17], q-ball maxima indicate approximate fiber

directions, and q-balls are sometimes expressed in a tensor basis [55, 7], making it

relevant to compute the maxima of homogeneous forms (cf. Section 5.3).

When measuring at different b values, it is common to observe that the true signal

attenuation is not monoexponential, as assumed by Eqs. (1) and (2). This indicates

that the diffusion propagator P(x) is non-Gaussian. Accounting for all higher-order

moments of P leads to a different generalization of Eq. (1) [78, 77],

S(B) = S0 e∑
∞
k=2 jk〈D(k),B(k)〉, (3)

where j is the imaginary unit, D (k) is a series of diffusion tensors with increasing

order k, and the diffusion-weighted signal S(B) is a function of a series of tensors

B(k), which combine information about the direction and strength of the diffusion

weighting. 〈D (k),B(k)〉 denotes the scalar product of the two tensors.

In contrast to Eq. (2), which uses a single higher-order tensor D that contains all

the information that would be present in lower-order approximations, each element

in the series of tensors D (k) in Eq. (3) contains non-redundant information that is in-
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dependent from all other orders k. This additional information needs to be acquired

by sampling multiple b values in several gradient directions [79].

The tensors in Eq. (3) are three-dimensional, and symmetric under all index per-

mutations. The odd orders k in Eq. (3) carry information about asymmetries in the

diffusion propagator, i.e., P(−x) 6= P(x). However, that information resides in the

phase of the complex-valued MR signal. At the technical state of the art, signal

phase in diffusion MRI is so heavily corrupted by measurement noise and artifacts

that it is not informative. Therefore, practical implementations of this generalization

are limited to estimating even-order tensors from the signal magnitude [80].

Diffusional Kurtosis Imaging augments the second-order diffusion tensor D in

Eq. (1) with a fourth-order kurtosis tensor W [61],

S(u,b) = S0e−buTDu+ 1
6 b2( 1

3 tr(D))
2
W ·4u, (4)

where tr indicates matrix trace. Computing the parameters in Eq. (4) requires mea-

surements at multiple b values, but no signal phase. They capture the same infor-

mation present in the second and fourth moments of P(x), but allow for simpler

computation of the apparent diffusional kurtosis Kapp in direction u:

Kapp(u) =

(
1
3
tr(D)

)2

(uTDu)2
W ·4 u (5)

For Gaussian diffusion, Kapp = 0. Negative kurtosis is expected from diffusion

restricted by spherical pores, and positive kurtosis can indicate presence of hetero-

geneous diffusion compartments [61].

Fourth-order covariance tensors Σ occur in statistical models of second-order

diffusion tensors [19]. Even though they are three-dimensional in each mode, they

only possess partial symmetries (Σi jkl = Σkli j; Σi jkl = Σ jikl ; Σi jkl = Σi jlk) [20].

If we assume that all nerve fiber bundles within a voxel have approximately the

same diffusion characteristics, the MR signal is given by the convolution of a fiber

orientation density function (fODF) with a kernel describing the single fiber re-

sponse [108]. Unlike the diffusion ODF, values of the fODF F(u) are interpreted as

the fraction of fibers aligned with direction u. F(u) can be obtained by spherical de-

convolution and a variant of that technique, which will be explained in Section 4.3,

allows for further analysis of the fODF via tensor decomposition [101].

3 Mathematical Background

We include a basic introduction to tensors and tensor fields. In a nutshell, a tensor

of order p or p-tensor is a multilinear functional on p vector spaces T : V×V×
·· ·×V→ R, and can be represented in coordinates as a p-dimensional matrix A ∈
R

n×n×···×n, n= dim(V), if one chooses a basis on V. A tensor field is a tensor-valued

function on a manifold. We refer readers who are interested in further properties
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of tensors and hypermatrices to [73] for an elementary treatment. Mathematically

sophisticated readers may consult [66] for a much more in-depth treatment.

3.1 Basic Definitions

Let us first define our basic mathematical objects: (i) tensors, and (ii) tensor fields.

Let V be a vector space over R. An order-p tensor is a multilinear functional

f : V×V×·· ·×V
︸ ︷︷ ︸

p times

→ R.

Multilinear means that if all arguments are kept constant but one, then f is linear

in that varying argument, i.e.

f (u1, . . . ,αvi +βwi, . . . ,up) = α f (u1, . . . ,vi, . . . ,up)+β f (u1, . . . ,wi, . . . ,up),
(6)

for every i = 1, . . . , p, α,β ∈ R and ui,vi,wi ∈ V. The set of all p-tensors is called

the p-fold tensor product of the vector space V and denoted

V
⊗p = V⊗V⊗·· ·⊗V

︸ ︷︷ ︸

p times

.

We ignore the distinction between covariant, contravariant and mixed tensors,

since it is less relevant when working with coordinate representations in an or-

thonormal basis, as will be the case in this survey. An abstract approach towards

tensors is now standard in any basic graduate courses in algebra [57, 68] or even

mathematical methods courses for physicists [38]. However, such courses focus al-

most exclusively on properties of an entire space of tensors [117] as opposed to

properties of an individual tensor, i.e. a specific element from such a tensor space.

Properties of an individual tensor such as rank, norm, eigenvalues, decompositions,

are of great relevance to us and will be discussed after we introduce tensor fields.

We will be informal in our treatment of tensor fields to make it more easily ac-

cessible. Readers who wish to see a rigorous definition would have no shortage of

standard references [24, 67, 113] to consult. Let M be a topological manifold which

we may later endow with additional structures (differential, Riemannian, Finsler,

etc). A tensor field is, roughly speaking, a tensor-valued function F : M → V
⊗p or

alternatively, a function of the form

F : M×V×V×·· ·×V
︸ ︷︷ ︸

p times

→ R (7)

with the property that for every point x ∈ M,

F(x; ·, ·, . . . , ·) : V×V×·· ·×V→ R
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is a multilinear functional, i.e., F(x;u1, . . . ,up) is multilinear in the last p arguments

for every fixed x ∈ M. If we want F to have additional properties like continuity or

differentiability, this definition is only good locally, i.e., every x0 ∈ M has a neigh-

borhood Ux0
⊆ M such that

F : Ux0
×V×V×·· ·×V→ R

is multilinear for every x ∈Ux0
. By far the most common choice for V is Tx(M), the

tangent space at x, i.e., the vector space Vi changes with each x and we really have

a multilinear function

F(x; ·, ·, . . . , ·) : Tx(M)×·· ·×Tx(M)→ R

at each x ∈ Ux0
. So each F(x; ·, ·, . . . , ·) has a different domain, and F is really a

family of multilinear functionals parameterized by x ∈ M. The proper treatment is

to define F as a section (of a tensor product of vector bundles) as opposed to a

function (with values in a tensor product of vector spaces). In fact, tensor fields are

more than pointwise multilinear functionals, they satisfy the multilinearity condition

in Eq. (6) with coefficients α,β being real-valued functions on M (usually in C∞(M)
if M is a smooth manifold) instead of merely being constants in R.

The above discussions use the coordinate-free language of modern treatments of

tensors and tensor fields in mathematics. In applications such as those considered

in this survey, computations require introducing coordinates by chosing a basis on

V. If we pick a basis b1, . . . ,bn, where n = dim(V), then a multilinear functional f

may be represented as an n×n×·· ·×n (p times) array of elements of R:

A = (ai1i2···ip)
n
i1,...,ip=1 ∈ R

n×···×n. (8)

We shall use the term hypermatrix of order p, or simply p-hypermatrix, when re-

ferring to a p-dimensional matrix of the form in Eq. (8). The origin of this terminol-

ogy would appear to be [37]. These objects are natural multilinear generalizations

of matrices in the following way. Since we have fixed a basis, every vector in V has

a coordinate representation and we may assume that V = R
n. A bilinear functional

f : Rn ×R
n → R can be encoded by a matrix A = [ai j]

n
i, j=1 ∈ R

n×n, in which the

entry ai j records the value of f (ei,e j) ∈ R where ei denotes the ith standard basis

vector in R
n. By linearity in each coordinate, specifying A determines the values

of f on all of Rn ×R
n; in fact, we have f (u,v) = uT Av for any (column) vectors

u,v ∈ R
n. Thus, matrices encode all bilinear functionals. If A = AT is symmetric,

the corresponding bilinear map is invariant under exchanging of coordinates:

f (u,v) = uT Av = (uT Av)T = vT AT u = vT Au = f (v,u).

To avoid sub-subscripts, we will restrict our discussion to 4-tensors. A 4-tensor

is a quadrilinear functional f : Rn ×R
n ×R

n ×R
n → R which has a coordinate

representation given by a 4-hypermatrix A = (ai jkl)
n
i, j,k,l=1 ∈R

n×n×n×n as in Eq. (8)

with p = 4. The subscripts and superscripts in Eq. (8) will be dropped whenever the
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range of i, j,k, l is obvious or unimportant. A 4-hypermatrix is said to be symmetric

if the value of ai jkl stays the same for all 24 permutations of the indices:

ai jkl = ai jlk = a jilk = · · ·= alk ji.

Symmetric 4-tensors correspond to coordinate representations of quadrilinear maps

f : Rn ×R
n ×R

n ×R
n → R with

f (t,u,v,w) = f (t,u,w,v) = f (u, t,v,w) = · · ·= f (w,v,u, t).

The set of symmetric 4-hypermatrices is often denoted S4(Rn) and it forms a linear

subspace of the vector space Rn×n×n×n. More generally Sp(V), the set of symmetric

p-tensors over an arbitrary vector space V, may be defined in a coordinate-free

manner [26] and forms a subspace of V⊗p.

What about tensor fields? Since any manifold M may be given local coordi-

nates, we may view tensor fields as hypermatrix-valued functions F : M →R
n×···×n,

x 7→ Ax = (ai1i2···ip(x))
n
i1,...,ip=1, that are locally defined (roughly speaking, they

are defined for local coordinates chosen for each neighborhood Ux ⊆ M). The

coordinate-dependent view of tensor fields as (hyper)matrix-valued functions is the

classical approach. The subject, studied in this light, is often called tensor calculus,

tensor analysis, or Ricci calculus. Tullio Levi-Civita, Gregorio Ricci-Curbastro, and

Jan Schouten are usually credited for its invention [105].

3.2 Tensor Algebra and Homogeneous Polynomials

As we saw in the last section, a 4-hypermatrix A ∈ R
n×n×n×n, is a coordinate rep-

resentation of a 4-tensor, i.e., a quadrilinear functional f : Rn ×R
n ×R

n ×R
n →R.

The set of 4-hypermatrices is naturally equipped with algebraic operations inherited

from the algebraic structure of the tensor product space R
n ⊗R

n ⊗R
n ⊗R

n:

• Addition and Scalar Multiplication: for (ai jkl),(bi jkl) ∈R
n×n×n×n and λ ,µ ∈R,

λ (ai jkl)+µ(bi jkl) = (λai jkl +µbi jkl) ∈ R
n×n×n×n, (9)

• Outer Product Decomposition: every A = (ai jkl) ∈ R
n×n×n×n may be decom-

posed as

A = ∑
r

q=1
λq wq ⊗xq ⊗yq ⊗ zq, ai jkl = ∑

r

q=1
λqwiqx jqykqzlq, (10)

with λq ∈ R, wq,xq,yq,zq ∈ R
n for q = 1, . . . ,r. The symbol ⊗ here denotes the

Segre outer product: for vectors w = [w1, . . . ,wn]
T , . . . ,z = [z1, . . . ,zn]

T ,

w⊗x⊗y⊗ z := (wix jykzl)
n
i, j,k,l=1 ∈ R

n×n×n×n,
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with obvious generalization to an arbitrary number of vectors. The ℓ-fold outer

product of x with itself is written xℓ.

• Multilinear Matrix Multiplication: every A = (ai jkl) ∈R
n×n×n×n may be multi-

plied on its ‘4 sides’ by matrices W= [wiα ], X= [x jβ ], Y= [ykγ ], Z= [zlδ ]∈R
n×r

as follows

A · (W,X,Y,Z) = (cαβγδ )
n
α,β ,γ,δ=1 ∈ R

n×n×n×n, (11)

cαβγδ = ∑
n

i, j,k,l=1
ai jklwiα x jβ ykγ zlδ .

A different choice of bases b′
1, . . . ,b

′
n on V would lead to a different hyperma-

trix representation B ∈ R
n×n×n×n of elements in V⊗V⊗V⊗V — where the two

hypermatrix representations A and B would be related precisely by a multilinear

matrix multiplication of the form

A · (X,X,X,X) = B

where X is the change-of-basis matrix, i.e. an invertible matrix with Xbq = b′
q for

q = 1, . . . ,n. Therefore, a tensor and a hypermatrix are different in the same way a

linear operator and a matrix are different. Note that in the context of matrices,

x⊗y = xyT and A · (X,Y) = YT AX.

When r = 1 in Eq. (11), i.e., the matrices W,X,Y,Z are vectors w,x,y,z, we omit

the · and write

A (w,x,y,z) = ∑
n

i, j,k,l=1
ai jklwix jykzl (12)

for the associated quadrilinear functional. Another special case occurs when one or

more of the matrices W,X,Y,Z in Eq. (11) is the identity I = In×n. For example,

A (I,x,y,z) = ∑
n

j,k,l=1
ai jklx jykzl ∈ R

n. (13)

In particular, the (partial) gradient of the quadrilinear functional A (w,x,y,z) may

be expressed as

∇wA (w,x,y,z) = A (I,x,y,z), ∇xA (w,x,y,z) = A (w,I,y,z), etc.

For a symmetric 4-tensor S , we write S ·x as a shorthand for S (x,I,I,I); the

result is a 3-tensor. Repeating this operation ℓ times is written S ·ℓ x. With this

notation, the homogeneous quartic polynomial S (x) that is uniquely associated

with S can be written as

S (x) := S (x,x,x,x) = S ·4 x = ∑d1+···+dn=4
µd1···dn

σd1···dn
x

d1
1 x

d2
2 · · ·xdn

n . (14)

Similarly, the gradient of S (x) can be conveniently expressed as ∇S (x) =
4S ·3 x. The right-hand side of Eq. (14) is the more typical way of writing a ho-

mogeneous polynomial in terms of monomials, unique coefficients σd1,...,dn
, and
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multiplicities µd1,...,dn
:=

(
n

d1,...,dn

)
. This is the higher-order equivalent of writing,

for A =
[

a b
b c

]
and x = [ x1

x2
],

A(x) = xT Ax = ax2
1 +bx1x2 +bx2x1 + cx2

2 = ax2
1 +2bx1x2 + cx2

2.

The Frobenius norm or Hilbert-Schmidt norm of a tensor A is defined by

‖A ‖2
F = ∑

n

i, j,k,l=1
a2

i jkl . (15)

This is by far the most popular choice of norms used for a tensor since it is readily

computable and also because it is induced by an inner product

〈A ,B〉= ∑
n

i, j,k,l=1
ai jklbi jkl (16)

that generalizes the trace inner product. For symmetric p-tensors S ,T expressed

in monomial form as in Eq. (14), this inner product may be written in the form

〈S ,T 〉 := ∑d1+···+dn=p
µd1···dn

σd1···dn
τd1···dn

and is often called the apolar inner product in invariant theory. For any v ∈ R
n,

the apolar inner product of a symmetric tensor and the rank-1 symmetric tensor

v⊗p := v⊗·· ·⊗v (p times),

〈S ,v⊗p〉= S (v),

which makes the set of symmetric p-tensors into a reproducing kernel Hilbert space.

3.3 Homogeneous Polynomials and Spherical Harmonics

By restricting Eq. (14) to the 3D unit sphere S2, x = [sinθ cosφ ,sinθ sinφ ,cosθ ]T ,

every symmetric tensor S defines a real-valued homogeneous polynomial function

on S2. Spherical harmonics (SH) are an alternate basis for describing functions on

the sphere. The SHs form a complex complete orthonormal basis for square inte-

grable functions on the unit sphere. Spherical functions can, therefore, be naturally

expanded in the infinite SH basis or approximated to any accuracy by a truncated

series. Again the diffusion signal being real and symmetric, a modified real and

symmetric SH basis is chosen in dMRI. Therefore, S can be written as

S(θ ,φ) = ∑
M′

j=1
c jYj(θ ,φ), (17)

where θ ∈ [0,π], φ ∈ [0,2π) and c j are the coefficients describing S in the modified

SH basis [30]
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Yj(θ ,φ) =







√
2Re(Y

|m|
l (θ ,φ)) if m < 0,

Y m
l (θ ,φ) if m = 0,

(−1)m+1
√

2Im(Y m
l (θ ,φ)) if m > 0,

(18)

with Y m
l (θ ,φ) the rank l and degree m regular complex spherical harmonic:

Y m
l (θ ,φ) =

√

(2l +1)(l −m)!

4π(l +m)!
Pm

l (cosθ)eimφ , m ≤ |l|. (19)

In [86, 29] it was shown that the tensor basis and the SH basis are bijective via a

linear transformation when the rank l of the truncated SH basis equals the order k of

the symmetric tensor. This can be understood from the spherical harmonic transform

of the polynomial representation of S:

c j = ∑
M′=M

i=1
µiσi

∫

S2

x
αi
1 x

βi

2 x
l−αi−βi

3 Yj(θ ,φ)dΩ . (20)

where the new indexing of µ and σ assumes an arbitrary ordering of the µd1···dn

and σd1···dn
from Eq. (14). Since the integral does not depend on the tensor coeffi-

cients σ j, Eq. (20) can be seen as a dot product between the vector of unique tensor

coefficients and the vector of spherical harmonic transforms of the M monomials

x
αi
1 x

βi

2 x
l−αi−βi

3 . In other words, computing the M SH coefficients can be written as a

matrix vector multiplication

c = Ms, (21)

where c = [c1,c2, . . . ,cM]T , s = [σ1,σ2, . . . ,σM]T , and:

M =







µ1

∫

S2
x

α1
1 x

β1
2 x

l−α1−β1
3 Y1dΩ . . . µM

∫

S2
x

αM
1 x

βM

2 x
l−αM−βM

3 Y1dΩ
...

. . .
...

µ1

∫

S2
x

α1
1 x

β1
2 x

l−α1−β1
3 YMdΩ . . . µM

∫

S2
x

αM
1 x

βM

2 x
l−αM−βM

3 YMdΩ






. (22)

3.4 Tensor Decompositions and Approximations

A tensor that can be expressed as an outer product of vectors is called decom-

posable and rank-1 if it is also nonzero. More generally, the rank of a tensor

A = (ai jkl)
n
i, j,k,l=1 ∈ R

n×n×n×n, denoted rank(A ), is defined as the minimum r for

which A may be expressed as a sum of r rank-1 tensors [52, 53],

rank(A ) := min
{

r

∣
∣
∣ A = ∑

r

q=1
λq wq ⊗xq ⊗yq ⊗ zq

}

(23)

where the minimum is taken over all decomposition with λp ∈ R, wp,xp,yp,zp ∈
R

n, p = 1, . . . ,r. If S is a symmetric tensor, then its symmetric rank [26] is
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srank(S ) := min
{

r

∣
∣
∣ S = ∑

r

q=1
λq xq ⊗xq ⊗xq ⊗xq

}

. (24)

We remark that it is not known whether the rank of a symmetric tensor is equal to

its symmetric rank. The definition of rank in Eq. (23) agrees with matrix rank when

applied to an order-2 tensor. In certain other literature, for example [90], the term

‘rank’ is used synonymously with what we called ‘order’ in the first paragraph of

this section. For tensors of order greater than 2, rank becomes a more intricate notion

than matrix rank with properties that may seem surprising at first encounter. We refer

the readers to [28] (rank) and [26] (symmetric rank) for further information.

Best rank-r approximations

argminλ∈Rr , W,X,Y,Z∈Rn×r

∥
∥
∥A −∑

r

q=1
λq wq ⊗xq ⊗yq ⊗ zq

∥
∥
∥ (25)

and the corresponding best symmetric rank-r approximation problem (i.e. when

W = X = Y = Z) are used in practice (Section 5.4), but have no solution in general

when r > 1. The easiest way to explain this is that the infimum of the objective func-

tion, taken over all λ = (λ1, . . . ,λr) ∈ R
r and W = [w1, . . . ,wr], X = [x1, . . . ,xr],

Y = [y1, . . . ,yr], Z = [z1, . . . ,zr] ∈ R
n×r need not be attained. This happens regard-

less of symmetry, the choice of norms in Eq. (25) and for any order p ≥ 3. In the

unsymmetric case, it is known that the set of tensors of rank s > r that do not have

a best rank-r approximation could form a positive volume set. A particularly eggre-

gious case is R2×2×2, where no rank-3 tensor has a best rank-2 approximation. For-

tunately, there are special cases where the problem can be alleviated, notably: (i)

when all coordinates of A are nonnegative and λ , W,X,Y,Z ≥ 0 [74]; (ii) when

W,X,Y,Z satisfy a ‘coherence’ condition [75]; (iii) when p is even and λ ≥ 0 [76].

Unlike cases (i) and (ii), case (iii) only applies to symmetric approximations.

3.5 Eigenvectors and Eigenvalues

The basic notions for eigenvalues of tensors were introduced independently by Lim

[72] and Qi [93]. The usual eigenvalues and eigenvectors of a matrix A ∈ R
n×n are

the stationary values and stationary points of its Rayleigh quotient, and this point

of view generalizes naturally to tensors of higher order. This gives, for example, an

eigenvector of a tensor A = (ai jkl)
n
i, j,k,l=1 ∈ R

n×n×n×n as a nonzero column vector

x = [x1, . . . ,xn]
T ∈ R

n satisfying

∑
n

i, j,k=1
ai jklxix jxk = λxl , l = 1, . . . ,n, (26)

for some λ ∈ R, which is called an eigenvalue of A . Notice that if (λ ,x) is an

eigenpair, then so is (tλ , tx) for any t 6= 0; thus, eigenpairs are more naturally defined

projectively. As in the matrix case, generic tensors over R or C have a finite number

of eigenvalues and eigenvectors (up to this scaling equivalence), although their count

is exponential in n. Still, it is possible for a tensor to have an infinite number of
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eigenvalues, but in that case they comprise a cofinite set of complex numbers. For

an even-ordered symmetric tensor S ∈ S2p(Rn), one has that S is nonnegative

definite, i.e. S (x) ≥ 0 for all x ∈ R
n, if and only if all the eigenvalues of S are

nonnegative [93] — a generalization of a well-known fact for symmetric tensors.

It is worth noting that unlike in the matrix case, most tensor problems are NP-

hard. This includes determining rank, best rank-1 approximation, spectral norm,

eigenvalues, and eigenvectors [51]. However, the notion of NP-hardness is an

asymptotic one that applies when n → ∞. Therefore, these hardness results do not

preclude the existence of efficient algorithms for a fixed n, and especially for small

values such as n = 3, the case of greatest interest to diffusion MRI.

4 Fitting Higher-Order Tensor Models

4.1 Fitting Models of Apparent Diffusivity

One of the earliest models that attempted to overcome the limitations of second-

order diffusion tensors used HOTs to account for diffusion with generalized angu-

lar profiles while preserving its radial monoexponential behaviour [86]. Even order

Cartesian tensors were used to measure the apparent diffusivities (ADC) from the

generalized Stejskal-Tanner equation as described in Eq. (2).

The simplest method [86] for estimating such tensors, D , from the diffusion sig-

nal is to linearize the Stejskal-Tanner equation by taking the logarithm of Eq. (2).

This leads to system of linear equations: Ax = y, where the rows of the design ma-

trix A contain the monomials of the homogeneous form D(u) =D (k) ·k u, the vector

y contains the log-normalized diffusion signal scaled by the acquisition parameter

b, and the vector x contains the unknown coefficients of the tensor D . This system

is overdetermined when the number of data acquisitions is greater than the number

of unknown tensor coefficients and can be solved uniquely in the least squares sense

by taking the Moore-Penrose pseudo-inverse of A.

Since diffusivity is a non-negative physical quantity, the homogeneous form D(u)
cannot be negative for any u ∈ S2. This leads to a positivity constraint that needs

to be respected while estimating D . The least squares approach often violates this

constraint for D with high orders and when the acquisitions are noisy.

Descoteaux et al. [29] proposed a linear approach with angular regularization to

account for noisy acquisitions. Leveraging the bijection between HOTs and SHs, see

Eq. (21), they estimated the coefficients of D by first estimating the coefficients in an

SH basis of rank equal to the order of the tensor while applying Laplace-Beltrami

smoothing on the sphere and then converting back to the tensor basis. This again

leads to a linear system that is overdetermined when the number of acquisitions is

larger than the number of tensor coefficients,

x = M−1(BT B+λL)−1BT y, (27)
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where x contains the unique tensor coefficients, y contains the log-normalized sig-

nal, B is the design matrix in the SH basis and M represents the linear transformation

matrix between the HOT basis and the SH basis. The matrix L is a diagonal matrix

with entries lii = ℓ2
i (ℓi + 1)2, which represents the Laplace-Beltrami regularization

of the SH Y m
ℓ , and λ is the regularization weight. This becomes the least squares

solution when λ = 0, but with nonzero λ , L tends to smooth higher order terms

more, therefore, dampening the effects of noise in higher orders.

Florack et al. used the same Laplace-Beltrami regularization on the sphere, but

for tensors instead of SHs [34]. This was based on an infinite inhomogeneous ten-

sor basis representation, much like the SHs, with the diffusion function modified

to D̃(u) = ∑
∞
k=0 D (k) ·k u. It was shown that on the sphere, this representation was

redundant, and when truncated to a finite order, it represented the same diffusion

function as in Eq. (2). The relation between the homogeneous and inhomogeneous

tensor representation has been addressed rigorously in [8]. The estimation process

was specifically crafted such that higher order tensors only captured the residual

information not available in lower order tensors. This resulted in a “canonical” ten-

sorial representation where the span of a tensor of fixed order k formed a degenerate

eigenspace for the Laplace-Beltrami operator with eigenvalue −k(k + 1), exactly

like the SHs.

The problem of estimating D with the positivity constraint was solved for order 4

tensors, in two different ways. The homogeneous forms of symmetric order 4 tensors

of dimension 3 are known as ternary quartics. Barmpoutis et al. [10, 9] and Ghosh

et al. [43] use Hilbert’s theorem on positive semi-definite (psd) ternary quartics:

Theorem 1. If P(x,y,z) is homogeneous, of degree 4, with real coefficients and

P(x,y,z) ≥ 0 at every (x,y,z) ∈ R
3, then there are quadratic homogeneous poly-

nomials f ,g,h with real coefficients, such that P = f 2 +g2 +h2.

Therefore, estimating P(x,y,z) (or D (4)) by estimating f ,g,h ensures D (4) to be psd.

However, these quadratic polynomials can only be uniquely determined up to a 3D

rotation and up to a sign. In other words, if the 6 coefficients of f ,g,h each are writ-

ten as column vectors w f ,wg,wh, respectively, and a 6×3 matrix W = [w f ,wg,wh]
is constructed, then P(x,y,z) = vT WWT v, where vT = [x2,y2,z2,xy,xz,yz]. Thus W,

−W and WR for any 3×3 orthogonal matrix R result in the same P.

Initially, Barmpoutis et al. fixed R by choosing the rotation that renders A – the

top 3× 3 block of W – to a lower triangular matrix [10]. This was achieved by

considering the QR-decomposition of A, but in practice A was taken to be lower

triangular. This resulted in a reduction of unknown coefficients from 18 = 3× 6

to 15, which is exactly the number of unique coefficients of D (4). In a later work

[9], an Iwasawa decomposition of WWT was taken, which implied the Cholesky

decomposition of A. This again resulted in A being rendered lower triangular –

defining uniqueness over 3D rotations and again reducing the number of unknowns

to 15. Furthermore, the Cholesky decomposition constrained the diagonal entries of

A to be positive – defining uniqueness over the sign.

Ghosh et al. [43] estimated all 18 unknowns of W and reconstructed the 15 co-

efficients of D (4) from the Gram matrix WWT . Although W cannot be estimated
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uniquely, the Gram matrix representing the homogeneous form P is unique and the

mapping from the coefficients of the Gram matrix to the coefficients of D (4) is

unique. Therefore, the estimation of the tensor coefficients is unambiguous. While

Barmpoutis et al. [10, 9] used a Levenberg-Marquardt optimization scheme, Ghosh

et al. [43] prefer the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme.

Barmpoutis et al. [10, 9] further introduced an L2 distance measure between the

homogeneous forms corresponding to the tensors evaluated on the unit sphere

dist(D
(4)
1 ,D

(4)
2 )2 =

1

4π

∫

S2
[D1(u)−D2(u)]

2du, (28)

which was computed analytically in terms of the difference of the coefficients of

D
(4)
1 and D

(4)
2 , and which was used for spatial regularization of the tensor field to

account for noise.

A second way of estimating D (4) with the positivity constraint was proposed by

Ghosh et al. [44]. In this approach, the 6×6 isometrically equivalent matrix repre-

sentation [20] D of D (4) was used. Since D is symmetric and its positive definiteness

ensures D (4) to be positive, the affine invariant Riemannian metric for the space of

symmetric positive definite matrices [71] was used to estimate D via a Riemannian

gradient descent. However, the symmetry of the tensor D (4) cannot be entirely cap-

tured by D, which has 21 unique coefficients. Therefore, a final symmetrizing step

was used to recover a positive and symmetric tensor D (4).

The problem of estimating an arbitrary even order HOT, D (2k), with the positivity

constraint was also solved in two different ways. Barmpoutis et al. [13] used a result

that states that for any even degree, 2k, a (homogeneous) polynomial positive on the

unit sphere can be written as a sum of squares of polynomials, p, of degree k on the

unit sphere, D(u) =D (2k) ·(2k) u = ∑
R
j=1 λ j p

(k)(u,c j)
2, where λ j are all positive and

c j are the coefficient vectors of the polynomials p j with ||c j||= 1. However, since R,

the number of polynomials in the sum, cannot be determined, they reformulated the

problem as a spherical convolution problem D(u) =
∫

S#c−1 λ (c)p(k)(u;c)2dc, where

the unit sphere S#c−1 is embedded in R
#c, with #c being the number of elements in

c. The convolution was solved numerically by discretizing S#c−1 finely and D (2k)

was estimated by solving the least squares problem for the unknowns λ j

E = ∑
N

i=1

(

Si/S0 − e
−b∑

r
j=1 λ j p(gi;c j)

2
)2

(29)

using a non-negative least squares (NNLS) to ensure that all λ j ≥ 0. Eq. (29) essen-

tially overestimates R by r by discretizing the convolution, while the NNLS tends to

compute a sparse solution ensuring that Eq. (29) does not overfit the signal.

A second method for estimating even order psd HOTs based on convex opti-

mization was proposed by Qi et al. [96]. It was shown that the set of order 2k psd

HOTs, D , form a closed convex cone C in R
n, where D has n unique coefficients

and can be represented by x ∈ R
n. Furthermore, the psd constrained least squares

estimation was shown to be convex and quadratic with a unique minimizer x∗ ∈ C

such that if the unconstrained solution x ∈R
n \C then x∗ ∈ ∂C , the boundary of C .
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The explicit psd constraint on D was formulated as λmin(D) ≥ 0 where λmin(D),
the minimum Z-eigenvalue of D , was shown to be computationally tractable. The

psd HOT Dx∗ (corresponding to x∗) was estimated by first checking the psd-ness of

the unconstrained HOT Dx. If λmin(Dx) ≥ 0, then by uniqueness Dx∗ = Dx. How-

ever, if x /∈C , then Dx∗ was estimated by solving the non-differentiable, non-convex

optimization problem L(x) = min{|Ax−y|2 : λmin(Dx) = 0}, with only an equality

constraint, by a subgradient descent approach. In theory, Dx∗ could also be estimated

by solving the psd constrained non-differentiable convex least squares problem.

Alternatively, Barmpoutis et al. [11] used even ordered HOTs to model the

logarithm of the diffusivities. This preserved the monoexponential radial diffu-

sion but considered the exponential of the tensor for the angular diffusion D(u) =
exp(D (k) ·k u) (in Eq. (2)). This automatically ensured positive diffusion without

having to impose any constraints. The approach was inspired by the Log-Euclidean

metric for DTI [3].

4.2 Fitting Models of Apparent Diffusional Kurtosis

Fitting the coefficients of the diffusion tensor D and kurtosis tensor W in Eq. (5)

is simplified by initially considering each gradient direction separately, and finding

parameters of the corresponding one-dimensional diffusion process,

S(b) = S0e−bd+ 1
6 (bd)2K , (30)

where d and K are apparent diffusion and kurtosis coefficients, respectively. Esti-

mating these two variables requires measurements S(b) with at least two non-zero

b-values, in addition to the baseline S0 measurement. After taking the logarithm on

both sides of Eq. (30), this leads to a system of equations that is quadratic in d, and

can thus no longer be solved with a linear least squares estimator. Instead, gradient-

based iterative Levenberg-Marquardt optimization has been employed [61].

Assuming a Gaussian noise model results in a positive bias in the estimated kur-

tosis values, which can be removed by finding the maximum likelihood fit under a

Rician noise model [112] or, more easily, by accounting for the noise-induced bias

in the measurements themselves [61, 82]. This is done by adding an estimate η of

the background noise to the signal model in Eq. (30),

S(b) =

√

η2 +
(

S0e−bd+ 1
6 (bd)2K

)2

. (31)

After finding parameters di and Ki for each individual gradient direction i, a

second-order diffusion tensor D can be fit linearly to the di. Given this estimate of

D, the fourth-order kurtosis tensor W can then be fit linearly using Eq. (4) [82, 69].

Kurtosis is a dimensionless quantity and can, in theory, take on any value K ≥−2.

However, the kurtosis of a system that contains noninteracting Gaussian compart-
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ments with different diffusivities is always non-negative, and empirical results sug-

gest non-negative kurtosis in human brain tissue [61]. Similarly, an upper bound

on kurtosis, Ki ≤ 3/(bmaxdi), where bmax is the largest b-value used in the mea-

surements, is implied by the empirical observation that in practice, the signal S(b)
is a monotonically decreasing function of b. These two constraints have been en-

forced as part of the fitting, using quadratic programming or heuristic threshold-

ing [106]. Other authors have chosen to merely enforce the lower bound K ≥ −3/7,

which correspond to the kurtosis of water confined to equally-sized spherical pores,

by a sum-of-squares parametrization of the homogeneous polynomial represented

by W [16]. Additional regularization has been employed to penalize extrema in the

homogeneous form that fall outside the range of the measured kurtosis values [65].

4.3 Fitting Deconvolution-Based Models

Spherical deconvolution models the diffusion-weighted signal S(u) in different gra-

dient directions u as the convolution of a fiber orientation density function (fODF)

F with a response function R. It describes the signal attenuation caused by a single

nerve fiber bundle, and it is assumed to be cylindrically symmetric:

S(u) =
∫∫

‖v‖=1
F(v) R(v ·u) dv (32)

Based on Eq. (32), deconvolution can be used to estimate the fiber ODF F from

the measurements S. Deconvolution is done most easily in the spherical harmonics

basis, where it amounts to simple scalar division. However, constructing a spherical

harmonics representation of the deconvolution kernel R requires two choices: Beside

estimating the response of a single fiber compartment from the data [108] or deriving

it from an analytical fiber model [31, 102], it involves deciding how the single fiber

compartment should be represented after deconvolution [107].

Even though the delta distribution may seem like an obvious choice, it requires an

infinite number of coefficients in the spherical harmonics basis. Therefore, Tournier

et al. [107] approximate the delta peak, resulting in non-trivial interactions between

peaks of non-orthogonal fiber compartments and leading to systematic errors when

taking ODF maxima as estimates of fiber directions, even when no measurement

noise is present. Schultz and Seidel [101] have removed this problem by instead

modeling single fiber peaks as rank-1 tensors, and performing a low-rank approxi-

mation of the resulting order-p fODF tensor F ,

argmin
λi,vi

∥
∥
∥F −∑

r

i=1
λiv

⊗p
i

∥
∥
∥

F
, (33)

where vi describe the per-compartment principal directions, and λi are proportional

to their volume fractions. The approximation rank r corresponds to the number of
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discrete fiber compartments; one way to estimate it is by learning from simulated

training data via support vector regression [98].

This tensor-based variant of spherical deconvolution uses the linear bijection be-

tween spherical harmonics and polynomial bases (cf. Section 3.3) twice: First, to

map a rank-1 tensor of the same order as the desired fODF tensor F to the spher-

ical harmonics basis, which is required to find the correct kernel R for use with

that tensor order. Second, to transform the deconvolution result F , obtained in the

spherical harmonics basis, back into its tensor representation F .

Since compartments cannot have negative weights, valid fODF tensors should

permit a positive decomposition into rank-1 terms. For tensor order k > 2, this is

a stronger requirement than non-negativity of the homogeneous form, which is a

more natural constraint for models of apparent diffusivity (Section 4.1). It can be

enforced by computing an approximation with the generic number of rank-1 terms

and non-negative weights [99].

Similar to a previous approach of Barmpoutis et al. [13], Weldeselassie et al.

[114] enforce non-negativity of F by parametrizing the homogeneous polynomial

F (with even order k) as a sum of squares of polynomials of order k/2. Rather than

performing the deconvolution in spherical harmonics, they discretize the fODF, so

that it can be found as the non-negative least squares solution of a linear system.

4.4 Fitting Other Types of Models

When fitting the higher-order diffusion model described by Eq. (3) [78, 77], we only

consider tensors of even order, as was argued in Section 2. By taking the logarithm

and truncating after order 2n, the equation can be rewritten in the form

Re[log(S(B)/S0)] = ∑
n

k=1
(−1)k

〈
B

(2k),D (2k)
〉
,

where Re denotes the real part of the logarithmic signal and the inner products be-

tween tensors B(2k) and D (2k) is defined in Eq. (16). Tensors D (2k) can be estimated

by considering measurements with different gradient strengths and directions, which

lead to different B
(2k)
i , and truncating the tensor series at the desired order. If we

have m measurements, we obtain m equations of the above form, linear in the coef-

ficients of D . These can be combined in a matrix equation

y(log(|Si(Bi)|/|S0|)) = B(B(2k),i)x(D (2k)), (34)

where i = 1, . . . ,m. In practice, the modulus | · | rather than the real part of the com-

plex signal is used, since phase is unreliable. The vector x, which contains the coef-

ficients of D (2k), can be estimated by solving Eq. (34) in the least squares sense.

Higher-order tensors representing q-ball ODFs (see Section 2) can also be fitted

to HARDI data. An analytical solution for the q-ball ODF is given by [2, 50, 30]
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ψq-ball(u) = ∑
N

i=1
2πPli(0)ci Yi(u) (35)

where u is a unit norm vector, Pli is the Legendre polynomial of degree li, {Yi}N
i=1 is

a modified SH basis as in Eq. (18), and ci are the harmonic coefficients of the MR

signal. A tensor representation of ψq-ball can be obtained from the bijection between

SHs and tensors. Alternatively, it can be reconstructed directly in a tensor basis [34]

ψq-ball(u) = ∑
n

k=0
2πPlk(0)Sk ·k u (36)

where n is the maximum order of a series of tensors Sk fitted to the diffusion signal

such that higher orders only encode the fitting residuals from lower orders.

5 Processing Higher-Order Tensors in Diffusion MRI

5.1 Computing Rotationally Invariant Scalar Measures

It is desirable to extract meaningful scalars from the estimated higher-order tensors.

In particular, rotationally invariant quantities are preferable. These are independent

of the coordinate system and thus intrinsic features of the tensor.

5.1.1 Higher-Order Diffusion Tensors

Rotationally invariant measures of diffusivity and anisotropy based on higher-order

diffusion tensors have been proposed in [89]. The mean diffusivity is defined as:

〈D〉= 1

4π

∫∫

S2
D(u) du (37)

where u is a unit direction vector and D(u) are the diffusivities as in Eq. (2). The

generalized anisotropy (GA) and scaled entropy (SE) are given by

GA = 1− 1

1+(250V)ε(V )
and SE = 1− 1

1+(60(ln 3−η))ε(ln 3−η)
, (38)

where ε(γ) = 1+1/(1+5000 · γ) and V and η are the variance and entropy of the

normalized diffusivities, D(u)/3〈D〉. The definition of these measures does not rely

on any specific tensor order. In addition, GA and SE are scaled between 0 and 1.

Note that these measures can also be calculated from other functions defined on the

unit sphere, such as orientation distribution functions.

GA and SE values for simulated data modelling two and three fibers show a clear

difference between those implied by tensors of order two and higher-order (four, six

and eight) tensors, the latter being significantly higher [89, 29, 84, 27]. GA and SE

have also been reported to be slightly higher in the case of sixth order tensors than
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for order four [27]. On the other hand, for data simulating one fiber, GA and SE are

independent of the tensor order. This is also the case for the mean diffusivity [89].

GA and SE for real HARDI data of healthy subjects have been studied in [84,

27, 83]. It has been shown that fourth- and sixth-order tensors result in increased

values for both measures, especially for SE, with respect to second-order tensors.

This effect is observed in areas with intra-voxel orientational heterogeneity but also

in some regions with coherent axonal orientation. On the other hand, GA and SE

become more sensitive to noise for increasing tensor order [27].

The variance of fourth-order covariance tensors has also been investigated for

DTI data of glioblastoma patients [32]. Results indicate a better variance contrast

between tumor subregions than for FA.

5.1.2 Diffusional Kurtosis Tensors

A number of rotationally invariant scalar measures based on fourth-order kurtosis

tensors have been proposed. Different definitions of mean kurtosis (also referred to

as average AKC), kurtosis anisotropy, radial and axial kurtoses can be found in the

literature. Some of them are related to certain eigenvalues of the kurtosis tensor,

which we discuss later in this section. These measures are summarized in Tables

1 and 2. It is clear that they are rotationally invariant, since both the AKC and

eigenvalues involved in their definition are rotationally invariant.

Table 1 Mean kurtosis and kurtosis anisotropy. β : D-eigenvalue of W , ν : number of D-

eigenvalues, N: total number of diffusion measurement directions, Kapp: AKC in a particular di-

rection as in Eq. (5), ei (i = 1,2,3): eigenvector of diffusion tensor D , Kapp(ei) = (MD2/λ 2
i ) · Ŵiiii,

Ŵ : kurtosis tensor in the basis {ei}, K̄ = (1/3)(Kapp(e1)+Kapp(e2)+Kapp(e3)).

Reference MK FAK

[95]
(MD)2

ν ∑
ν
i=1 βi

√
ν

ν−1

√

∑
ν
i=1(βi−MK/(MD)2)2

∑
ν
i=1 β 2

i

[56] 1
N ∑

N
i=1 Kapp(ui)

√
3
2

√

∑
3
i=1(Kapp(ei)−K̄)2

∑
3
i=1 K2

app(ei)

[94, 106, 60] (MK) [91] 1
4π

∫∫

S2 Kapp(u) du

√
1

4π

∫∫

S2 (Kapp(u)−MK)2 du

[81] idem

√
∫∫

S2 (Kapp(u)−MK)2 du
∫∫

S2 K2
app(u) du

Note that the first two definitions of kurtosis anisotropy in Table 1 are completely

analogous to the DTI case but based on the kurtosis tensor D-eigenvalues and AKC
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values along the diffusion tensor eigenvectors, respectively. As FA, FAK takes on

values 0 ≤ FAK ≤ 1, except for the definition in [91].

Table 2 Axial and radial kurtoses. eφ = (0,cosφ ,sinφ) in the basis {ei}.

Reference K‖ K⊥

[56] Kapp(e1)
Kapp(e2)+Kapp(e3)

2

[91] (K⊥) [106, 60] idem
∫ 2π

0 Kapp(eφ ) dφ

Some of these measures have been probed for in vivo and ex vivo rat brain DKI,

and compared to their DTI analogues [56]. Mean and radial kurtoses showed strong

contrast between GM and WM both in and ex vivo. In particular, radial kurtosis

performs better than all other directional diffusivities and kurtoses. For axial kurto-

sis, a stronger contrast was observed under ex vivo conditions. On the other hand,

kurtosis anisotropy was similar to FA both in and ex vivo.

Mean kurtosis and kurtosis anisotropy have also been computed by an adaptive

spherical integral, and compared to those based on D-eigenvalues for real diffusion

data of a healthy subject and a stroke patient [81]. The latter are seen to be more

sensitive to noise. Exact expressions for mean and radial kurtoses can be obtained

[106]. These have been shown, together with axial kurtosis, on DKI scans of healthy

subjects [106, 60]. The optimization of the diffusion gradient settings for estimation

of mean and radial kurtosis, and kurtosis anisotropy has been studied as well. It has

been shown that this increases precision considerably [91].

D-eigenvalues of the fourth-order kurtosis tensor W are defined by [95]

W ·3 x = β Dx; xTDx = 1, (39)

where x is the D-eigenvector associated to D-eigenvalue β . D-eigenvalues have

been shown to be rotationally invariant [95]. The largest and smallest D-eigenvalues

can be used to compute the largest and smallest AKC values as (MD)2βmax and

(MD)2βmin. Other type of eigenvalues which have been studied in this context are

the Kelvin eigenvalues of the kurtosis tensor, which are also rotationally invari-

ant. A three-dimensional symmetric fourth-order tensor can be mapped to a six-

dimensional second-order tensor. The eigenvalues (η1, . . . ,η6) of its matrix repre-

sentation, a symmetric 6× 6 matrix, are the Kelvin eigenvalues of the considered

fourth-order tensor. It has been shown that the largest and smallest Kelvin eigen-

values of (a scaled version of) the kurtosis tensor Ŵ are, respectively, an upper

and lower bound of the largest and smallest AKC values [94]. The interpretation of

Kelvin eigenvalues in terms of AKC values is thus less clear than for D-eigenvalues.
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5.1.3 Orientation Distribution Functions

ODF maxima are characterized by their position and value (see Section 5.3), but

also by their geometric shape. A peak sharpness measure

PS =
−µ1

k F(u)
(40)

can be derived from the value F(u), order k of F , and a Hessian eigenvalue µ1 of F

(at maxima, µ2 ≤ µ1 ≤ 0). The homogeneous forms of second-order tensors F have

a single maximum, whose sharpness depends on the degree to which F has a linear

shape, as measured by the widely used invariant cl = (λ1 − λ2)/λ1 [115]. In fact,

when applied to a second-order tensor, PS = cl [99].

Peak Fractional Anisotropy (PFA) is designed to coincide with traditional Frac-

tional Anisotropy (FA) [21] when the diffusion process is well-described by a

second-order diffusion tensor, but generalizes it to a per-peak measure in case of

more than one ODF maximum [41]. It is defined by fitting a second-order tensor to

each ODF peak and computing its FA. Based on the function value F and principal

curvatures κ1 > κ2 at the maximum, the fitted tensor eigenvalues are given by:

ODF-T : λ1 = F2, λ2 =
F
κ2
, λ3 =

F
κ1

(41)

ODF-SA : λ1 = 1, λ2 =
3

2+κ2F
, λ3 =

3
2+κ1F

(42)

ODF-T refers to the q-ball defined by Tuch [110]; ODF-SA denotes a solid angle

ODF [1, 109]. The total PFA is defined by considering a weighted sum of the PFA

over all ODF maxima:

Total-PFA = ∑
♯max.

i=1
Fi ·PFAi (43)

Unlike Fractional Anisotropy, Total-PFA is able to distinguish between near-isotro-

pic regions with many weak ODF maxima and areas with complex fiber structure,

which exhibit multiple, high anisotropy maxima.

Other geometrical scalars have also been considered. The Ricci scalar is a well-

known invariant quantity in differential geometry representing intrinsic curvature,

and constructed from the metric and metric-derived tensors. It has been proposed as

a DTI scalar measure in the context of Riemannian geometry [35]. The Ricci scalar

can also be calculated from a (strongly) convexified ODF by relating it to Finsler

geometry (see Section 5.5 and Chapter ??) [6]. However, experimental results on

the latter have not yet been reported.

In addition, principal invariants of fully symmetric fourth-order tensors repre-

senting an ODF have been studied [36]. Invariants of fourth-order covariance tensors

in DTI had been previously investigated [20]. More general invariants of fourth-

order tensors have been recently presented [42]. Principal invariants can be com-

puted from the tensor Kelvin eigenvalues (η1, . . . ,η6) (see section 5.1.2):
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I1 = η1 +η2 +η3 +η4 +η5 +η6

I2 = η1η2 +η1η3 + . . .+η5η6

I3 = η1η2η3 +η1η2η4 + . . .+η4η5η6 (44)

I4 = η1η2η3η4 +η1η2η3η5 + . . .+η3η4η5η6

I5 = η1η2η3η4η5 + . . .+η2η3η4η5η6

I6 = η1η2η3η4η5η6

These quantities are, by definition, rotationally invariant and can therefore be used

as building blocks for invariant scalar HARDI measures. Experiments on HARDI

phantom and brain data have been presented but further work is required to asses the

utility of principal invariants in this context. Finally, note that both the Ricci scalar

and principal invariants can also be calculated from higher-order diffusion tensors.

5.2 Reconstructing the Diffusion Propagator

The diffusion process is characterized by a probability density function P(r, t) that

specifies the probability of a spin displacement r within diffusion time t. P(r, t)
is known as the diffusion propagator or Ensemble Average Propagator (EAP). It

is related to the dMRI signal by a Fourier transform in the q-space formalism

S(q, t)/S0 =
∫

R3 P(r, t)e2πiq·rdr [25]. Even though higher order tensor estimates of

ADC and kurtosis can discern regions with multiple fiber directions, they cannot be

used to resolve the directions themselves. To resolve fiber directions the EAP or its

characteristics such as the ODF need to be computed.

In DTI, the diffusivities are modelled by a quadratic function given by the diffu-

sion tensor, Eq. (1). The Fourier transform of the resulting signal yields the corre-

sponding EAP, an oriented Gaussian distribution with the tensor’s largest eigen-pair

indicating the single major fiber direction. However, when HOTs are used to model

more complex ADC profiles, computing the EAP turns out to be a trickier problem.

Unlike in DTI, the analytical Fourier transform of the tensor model in Eq. (2)

is unknown. In [88], a fast Fourier transform was performed on interpolated (and

extrapolated) q-space data on a Cartesian grid generated from the tensor in Eq. (2)

to numerically estimate the EAP. In [87], an analytical EAP on a single R0-shell,

i.e., P(R0
r

||r|| ), was proposed for this model. However, in this Diffusion Orientation

Transform (DOT), the SH basis representation of the tensor was used, see Eq. (21).

In [40], the authors considered a modified non-monoexponential model inspired

from Eq. (2) where the HOT was used to describe the signal in the entire q-space.

The modified model leads to an analytical series expansion of the EAP in Hermite

polynomials. In [15], the authors proposed to use tensors to describe a single R0-

shell of the EAP, P(R0
r

||r|| ). They used Hermite polynomials to describe the dMRI

signal, since under certain constraints the Fourier transform of Hermite polynomi-

als are homogeneous forms or tensors. Note that [40] and [15] used the same dual

Fourier bases but in the opposite spaces to analytically resolve the Fourier transform.
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The first attempt to estimate the EAP analytically was based on the tensor model

in Eq. (3), where the HOTs represented the cumulant tensors of the EAP since the

dMRI signal is also the characteristic function of the EAP. The authors in [78, 77],

proposed to use the Gram-Charlier series to compute a series estimate of the EAP

from the first four cumulant tensors, i.e. covariance (diffusion) and kurtosis. In the-

ory, the Gram-Charlier series could be improved by the Edgeworth series [45].

In [69], the authors computed the ODF directly from the first four cumulant ten-

sors – diffusion and kurtosis. In contrast to [78, 77], they do not estimate the full

EAP, but only its radial marginalization.

5.3 Finding Maxima of the Homogeneous Form

The maxima of many orientation distribution functions in dMRI, which can be rep-

resented in the HOT or SH bases, indicate underlying fiber directions. It is, therefore,

crucial to compute these maxima with high precision.

The simplest approach is to discretely sample the homogeneous form on a spher-

ical mesh and to compare its values on the finite vertices to approximately identify

the maxima [54]. However, even a 16th order tessellation of the icosahedron or

1281 vertices on the sphere can lead to an error of ∼ 4◦. Numerical optimization

techniques such as Newton-Raphson and Powell’s methods have been used in the

SH basis [58, 108] to overcome this limitation. In [55], numerical optimization was

combined with the Euler integration step of a tractography algorithm in the tensor

basis to trace fibers efficiently.

However, such local optimization techniques are highly dependent on initializa-

tion. In [23] and [47] two methods were shown for computing all the stationary

points of a homogeneous form. In [23], the Z-eigenvalue/eigenvector formulation

was used and a system of two polynomials in two variables – the homogeneous

form and the unit sphere constraint – was solved using resultants (detailed in [96]).

The stationary points were then classified by their principal curvatures into max-

ima, minima and saddle-points. In [46], the gradient of the homogeneous form con-

strained to the unit sphere – a system of four polynomials – was equated to zero. The

roots of the system were computed by the subdivision method which ensures that all

roots are analytically bracketed thus missing none. The stationary points were then

classified into maxima, minima and saddle points using the Bordered Hessian.

5.4 Tensor Decompositions and Approximations

There are four lines of work that have applied tensor decompositions in the context

of diffusion MRI. The first results from considering normal distributions of second-

order diffusion tensors, which involve a fourth-order covariance tensor Σ . When the

diffusion tensor is written as a vector, Σ is naturally represented by a 6×6 symmet-
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ric positive definite matrix S, to which the spectral decomposition into eigenvalues

and eigentensors can be applied, in order to facilitate visualization and quantitative

analysis [20]. Alternatively, Σ can be expressed in a local coordinate frame that is

derived from invariant gradients and rotation tangents [63]. The coordinates in this

frame isolate physically and biologically meaningful components such as variability

that can be attributed to changes in trace, anisotropy, or orientation.

Second, the distribution of fiber orientation estimates, either from the diffusion

tensor or from HARDI, has been modeled by mapping the corresponding probability

measure into a reproducing kernel Hilbert space. With a power-of-cosine kernel,

this results in a higher-order tensor representation, which can be decomposed into

a rank-one approximation and a non-negative residual to visually and quantitatively

investigate the uncertainty in fiber estimates from diffusion MRI [100].

Third, in the framework described in detail in Section 4.3, a low-rank approxi-

mation of fODF tensors provides a less biased estimate of principal directions than

fODF maxima. It has been shown [102] that this model can be used to approxi-

mate and to more efficiently and robustly fit the ball-and-multi-stick model [22].

Subsequent work has imposed an additional non-negativity constraint during de-

convolution, and proposed an alternative optimization algorithm [62]. Low-rank ap-

proximations were shown to produce useful estimates of crossing fibers even from

a relatively small number of gradient directions [49].

Finally, another line of work has attempted to decompose higher-order diffusion

tensors in order to obtain crossing fiber directions [116, 59]. However, these tech-

niques are yet to be validated on synthetic data with varying crossing angles, and

have not yet been shown to reconstruct known fiber crossings in real data.

5.5 Finslerian Tractography

DTI streamline tracking can be generalized to HARDI by means of Finsler geom-

etry. A second-order Finsler metric tensor can be defined at each point q from an

ODF in the following way [4, 34, 7, 5]

F̂(q,x) =
(

∑ii...ip
Fi1...ip(q)x

i1 . . .xip

)1/p

, gi j(q,x) =
1

2

∂ F̂2(q,x)

∂xi∂x j
(45)

where F is an ODF tensor of (even) order p, F̂ is the Finsler function and gi j is the

Finsler metric, i, j = 1, . . . ,3, which depends on both position and direction. Note

that this definition of the Finsler function F̂ is by no means unique. In fact, this is

still a subject of intensive research (see Chapter ??). Thus a local diffusion tensor

can be obtained per direction. Tracking can be performed by extracting the principal

eigenvector of the diffusion tensor corresponding to the arrival direction. As long as

this direction is sufficiently aligned to the eigenvector, and the diffusion tensor FA

is above a certain treshold, tracking continues. Experiments on Finsler streamline

tracking using fourth-order tensors have been presented on simulated fiber crossings
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and real HARDI data. It has been shown that Finsler streamlines can, unlike DTI

streamlines, correctly cope with nerve fiber bundle crossings.

5.6 Registration and Atlas Construction

Registration transforms data sets from different times or subjects to a common co-

ordinate system, so that anatomical structures align. Atlas construction is based on

registering a large number of subjects, in order to obtain a description of average

anatomy, and of the most common modes of variation. Modeling parameters of the

diffusion process with higher-order tensors makes registration of tensor fields a rel-

evant research problem. Registration requires selection of an appropriate metric to

measure the dissimilarity between individual tensors; for this purpose, Barmpoutis

et al. [14, 12] propose two alternative choices, which are both scale and rotation

invariant. Integrating the local dissimilarity over the domain of the tensor field re-

sults in an overall measure of dissimilarity. Registration is achieved by finding the

coordinate transformation that minimizes this measure.

It is important to also transform the individual tensors according to the coordinate

transformation applied to the domain of the field. For example, when the domain of

the tensor field is rotated, a corresponding rotation of the tensors themselves is re-

quired in order to preserve relevant structures, such as the trajectories of nerve fiber

bundles. When the transformation is (locally) affine, it has been proposed to sim-

ply apply it to the tensors via Eq. (11) [14]. Alternative methods for transformation

have been proposed based on the spectral decomposition [97] and different sum-of-

squares parametrizations [9, 97, 48].

6 Conclusion

The wide range of models and computational methods that have been surveyed in

this chapter testify to the power and flexibility that higher-order tensors provide

for the analysis of data from diffusion MRI, and to the increasing momentum of

the research associated with this topic. Generalized eigenvalues, scalar invariants,

tensor decompositions, and low-rank approximations have all proven valuable in

the context of this application.

Looking ahead, several theoretical problems remain to be solved. While many

approaches have focused on the properties of individual tensors, less attention has

been paid to the global nature of the tensor fields that arise in diffusion MRI. The

recent use of Finsler geometry is a natural step in this direction.

Even though low-rank approximations have proven to work well in practice,

uniqueness of approximations over the reals is mostly open (for the complex case,

see [66]). Moreover, we are still lacking algorithms with provable convergence prop-

erties, and formal results on the well-conditionedness of such approximations.
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Many approaches have been proposed to ensure non-negativity of higher-order

tensors that model apparent diffusivities (cf. Section 4.1). Less attention has been

paid to the fitting of deconvolution models, which are constrained to the convex

cone of tensors that can be expressed as a positive sum of rank-1 tensors; in general,

that is a stricter constraint than non-negativity.

While many neuroscientific studies that use diffusion imaging are now published

each month, they still almost exclusively use either the second-order diffusion tensor

[21] or the ball-and-stick model [22]. A challenge in the next few years will be to

take approaches based on higher-order tensors into the application domain. This

will require more work on several subproblems:

Statistical tests on scalar invariants such as Mean Diffusivity or Fractional

Anisotropy are a mainstay of DTI-based studies. Even though a considerable num-

ber of invariants have now been derived from higher-order tensors (cf. Section 5.1),

the practical utility of many of them is limited by their unclear biological or neu-

roanatomical interpretation.

Given an ever-increasing palette of models, it becomes a more urgent problem

to pick one of them to test a given hypothesis, and to choose values for parame-

ters such as tensor order, approximation rank, or regularization weights. Improved

understanding of formal relationships between different models and mathematical

rules for model selection are required.

Spatial coherence and signal sparsity need to be exploited in order to reliably

estimate the large number of parameters in advanced models such as the ensemble

average propagator, without requiring excessively time consuming measurements.
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31. Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and probabilistic

tractography based on complex fibre orientation distributions. IEEE Transactions on Medical

Imaging 28(2), 269–286 (2009)

32. Ellingson, B.M., Cloughesy, T.F., Lai, A., Nghiemphu, P.L., Liau, L.M., Pope, W.B.: High

order diffusion tensor imaging in human glioblastoma. Academic Radiology 18(8), 947–954

(2011)

33. Essen, D.V., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., Chang, A.,

Chen, L., Corbetta, M., Curtiss, S., Penna, S.D., Feinberg, D., Glasser, M., Harel, N., Heath,

A., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, S.,

Prior, F., Schlaggar, B., Smith, S., Snyder, A., Xu, J., Yacoub, E.: The human connectome

project: A data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

34. Florack, L., Balmashnova, E., Astola, L., Brunenberg, E.: A new tensorial framework for

single-shell high angular resoltion diffusion imaging. J. of Mathematical Imaging and Vision

38, 171–181 (2010)

35. Fuster, A., Astola, L., Florack, L.: A Riemannian scalar measure for diffusion tensor images.

In: X. Jiang, N. Petkov (eds.) Computer Analysis of Images and Patterns, LNCS, vol. 5702,

pp. 419–426. Springer (2009)

36. Fuster, A., van de Sande, J., Astola, L., Poupon, C., Velterop, J., ter Haar Romeny, B.M.:

Fourth-order tensor invariants in high angular resolution diffusion imaging. In: G.H. Zhang,

N. Adluru (eds.) Proc. MICCAI Workshop on Computational Diffusion MRI, pp. 54–63

(2011)

37. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional
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6801, pp. 538–549 (2011)

63. Kindlmann, G., Ennis, D., Whitaker, R., Westin, C.F.: Diffusion tensor analysis with invariant

gradients and rotation tangents. IEEE Transactions on Medical Imaging 26(11), 1483–1499

(2007)

64. Kroonenberg, P.: Applied Multiway Data Analysis. John Wiley, Hoboken, NJ (2008)

65. Kuder, T.A., Stieltjes, B., Bachert, P., Semmler, W., Laun, F.B.: Advanced fit of the diffusion

kurtosis tensor by directional weighting and regularization. Magnetic Resonance in Medicine

67(5), 1401–1411 (2012)

66. Landsberg, J.M.: Tensors: Geometry and Applications, Graduate Studies in Mathematics,

vol. 128. American Mathematical Society (2012)

67. Lang, S.: Differential and Riemannian Manifolds, Graduate Texts in Mathematics, vol. 160,

3rd edn. Springer, New York, NY (1995)

68. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, rev. 3rd edn. Springer, New

York, NY (2002)

69. Lazar, M., Jensen, J.H., Xuan, L., Helpern, J.A.: Estimation of the orientation distribution

function from diffusional kurtosis imaging. Magnetic Resonance in Medicine 60, 774–781

(2008)

70. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR

imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neuro-

logic disorders. Radiology 161(2), 401–407 (1986)

71. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivari-

ate normal distributions: Theory and application to diffusion tensor MRI processing. J. of

Mathematical Imaging and Vision 25, 423–444 (2006)

72. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proc. IEEE

Int’l Workshop on Comput. Adv. Multi-Sensor Adaptive Process. (CAMSAP), pp. 129–132

(2005)

73. Lim, L.H.: Tensors and hypermatrices. In: L. Hogben (ed.) Handbook of Linear Algebra,

2nd edn. CRC Press, Boca Raton, FL (2013)

74. Lim, L.H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chemometrics

23(7–8), 432–441 (2009)

75. Lim, L.H., Comon, P.: Multisensor array processing: Tensor decomposition meets com-

pressed sensing. C. R. Acad. Sci. Paris 338(6), 311–320 (2010)

76. Lim, L.H., Schultz, T.: Moment tensors and high angular resolution diffusion imaging (2013).

Preprint

77. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by

using generalized diffusion tensors. Magnetic Resonance in Medicine 51(5), 924–937 (2004)

78. Liu, C., Bammer, R., Moseley, M.E.: Generalized diffusion tensor imaging (GDTI): A

method for characterizing and imaging diffusion anisotropy caused by non-gaussian diffu-

sion. Israel Journal of Chemistry 43(1–2), 145–154 (2003)

79. Liu, C., Bammer, R., Moseley, M.E.: Limitations of apparent diffusion coefficient-based

models in characterizing non-gaussian diffusion. Magnetic Resonance in Medicine 54, 419–

428 (2005)

80. Liu, C., Mang, S.C., Moseley, M.E.: In vivo generalized diffusion tensor imaging (GDTI)

using higher-order tensors (HOT). Magnetic Resonance in Medicine 63, 243–252 (2010)

81. Liu, Y., Chen, L., Yu, Y.: Diffusion kurtosis imaging based on adaptive spherical integral.

IEEE Signal Process. Lett. 18(4), 243–246 (2011)

82. Lu, H., Jensen, J.H., Ramani, A., Helpern, J.A.: Three-dimensional characterization of non-

gaussian water diffusion in humans using diffusion kurtosis imaging. NMR in Biomedicine

19, 236–247 (2006)

83. Minati, L., Aquino, D., Rampoldi, S., Papa, S., Grisoli, M., Bruzzone, M.G., Maccagnano,

E.: Biexponential and diffusional kurtosis imaging, and generalised diffusion-tensor imaging

(GDTI) with rank-4 tensors: a study in a group of healthy subjects. Magnetic Resonance

Materials in Physics, Biology and Medicine 20, 241–253 (2007)



Higher-Order Tensors in Diffusion Imaging 31

84. Minati, L., Banasik, T., Brzezinski, J., Mandelli, M.L., Bizzi, A., Bruzzone, M.G., Konopka,

M., Jasinski, A.: Elevating tensor rank increases anisotropy in brain areas associated with

intra-voxel orientational heterogeneity (IVOH): a generalised DTI (GDTI) study. NMR in

Biomedicine 21(1) (2008)

85. Mørup, M., Hansen, L., Arnfred, S., Lim, L.H., Madsen, K.: Shift invariant multilinear de-

composition of neuroimaging data. NeuroImage 42(4), 1439–1450 (2008)
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